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The elliptical orbits of Newtonian gravitation

The 2D surfaces that generate Newtonian orbits with
small eccentricities

Precessing elliptical orbits of GR with small eccentricities

The 2D surfaces that generate general relativistic orbits
with small eccentricities



Einstein’s theory of general relativity
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* G, describes the curvature of
spacetime

« T,,, describes the matter &
energy in spacetime

Matter tells space
how to curve,

space tells matter
e hOW tO move. Sean M. Carrol, Spacetime and Geometry: An Introduetion to

Einstein’s General Relativity (Addison Wesley, 2004)




Einstein’s theory of general relativity

Consider a spherically-symmetric,
non-rotating massive object...

Embedding diagram (¢t = t,, 0 = 7/2)..

e 2D equatorial ‘slice’ of the 3D space at one
moment in time

) — 2, 2GM (r_ QGM)
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Is there a warped 2D surface that will where 2GM/c2= 1
yield the orbits of planetary motion?

R ®



The Lagrangian in spherical-polar
coordinates with a Newtonian potential

e 1is of the form..

1

- GmM
L = Uk (7"2—|—7°2gb2) + e

r

« where we set § = 7/2 and a dot refers to a time derivative.

 For the azimuthal-coordinate..

g_g - %Z_g =0 yields - -Kepler’s 274 Law



The Lagrange equations of motion

 For the radial-coordinate..

o aior Y

» vyields the equation of motion for an object of mass m..
| -

« Using the differential operator..

i B £ i ; * can be written in the form..
dt r2do



The equation of motion

parabola

For the radial-coordinate..

d’r 2 ( dr ) ° GM ,
—= -\ 3z T+ re=20
d§b2 r de 62 ellipse

yields the conic sections..

-Kepler’s 15t Law Circ'e‘

where (2 = GMrg
and ¢ is the eccentricity of the orbit.

http://www.controlbooth.com/threads/ cyc-color-wash-using-fresne]s.30704 /

Hyperbola

)
http://conic-sections-section.wikispaces.com/General+Infomation+Main




The radial equation of motion

the exact solution..

To

r(@)ex =

(14 ecos¢)

for small eccentricities..

(@) app = To(1 — € cos @)

Notice:

*

Planets |r,(m) % error
Mercury |5.79%10"° | 0.2056| 4.227
Venus [1.08%10'°| 0.0068| 0.005
Earth |1.50%*10" | 0.0167| 0.028
Mars 2.28%10" | 0.0934| 0.872
Jupiter |7.78%10" | 0.0483| 0.233
Saturn [1.43*10"” | 0.056| 0.314
Uranus (2.87*10"| 0.0461| 0.213
Neptune [4.50%10" 0.01] 0.01

T — T
% error = rea app| x 100%
fr‘eil:

= 2 cos ¢ * 100%

* yields an excellent approximation for the solar system planets!




Kepler’s 3™ Law

» Setting 7 = # = 0 and using ¢ = 2w /T for circular orbits...

—

U m

Notice:
« Kepler’s 3™ Law is independent of m!



An object orbiting on a 2D cylindrically-
symmetric surface

* is described by a Lagrangian of the form..
1 - 1
L = im(f“z + 12?4+ %) + §Iw2 — mgz
* Now, for the orbiting object..

1 1
—Jw? = —amwv
2 2
where o = 2/5 for a rolling sphere,
« =0 fora sliding object.
« The orbiting object is constrained to reside on the surface..
z = z(r)

I = amR? and w® = v*/R? SO g



The Lagrange equations of motion

 For the azimuthal-coordinate..
oL d OL
- ] : . 1 _
96 dt 9 0 yields

e For the radial-coordinate..
oL B d OL
Oor dt Or

« vyields the equation of motion for the orbiting object..

where (=2/(1+a)
\ g=g/(1+a)

=0




The Lagrange equation of motion

Compare the equation of motion for the orbiting object..

(2 "
(1 4+ 22)F + 22"+ — peis gz =0

 to the equation of motion for planetary orbits..

.2 GM
T_T_B—i_T—ZZO

L.Q. English and A. Mareno, “Trajectories of rolling marbles on various funnels”, Am. J. Phys. 80 (11), 996-1000 ®o12)




The Lagrange equation of motion

Compare the equation of motion for the orbiting object..

(2 B
(1 4+ 22)F + 22"+ — peis gz =0

 to the equation of motion for planetary orbits..

. 0?2 GM

T — 7“_3 —+ 7“—2 =0
* will NOT yield Newtonian orbits on ANY cylindrically-
symmetric surface, except in the special case of circular orbits.

