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Outline 

•  The elliptical orbits of Newtonian gravitation 

•  The 2D surfaces that generate Newtonian orbits with 
small eccentricities  

•  Precessing elliptical orbits of GR with small eccentricities 

•  The 2D surfaces that generate general relativistic orbits 
with small eccentricities  

 



 
 
•         describes the curvature of 

spacetime 
•         describes the matter & 

energy in spacetime 

Einstein’s theory of general relativity 

Sean M. Carrol, Spacetime and Geometry: An Introduction to 
Einstein’s General Relativity (Addison Wesley, 2004)	


 
Matter tells space   

how to curve, 
space tells matter  

how to move. 
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Consider a spherically-symmetric, 
non-rotating massive object… 
 
Embedding diagram (t = t0 , θ = π/2)..	


•  2D equatorial ‘slice’ of the 3D space at one 

moment in time	



 
 
 

Einstein’s theory of general relativity 

where 2GM/c2 = 1	
Is there a warped 2D surface that will 
yield the orbits of planetary motion?  
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The Lagrangian in spherical-polar 
coordinates with a Newtonian potential 
•  is of the form.. 
 
 
•  where we set                 and a dot refers to a time derivative. 

•  For the azimuthal-coordinate.. 
     

L =
1

2
m

⇣
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•  For the radial-coordinate.. 
 
 
•  yields the equation of motion for an object of mass m.. 
                * 

     
 
•   Using the differential operator.. 

   ,      * can be written in the form.. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The Lagrange equations of motion 
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•  For the radial-coordinate.. 
 
 
 
•  yields the conic sections.. 

 
 
•  where      
•  and    is the eccentricity of the orbit. 

 
 
 
 
 
 
 
 
 
 
 
 

The equation of motion 
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http://conic-sections-section.wikispaces.com/General+Infomation+Main 

http://www.controlbooth.com/threads/cyc-color-wash-using-fresnels.30704/ 

-Kepler’s 1st Law	




•  the exact solution.. 

 
 
•  for small eccentricities..  

       * 
 
 
Notice: 

•   * yields an excellent approximation for the solar system planets!     
 
 
 
 
 
 
 
 
 
 
 
 

The radial equation of motion 

Planets r0 (m) ε % error

Mercury 5.79*1010 0.2056 4.227
Venus 1.08*1010 0.0068 0.005
Earth 1.50*1011 0.0167 0.028
Mars 2.28*1011 0.0934 0.872
Jupiter 7.78*1011 0.0483 0.233
Saturn 1.43*1012 0.056 0.314
Uranus 2.87*1012 0.0461 0.213
Neptune 4.50*1012 0.01 0.01
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•  Setting                   and using                    for circular orbits... 

 
 
 
Notice:   
•  Kepler’s 3rd Law is independent of m! 

 
 
 
 
 
 

Kepler’s 3rd Law 
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An object orbiting on a 2D cylindrically-
symmetric surface 
•  is described by a Lagrangian of the form.. 
 
 
•  Now, for the orbiting object.. 

 
    where       for a rolling sphere,   
          for a sliding object.  

•  The orbiting object is constrained to reside on the surface..   
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•  For the azimuthal-coordinate.. 
 
 
 
•  For the radial-coordinate.. 
 
 
•  yields the equation of motion for the orbiting object.. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

The Lagrange equations of motion 
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˜̀2

r3
+ g̃z0 = 0

yields	


where	


r2�̇ = `/(1 + ↵)

˜̀⌘ `/(1 + ↵)
g̃ ⌘ g/(1 + ↵)



Compare the equation of motion for the orbiting object.. 
                              * 

•  to the equation of motion for planetary orbits..  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L.Q. English and A. Mareno, “Trajectories of rolling marbles on various funnels”, Am. J. Phys. 80 (11), 996-1000 (2012) 

* will NOT yield Newtonian orbits on ANY cylindrically-
symmetric surface, except in the special case of circular orbits.  

The Lagrange equation of motion 
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Compare the equation of motion for the orbiting object.. 
                              * 

•  to the equation of motion for planetary orbits..  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

•  So, what about for nearly circular orbits? 
 
 

* will NOT yield Newtonian orbits on ANY cylindrically-
symmetric surface, except in the special case of circular orbits.  

The Lagrange equation of motion 
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•  Using the differential operator, the radial equation becomes.. 
 
 
•  For nearly circular orbits with small eccentricities.. 
 

      
 
 
Notice: 
•  when            , stationary elliptical orbits 
•  when            , precessing elliptical orbits. 

