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CHAPTER 5

Electric Charges and Fields

Figure 5.1 Electric charges exist all around us. They can cause objects to be repelled from each other or to be
attracted to each other. (credit: modification of work by Sean McGrath)

Chapter Outline
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INTRODUCTION Back when we were studying Newton’s laws, we identified several physical phenomena as
forces. We did so based on the effect they had on a physical object: Specifically, they caused the object to
accelerate. Later, when we studied impulse and momentum, we expanded this idea to identify a force as any



physical phenomenon that changed the momentum of an object. In either case, the result is the same: We
recognize a force by the effect that it has on an object.

In Gravitation, we examined the force of gravity, which acts on all objects with mass. In this chapter, we begin
the study of the electric force, which acts on all objects with a property called charge. The electric force is much
stronger than gravity (in most systems where both appear), but it can be a force of attraction or a force of
repulsion, which leads to very different effects on objects. The electric force helps keep atoms together, so it is
of fundamental importance in matter. But it also governs most everyday interactions we deal with, from
chemical interactions to biological processes.

5.1 Electric Charge

Learning Objectives
By the end of this section, you will be able to:
e Describe the concept of electric charge
e Explain qualitatively the force electric charge creates

You are certainly familiar with electronic devices that you activate with the click of a switch, from computers to
cell phones to television. And you have certainly seen electricity in a flash of lightning during a heavy
thunderstorm. But you have also most likely experienced electrical effects in other ways, maybe without
realizing that an electric force was involved. Let’s take a look at some of these activities and see what we can
learn from them about electric charges and forces.

Discoveries

You have probably experienced the phenomenon of static electricity: When you first take clothes out of a
dryer, many (not all) of them tend to stick together; for some fabrics, they can be very difficult to separate.
Another example occurs if you take a woolen sweater off quickly—you can feel (and hear) the static electricity
pulling on your clothes, and perhaps even your hair. If you comb your hair on a dry day and then put the comb
close to a thin stream of water coming out of a faucet, you will find that the water stream bends toward (is
attracted to) the comb (Figure 5.2).

Figure 5.2 An electrically charged comb attracts a stream of water from a distance. Note that the water is not touching the comb. (credit:
Jane Whitney)

Suppose you bring the comb close to some small strips of paper; the strips of paper are attracted to the comb
and even cling to it (Figure 5.3). In the kitchen, quickly pull a length of plastic cling wrap off the roll; it will tend
to cling to most any nonmetallic material (such as plastic, glass, or food). If you rub a balloon on a wall for a few
seconds, it will stick to the wall. Probably the most annoying effect of static electricity is getting shocked by a
doorknob (or a friend) after shuffling your feet on some types of carpeting.
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Figure 5.3 After being used to comb hair, this comb attracts small strips of paper from a distance, without physical contact. Investigation

of this behavior helped lead to the concept of the electric force. (credit: Jane Whitney)

Many of these phenomena have been known for centuries. The ancient Greek philosopher Thales of Miletus
(624-546 BCE) recorded that when amber (a hard, translucent, fossilized resin from extinct trees) was
vigorously rubbed with a piece of fur, a force was created that caused the fur and the amber to be attracted to
each other (Figure 5.4). Additionally, he found that the rubbed amber would not only attract the fur, and the fur
attract the amber, but they both could affect other (nonmetallic) objects, even if not in contact with those

objects (Figure 5.5).

Figure 5.4 Borneo amber is mined in Sabah, Malaysia, from shale-sandstone-mudstone veins. When a piece of amber is rubbed with a
piece of fur, the amber gains more electrons, giving it a net negative charge. At the same time, the fur, having lost electrons, becomes

positively charged. (credit: “Sebakoamber”/Wikimedia Commons)
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Figure 5.5 When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for electrons
than another. (a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny fraction of the
charges are involved, and only a few of them are shown here. (b) When rubbed together, some negative charge is transferred to the amber,
leaving the cloth with a net positive charge. (c) When separated, the amber and cloth now have net charges, but the absolute value of the

net positive and negative charges will be equal.

The English physicist William Gilbert (1544-1603) also studied this attractive force, using various substances.
He worked with amber, and, in addition, he experimented with rock crystal and various precious and semi-
precious gemstones. He also experimented with several metals. He found that the metals never exhibited this
force, whereas the minerals did. Moreover, although an electrified amber rod would attract a piece of fur, it
would repel another electrified amber rod; similarly, two electrified pieces of fur would repel each other.

