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OUTLINE

e Distance in 3D Euclidean Space
e Distance in 4D Minkowski Spacetime
e Principle of Equivalence

e Distance in 4D Non-Euclidean Spacetime

(metric tensor, Christoffel symbols, Einstein
Field Equations)



The General Theory of Relativity 1

The General Theory of Relativity

Emstein and the Ficel Tensor

e ‘‘General Relativity is the most beautiful
physical theory ever invented.”

- Spacetime and Geometry

e "One of the Greatest Achievements of the
Human Mind.”

- Introducing Einstein’s Relativity
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3D Euclidean Space 2

Line element (distance) in Euclidean space
Jim (As)? = (Ax)?+ (Ay)° + (82)°
ds3p = dz? + dy? + dz? = dZ - d&
(1)

X

° ds%D IS the line-element measuring distance
= Pythagorean Theorem

o ds%D is invariant under rotations
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3D Euclidean Space 3

Line element using matrix notation
ds%D = 5ijda:id:cj

where

(2)

ij =

[@%
O O
Or O
R OO

e Matrix multiplication

e Repeated index = sum over index

. . 3 3 . .
ds%D = §;jda’da? = ) > 6;da’da?
i=1 =1
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3D Euclidean Space 4

ds%D = 5Z-jda:id:vj
Summing over the ¢ index...
ds3p = 61;dztde? + 6pjdx?da’ + 53 da>da?
(3)
Summing over j index...
ds3, = 611detdat + 61odetdz? + 613datda
§o1dr2dzt 4 Soodx?dz® + Sy3dx?dr’

531dx3dzt + S35dx3dr? + §33da>da>
(4)

s.ds3p = dzidey + deodas + drsdes
dz? + dy? + dz?

(5)
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Euclidean Example 5

Example:

What is the Euclidean line element in spherical-
polar coordinates?

x = rsSinfcosqgo
y = rsinésing
z = rcosé

(6)
e Taking the differentials...

dx d(r sin 0 cos ¢)
Sin 6 cos ¢dr 4+ r cOS O cos pdf — rsin @ sin pdo

(7)

e and plugging into the cartesian line element

ds3p = da? + dy? + dz?

e Vyields the spherical-polar line element

ds3 ) = dr? 4 r?(d6? + sin 0%d¢?)

e Example of a coordinate transformation
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2-Sphere Example 6

Example:
What is the line element for the unit 2-sphere?
e locus of points in R3 at unit distance from
origin
e Setr=1and dr=20
ds3 = d#? 4+ sin? 6d¢?

e Non-Euclidean manifold
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Special Relativity 7

Special Theory of Relativity Postulates:

e All inertial observers are equivalent

® c = constant

Consequences:

e Time and length are relative quantities
— ds3p, is NOT invariant

2 2
ds3p # ds3p

Lorentz transformations

r = ~(z—t)
' = y(t—vz/c?) (8)
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Minkowski Spacetime 8

Line element in Minkowski space

ds? = —c2dt? + dx? + dy? + dz?
= —c2dt? +dz - d7 (9)

t t’

___________ dx
dt
;oo dt

ds J |

S X’

y o

e ds? is the line element measuring length

e ds? is invariant under rotations

ds? = ds'?
(10)
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Minkowski Spacetime 9

Proper time:

ds? = ds'?
(11)
e For proper time, set d&/ =0
—c2dr? = —c2dt? + dT - dT
solving for dr
dr dx
dr = dt\/l — 02/62 where 12 = ar ax
dt dt
ot
~
(12)
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Minkowski Spacetime 10

Line element using matrix notation

ds® = Nuvdxtdz”

where
~1.00 0
0 100
=0 0010 (13)
0 001

e Again, repeated index = sum over index

3 3
ds? = n,ydxtdr? = ydxtdx?
T ym
p=0rv=0

ct

x
Y
Yy
2

e 7nuv IS the Minkowski metric
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Inertial vs. Gravitational Mass 11

e Newton’'s Second Law
e Newton’s Law of Gravitation (uniform field)
e Electric Field

i = (mg/m;)g i = (Q/m;)E
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Principle of Equivalence 12

e EOtvos experiment verified that

to 1 part in 10121
The Weak Equivalence Principle is

—

g=a

e All objects “fall’ at the same rate

(independent of the mass).

e Suggests a preferred class of trajectories through
spacetime.

—inertial (freely-falling) trajectories
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Principle of Equivalence

13

The motion of freely-falling particles is the
same in a gravitational field and a
uniformly accelerated frame, in small
enough regions of spacetime.

IN SPACE

|
e —

. /
- L -
1 -

|

= 1l

r

o

ACCELERATING

— What about massless particles?

e Elevator observer sees light moving in a curved

path
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Principle of Equivalence 14

— Is Earth observer inertial?

e Elevator observer is non-inertial

. Earth observer is non-inertial

Coincidence(?) in Newtonian theory

e All inertial forces have the mass as a

constant of proportionality in them.