 
 
 
 
 
 
 
 
 
 
 
 

⌫ = 0.98where      &    are parameters. 

The radial equation of motion 
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•  We find the solution, to 1st order in the eccentricity, when.. 

           * 
 
For                       … 
 
•  Precessing elliptical orbits when n < 2 
•  Stationary elliptical orbits, for certain radii, when n < 1 

•  No stationary elliptical orbits when n = 1!     
 
 

Michael Nauenberg, “Perturbation approximation for orbits in axially symmetric funnels”,  to appear in Am. J. Phys.  
 
 
 
 
 
 
 

The radial equation of motion 
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•  To find the 2D surface that yields stationary elliptical orbits 
with small eccentricities for all radii, solve… 

 
•  The solution for the slope of the surface is.. 

      * 
 
Notice: 
•  * is independent of spin of orbiting object.  
•  When   , * becomes the equation of an inverted cone with slope       . 

 
Gary D. White, “On trajectories of rolling marbles in cones and other funnels”, Am. J. Phys. 81 (12), 890-898 (2013)   

 
 
 
 
 
 
 
 
 

where    is an arbitrary 
   integration constant	


The 2D surface that generates Newtonian orbits 
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•  Integrating yields the shape function... 

•  where F(a,b) is an elliptic integral of the 1st kind. 

Notice: 
•  This 2D surface will generate stationary elliptical 

orbits with small eccentricities for all radii! 
 
 
 
 
 
 
 
 
 

The 2D surface that generates Newtonian orbits 
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•  Setting                   and using                    for circular orbits... 

 
 
•  Notice that when                    .. 

      
  

•  and when               .. 
 
 
 
 
 
 

Kepler’s 3rd Law 
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- Kepler-like relation for that of an inverted cone. 

- Kepler’s 3rd Law of planetary motion. 



•  The eqn of motion for an object orbiting about a non-rotating, 
spherically-symmetric object of mass M in GR is.. 

                         * 

•  where a dot refers to a derivative w.r.t. proper time. 
•  Using the differential operator, * becomes.. 

 
 
 
 
 
 

•  we choose a solution of the form.. 
     where      &     are parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Precessing elliptical orbits in GR with small 
eccentricities 
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•  We find the solution, to 1st order in the eccentricity, when.. 

 
 
Notice: 

•  Deviation from closed elliptical orbits increases with decreasing      .    
•  When                          ,      becomes complex: elliptical orbits not allowed  
•  When               ,     &     become complex: no circular orbits.   

 
 
 
 
 
 
 
 
 
 
 

Precessing elliptical orbits in GR with small 
eccentricities 
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Planets r0 (m) ε 6GM/c2r0
Mercury 5.79*1010 0.2056 1.53*10-7

Venus 1.08*1010 0.0068 8.19*10-7

Earth 1.50*1011 0.0167 5.90*10-8

Mars 2.28*1011 0.0934 3.88*10-8

Jupiter 7.78*1011 0.0483 1.14*10-8

Saturn 1.43*1012 0.056 6.19*10-9

Uranus 2.87*1012 0.0461 3.08*10-9

Neptune 4.50*1012 0.01 1.97*10-9



•  To find the 2D surface that yields precessing elliptical orbits with small 
eccentricities for all radii, solve… 

 
•  The solution for the slope of the surface is.. 

       
 
 
Notice: 
•  dependent on central mass, M, and average radius of orbit, r0. 
•  depends on      in both overall factor and in the power. 
•  Slope diverges as   

 
 
 
 
 
 
 
 
 
 

where	


The 2D surfaces that generates general 
relativistic orbits 
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•  Slope that generates Newtonian stationary elliptical orbits.. 

 
•  Slope that generates the GR precessing elliptical orbits… 

Notice: 
•  They agree when       . 
•  GR offers a tiny correction for the                   

orbits of the solar system planets.    
 
 

 
 
 
 
 
 
 
 
 
 

where	


Compare the 2D surfaces… 
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Planets r0 (m) ε β
Mercury 5.79*1010 0.2056 1.53*10-7

Venus 1.08*1010 0.0068 8.19*10-7

Earth 1.50*1011 0.0167 5.90*10-8

Mars 2.28*1011 0.0934 3.88*10-8

Jupiter 7.78*1011 0.0483 1.14*10-8

Saturn 1.43*1012 0.056 6.19*10-9

Uranus 2.87*1012 0.0461 3.08*10-9

Neptune 4.50*1012 0.01 1.97*10-9