This suggested there were two types of an electric property; this property eventually came to be called electric
charge. The difference between the two types of electric charge is in the directions of the electric forces that
each type of charge causes: These forces are repulsive when the same type of charge exists on two interacting
objects and attractive when the charges are of opposite types. The SI unit of electric charge is the coulomb (C),
after the French physicist Charles-Augustin de Coulomb (1736-1806).

The most peculiar aspect of this new force is that it does not require physical contact between the two objects
in order to cause an acceleration. This is an example of a so-called “long-range” force. (Or, as James Clerk
Maxwell later phrased it, “action at a distance.”) With the exception of gravity, all other forces we have
discussed so far act only when the two interacting objects actually touch.

The American physicist and statesman Benjamin Franklin found that he could concentrate charge in a
“Leyden jar,” which was essentially a glass jar with two sheets of metal foil, one inside and one outside, with
the glass between them (Figure 5.6). This created a large electric force between the two foil sheets.

Access for free at openstax.org.
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Figure 5.6 A Leyden jar (an early version of what is now called a capacitor) allowed experimenters to store large amounts of electric
charge. Benjamin Franklin used such a jar to demonstrate that lightning behaved exactly like the electricity he got from the equipment in his

laboratory.

Franklin pointed out that the observed behavior could be explained by supposing that one of the two types of
charge remained motionless, while the other type of charge flowed from one piece of foil to the other. He
further suggested that an excess of what he called this “electrical fluid” be called “positive electricity” and the
deficiency of it be called “negative electricity.” His suggestion, with some minor modifications, is the model we
use today. (With the experiments that he was able to do, this was a pure guess; he had no way of actually
determining the sign of the moving charge. Unfortunately, he guessed wrong; we now know that the charges
that flow are the ones Franklin labeled negative, and the positive charges remain largely motionless.
Fortunately, as we’ll see, it makes no practical or theoretical difference which choice we make, as long as we
stay consistent with our choice.)

Let’s list the specific observations that we have of this electric force:

« The force acts without physical contact between the two objects.

« The force can be either attractive or repulsive: If two interacting objects carry the same sign of charge, the
force is repulsive; if the charges are of opposite sign, the force is attractive. These interactions are referred
to as electrostatic repulsion and electrostatic attraction, respectively.

« Not all objects are affected by this force.

« The magnitude of the force decreases (rapidly) with increasing separation distance between the objects.

To be more precise, we find experimentally that the magnitude of the force decreases as the square of the
distance between the two interacting objects increases. Thus, for example, when the distance between two
interacting objects is doubled, the force between them decreases to one fourth what it was in the original
system. We can also observe that the surroundings of the charged objects affect the magnitude of the force.
However, we will explore this issue in a later chapter.



Properties of Electric Charge
In addition to the existence of two types of charge, several other properties of charge have been discovered.

» Charge is quantized. This means that electric charge comes in discrete amounts, and there is a smallest
possible amount of charge that an object can have. In the SI system, this smallest amount is
e=1.602 x 107! C. No free particle can have less charge than this, and, therefore, the charge on any
object—the charge on all objects—must be an integer multiple of this amount. All macroscopic, charged
objects have charge because electrons have either been added or taken away from them, resulting in a net
charge.

+ The magnitude of the charge is independent of the type. Phrased another way, the smallest possible
positive charge (to four significant figures) is +1.602 X 10719 C, and the smallest possible negative
charge is —1.602 x 10~!° C; these values are exactly equal. This is simply how the laws of physics in our
universe turned out.

» Charge is conserved. Charge can neither be created nor destroyed; it can only be transferred from place
to place, from one object to another. Frequently, we speak of two charges “canceling”; this is verbal
shorthand. It means that if two objects that have equal and opposite charges are physically close to each
other, then the (oppositely directed) forces they apply on some other charged object cancel, for a net force
of zero. It is important that you understand that the charges on the objects by no means disappear,
however. The net charge of the universe is constant.

« Charge is conserved in closed systems. In principle, if a negative charge disappeared from your lab
bench and reappeared on the Moon, conservation of charge would still hold. However, this never happens.
If the total charge you have in your local system on your lab bench is changing, there will be a measurable
flow of charge into or out of the system. Again, charges can and do move around, and their effects can and
do cancel, but the net charge in your local environment (if closed) is conserved. The last two items are both
referred to as the law of conservation of charge.