« So, what about for nearly circular orbits?




The radial equation of motion

« Using the differential operator, the radial equation becomes..

(1_|_/2& ///_21 12 ﬁz_ 2/4_0
z)d¢2—|—[zz r( + 2] i3 7“—|—Z2zr—

* For nearly circular orbits with small eccentricities..

where 79 & I are parameters.

Notice:
when v = 1, stationary elliptical orbits
 when v # 1, precessing elliptical orbits.



The radial equation of motion

» We find the solution, to 15! order in the eccentricity, when..

1
For z(r) o« —— ...
,rn

» Precessing elliptical orbits when n < 2
« Stationary elliptical orbits, for certain radii, when n < 1

« No stationary elliptical orbits when n = 1!

N Michael Nauenberg, “Perturbation approximation for orbits in axially symmetric funnels”, to appear in Am..J . Phys.



The 2D surface that generates Newtonian orbits

* To find the 2D surface that yields stationary elliptical orbits
with small eccentricities for all radii, solve...

2 (14 27) =32 +r2"
* The solution for the slope of the surface is..
* . .
where k1s an arbitrary
integration constant

* *isindependent of spin of orbiting object.

Notice:

e When k = 0, * becomes the equation of an inverted cone with slope v/2 .

A Gary D. White, “On trajectories of rolling marbles in cones and other funnels”, Am. J. Phys. 81 (12), 890—89.8 (2013)



The 2D surface that generates Newtonian orbits

» Integrating yields the shape function...

* where F(a,b) is an elliptic integral of the 15 kind.

Notice:

» This 2D surface will generate stationary elliptical
orbits with small eccentricities for all radii!



Kepler’s 374 Law

» Setting 7 = # = 0 and using ¢ = 27 /T for circular orbits...

. Notice that when k7t < 1.

T? xr - Kepler-like relation for that of an inverted cone.

. and when xr? > 1.

T? x r3 - Kepler’s 3™ Law of planetary motion.



Precessing elliptical orbits in GR with small
eccentricities

The eqn of motion for an object orbiting about a non-rotating,
spherically-symmetric object of mass M in GR is..

2 GM  3GME _+
+ — + =0

r —

rs3 r c2ri

where a dot refers to a derivative w.r.t. proper time.
Using the differential operator, * becomes..

d*r 2(d’r>2 GM , 3GM
~ 5 - — T+ T+ =

— 0
do? r \ do¢ 02 c?

we choose a solution of the form..
7“(¢) - 7"0(1 _— COS(V@) where g & 1/ are parameters.



Precessing elliptical orbits in GR with small

eccentricities

e We find the solution, to 15t order in the eccentricity, when..

Notice:

Planets

r, (m)

6GM/c’r,

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune

5.79%10™
1.08*10"
1.50%10"
2.28%10"
7.78%10"
1.43*10"
2.87%10"

4.50%10"

0.2056
0.0068
0.0167
0.0934
0.0483
0.056
0.0461
0.01

1.53%107
8.19*107
5.90%10™®
3.88*10®
1.14*10°°
6.19%107°
3.08*107°
1.97%107°

« Deviation from closed elliptical orbits increases with decreasing rg .

« Whenro < 6GM/c® | v becomes complex: elliptical orbits not allowed
e Whenrg < 3GM/c? , v & ¢ become complex: no circular orbits.




The 2D surfaces that generates general
relativistic orbits

* To find the 2D surface that yields precessing elliptical orbits with small
eccentricities for all radii, solve...

Z(14+ 2% =32 +r2" with u:\/l—

oGM
c2rg

» The solution for the slope of the surface is..

where 8 = 6GM/c*rg

Notice:
dependent on central mass, M, and average radius of orbit, r,.
depends on 3 in both overall factor and in the power.
« olope divergesas § — 1 .



Compare the 2D surfaces...

« Slope that generates Newtonian stationary elliptical orbits..

« Slope that generates the GR precessing elliptical orbits...

Notice:

where 8 =6GM/c*rg

e Theyagreewhen 8 — 0.

* GR offers a tiny correction for the
orbits of the solar system planets.

Planets

ro (m)

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune

5.79%10™
1.08%10"
1.50*10"
2.28%10"
7.78%10"
1.43%10"
2.87%10"
4.50%10"

0.2056
0.0068
0.0167
0.0934
0.0483
0.056
0.0461
0.01

1.53*107
8.19%107
5.90%10®
3.88*10®
1.14%10°®
6.19%107
3.08%107°
1.97*107°