...as does the gravitational force.

e Einstein suggested that we treat gravitation
as an inertial effect (from not using an iner-
tial frame).
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Non-Euclidean Spacetime 15

In Minkowski coordinates in Special Relativity,
the equation for a test particle is

d2 M

dr2 =0

For a non-inertial frame of reference, the equa-
tion becomes
d2 1 dz® dxB

T 0
dr2 T b dr dr

the additional terms are the inertial force terms.

e By principle of equivalence, the gravitational
forces should be given by an appropriate I";ﬁ.

e (Geodesic equation - Free particles move along
paths of ‘shortest possible distances”
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Non-Euclidean Spacetime 16

Line element using curved space

ds? = guvdatdx”

® guv IS the metric tensor

e nuv is the flat limit of guy

® Juv — Juvpu

e Again, repeated index = sum over index

3 3
ds? = Z Z guvdatdz”
p=0r=0

ds® = goodxodxo -+ gOlda:Od:cl -+ gogd:codacQ + ...

+... + gl3dac1dac3 + ...+ g33da:'3dac3
(14)

e g, defines the geometry of spacetime
o Know guv, Know Geometry
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2-Sphere Example 17

Example:

What is the metric tensor of the unit 2-sphere?

ds3 = df? + sin? 0dp?

The metric tensor is
1 0
G = ( 0 sin26 ) (15)

or writing the components explicitly...

900 =1, 9o = 9gpp = 0, gyp = Sin?0

What is the inverse metric? (g-g~1 = 1)
w1 0
(9pur) J < 0 1/sin?6 )
with components ...
" =1,4"%=g"=0, ¢*?=1/sin?0
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Christoffel symbol 18

e All the ways curvature manifests itself rely
on something called a ‘“connection”.

1
3, = 590‘5 (%975 T Ovg8s — 359@)
where
0
Op = ——
Ozl

e ) iS a repeated index — Sum!

e Looks like a tensor... but it's not a tensor.

Notice:
r=1T1(g,09)

e Christoffel is a function of the metric and
the derivative of the metric
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2-Sphere Example 19

Example:

What are the possible connections for the unit
2-sphere?

ds5 = d#? 4 sin? d¢p?
Components of the metric:

900 =1, 9o = 9gpp = 0, gyp = sin?0
Answer:

6 6 ¢ 0 ¢ ¢
P05 Tog> Toor Toss Topr T gs

What are the connections for the unit 2-sphere?

1
|‘§5¢ = 5995 (3¢g¢5 + 0p9ps — 359¢¢)
1
= 5900 (2%%9 — 399¢¢)

10
= ———(sin®f) = —sinfcosh
200

(16)

¢ _ 0 _ 0 _r¢ —_r® —
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Einstein Field Equations 20

General Theory of Relativity

G,u,]/ = R,U,V — %g'uij — 87TGTM]/

e G is the Einstein tensor describing the cur-
vature of space.

e T,y is the stress-energy tensor which describes
matter.

e MAT T TER tells space how to CURVE and
SPACE tells matter how to MOVE!
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Einstein Field Equations 21

Einstein Field Equations

G/“/ = R,U'V — %g'u,yR — SWGTMV

e Subscripts label elements of each matrix

e Set of 10 second-order, non-linear, partial
differential equations

e EM, Strong, & Weak — fields on spacetime

= @Qravity is curvature of spacetime itself!
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Properties 22

Einstein Field Equations

Gluy — R/,LI/ — %gIUJVR — 87TGTILL1/

where

R/ﬂ/ — aa rgy — a}/rga + rg]/rgﬂ T rﬁargy

is the Ricci tensor and

R pr— g'LLVR,UJ/

is the Ricci scalar.

Notice:
Ruy = Ryw(I,0N) but ' =T (g,d9)
The Einstein Tensor
G = G (g, dg,8%g)

IS written entirely in terms of the metric tensor!
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2-Sphere Example

23

Example: Line element for 2-sphere of radius a

ds3 = a®(df? + sin® 0d¢?)

I‘g(b = —sSinfdcosé
Fg(b = cotéf
_ 9 _ -0 _ _
0 = Mhy=Thy=Tg=T5,

(17)

What are the Ricci tensors?

_ 8 8
Ry = 0al gy — 0uT 0 + TsMap — Moal 39

e Summing out indicies...

_ 0 0 5 B 0 B ¢
Roy = 09l 46+ Toolgs — ool 8o — Tool 5o
_ 0 0 ) ¢ 6 0 o}
— 0 0 )
= 9l gy — gl 94
(18)
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2-Sphere Example 24

e Plugging in the functions

Ryp = Jp(—sinfcosh) 4+ coth -sinhcosb

— sin44
(19)
o Likewise,
Rgg =1
What is the Ricci scalar?
R — gMVRMy
= 9" Ryp + 9**Ry,
1 5 1
— sin© 0 + —
a2sin? 6 T a2
2
= — 20
= (20)

The Ricci scalar...
e ... completely characterizes curvature (2D).
e ... is constant on 2-sphere.
e ... decreases for increasing a.
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2-Sphere Example

25

In 1916, Karl Schwarzschild presented an
EXACT solution!

e Choose a point mass
Ty = mé5,6° (&)
e Choose metric ansatz
ds? = —eAM g2 1 B gz . qz

e Plug metric ansatz into the Einstein Field
equation

T he solution is

2GM 1

2 2 2 2 2

ds ——(1— ’r )dt —I—( _QGM)dT + r<dS<2
T

where d2 = df? + sin?0d¢? is the differential
solid angle.
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Schwarzschild line element

26

2G M
ds® = — (1 = ) dt® + e dr” +r2dQ”
" (1-=C%)
e When r — r ., = 2GM = dt2 — 0 & dr? —

0

— Schwarzschild radius
= Not a real singularity

e Whenr — 0 = dt?2 — co & dr? — 0
— Spacetime singularity!

e Solution predicts Black holes!
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