Physics 311

Homework Set 5

Due Monday, September 19

1. Consider four point charges located at the corners of a square with charges and coordinates

$$q_1 = q @ x = y = 0$$
 , $q_2 = 2q @ x = \ell$, $y = 0$
 $q_3 = -q @ x = y = \ell$, $q_4 = 3q @ x = 0$, $y = \ell$

- a) Draw a diagram showing the position of each of the charges. (1)
- b) Draw a free-body diagram for charge q_1 due to the three other charges.
- c) Calculate the force on q_1 due q_2 , on q_1 due to q_3 , and on q_1 due to q_4 , in *unit-vector notation*.
- d) Calculate the net force on q_1 due to the other charges in unit-vector notation.
- e) Calculate the net force on q_1 due to the other charges in magnitude-angle notation.

 Answer:

$$\vec{F}_1 = \left(\left[13 + \frac{1}{4} - \frac{5}{\sqrt{2}} \right]^{1/2} \frac{1}{4\pi\epsilon_0} \frac{q^2}{\ell^2}, 238.1^{\circ} \right)$$
 (2)

2. a) Calculate the net charge on a solid sphere of radius R with a volume charge density

$$\rho(\theta) = \rho_0 \cos^2 \theta,\tag{3}$$

where θ is the polar angle.

b) Calculate the net charge on a circular plate of radius R with a surface charge density

$$\sigma(s) = \sigma_0 \frac{R}{s}.\tag{4}$$

3. Consider a line charge of length L lying on the x-axis with its left end at the origin, as shown in the figure below. In this problem, we ultimately wish to construct the total \vec{E} -field of this line charge at point \mathcal{P} in terms of an integral.

- a) On the diagram, draw the position vector \vec{r} of the field point, \mathcal{P} , the position vector \vec{r}' of the source point, dq, and the separation vector \vec{z} from the source point to the field point.
- b) In unit-vector notation, construct the separation vector, $\hat{\boldsymbol{z}}$, and the unit separation vector, $\hat{\boldsymbol{z}}$.
- c) Starting with the fundamental expression

$$d\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{dq}{2} \hat{\imath},\tag{5}$$

the results from b), and the fact that $dq = \lambda(x)dx$, construct the total \vec{E} -field in terms of an integral.

4. Reconsider the previous problem for a line charge with a uniform density

$$\lambda(x) = \lambda_0. \tag{6}$$

a) Calculate the total \vec{E} -field at point \mathcal{P} .

Answer:

$$\vec{E}(z) = \frac{\lambda_0}{4\pi\epsilon_0} \left[\frac{L}{z\sqrt{L^2 + z^2}} \,\hat{z} - \left[\frac{1}{z} - \frac{1}{\sqrt{L^2 + z^2}} \right] \hat{x} \right] \tag{7}$$

b) Show that in the limit that $z \gg L$, Eq. (7) reduces to that of a point charge.

5. Consider a charged, flat circular disk of radius R lying on the xy-plane with its center at the origin, as shown in the figure below. In this problem, we ultimately wish to construct the total \vec{E} -field on this charged disk at point \mathcal{P} in terms of an integral.

- a) On the diagram, draw the position vector \vec{r} of the field point, \mathcal{P} , the position vector \vec{r}' of the source point, dq, and the separation vector \vec{z} from the source point to the field point.
- b) Using cylindrical coordinates, construct the separation vector, $\vec{\boldsymbol{z}}$, and the unit separation vector, $\hat{\boldsymbol{z}}$ in unit-vector notation.
- c) Using the fact that $dq = \sigma(s)da$ for an area charge density that only depends on the distance from the z-axis, construct the total \vec{E} -field in terms of an integral. The differential area, da, should be written in terms of cylindrical coordinates.
- 6. Reconsider the previous problem for an areal charge with a uniform density

$$\sigma(s) = \sigma_0. \tag{8}$$

- a) Calculate the net charge on the circular plate of radius R.
- b) Calculate the total \vec{E} -field at point \mathcal{P} .

Answer:

$$\vec{E}(z) = \frac{\sigma_0}{2\epsilon_0} \left[1 - \frac{z}{\sqrt{z^2 + R^2}} \right] \hat{z} \tag{9}$$

- c) Show that in the limit that $z \gg R$, Eq. (9) reduces to that of a point charge.
- d) Show that in the limit that $z \ll R$, Eq. (9) reduces an infinite sheet of charge.
- 7. Suppose the electric field in some region is found to be

$$\vec{E} = kr^5\hat{r},\tag{10}$$

in spherical-polar coordinates, where k is a constant.

- a) Calculate the charge density $\rho(r)$.
- b) Using the fact that

$$\rho = \frac{dq}{d\tau},\tag{11}$$

find the total charge contained in a sphere of radius R, centered at the origin.

c) Using Gauss' Law in integral form

$$\oint \vec{E} \cdot d\vec{a} = \frac{Q_{\text{enc}}}{\epsilon_0},$$
(12)

find the total charge contained in a sphere of radius R, centered at the origin.