The Source of Charges: The Structure of the Atom

Once it became clear that all matter was composed of particles that came to be called atoms, it also quickly
became clear that the constituents of the atom included both positively charged particles and negatively
charged particles. The next question was, what are the physical properties of those electrically charged
particles?

The negatively charged particle was the first one to be discovered. In 1897, the English physicist J. J. Thomson
was studying what was then known as cathode rays. Some years before, the English physicist William Crookes
had shown that these “rays” were negatively charged, but his experiments were unable to tell any more than
that. (The fact that they carried a negative electric charge was strong evidence that these were not rays at all,
but particles.) Thomson prepared a pure beam of these particles and sent them through crossed electric and
magnetic fields, and adjusted the various field strengths until the net deflection of the beam was zero. With this
experiment, he was able to determine the charge-to-mass ratio of the particle. This ratio showed that the mass
of the particle was much smaller than that of any other previously known particle—1837 times smaller, in fact.
Eventually, this particle came to be called the electron.

Since the atom as a whole is electrically neutral, the next question was to determine how the positive and
negative charges are distributed within the atom. Thomson himself imagined that his electrons were
embedded within a sort of positively charged paste, smeared out throughout the volume of the atom. However,
in 1908, the New Zealand physicist Ernest Rutherford showed that the positive charges of the atom existed
within a tiny core—called a nucleus—that took up only a very tiny fraction of the overall volume of the atom, but
held over 99% of the mass. (See Linear Momentum and Collisions.) In addition, he showed that the negatively
charged electrons perpetually orbited about this nucleus, forming a sort of electrically charged cloud that
surrounds the nucleus (Figure 5.7). Rutherford concluded that the nucleus was constructed of small, massive
particles that he named protons.
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Figure 5.7 This simplified model of a hydrogen atom shows a positively charged nucleus (consisting, in the case of hydrogen, of a single
proton), surrounded by an electron “cloud.” The charge of the electron cloud is equal (and opposite in sign) to the charge of the nucleus, but
the electron does not have a definite location in space; hence, its representation here is as a cloud. Normal macroscopic amounts of matter

contain immense numbers of atoms and molecules, and, hence, even greater numbers of individual negative and positive charges.

Since it was known that different atoms have different masses, and that ordinarily atoms are electrically
neutral, it was natural to suppose that different atoms have different numbers of protons in their nucleus, with
an equal number of negatively charged electrons orbiting about the positively charged nucleus, thus making
the atoms overall electrically neutral. However, it was soon discovered that although the lightest atom,
hydrogen, did indeed have a single proton as its nucleus, the next heaviest atom—helium—has twice the
number of protons (two), but four times the mass of hydrogen.

This mystery was resolved in 1932 by the English physicist James Chadwick, with the discovery of the
neutron. The neutron is, essentially, an electrically neutral twin of the proton, with no electric charge, but
(nearly) identical mass to the proton. The helium nucleus therefore has two neutrons along with its two
protons. (Later experiments were to show that although the neutron is electrically neutral overall, it does have
an internal charge structure. Furthermore, although the masses of the neutron and the proton are nearly
equal, they aren’t exactly equal: The neutron’s mass is very slightly larger than the mass of the proton. That
slight mass excess turned out to be of great importance. That, however, is a story that will have to wait until our
study of modern physics in Nuclear Physics.)

Thus, in 1932, the picture of the atom was of a small, massive nucleus constructed of a combination of protons
and neutrons, surrounded by a collection of electrons whose combined motion formed a sort of negatively
charged “cloud” around the nucleus (Figure 5.8). In an electrically neutral atom, the total negative charge of
the collection of electrons is equal to the total positive charge in the nucleus. The very low-mass electrons can
be more or less easily removed or added to an atom, changing the net charge on the atom (though without
changing its type). An atom that has had the charge altered in this way is called an ion. Positive ions have had
electrons removed, whereas negative ions have had excess electrons added. We also use this term to describe
molecules that are not electrically neutral.
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Figure 5.8 The nucleus of a carbon atom is composed of six protons and six neutrons. As in hydrogen, the surrounding six electrons do

not have definite locations and so can be considered to be a sort of cloud surrounding the nucleus.

The story of the atom does not stop there, however. In the latter part of the twentieth century, many more
subatomic particles were discovered in the nucleus of the atom: pions, neutrinos, and quarks, among others.
With the exception of the photon, none of these particles are directly relevant to the study of
electromagnetism, so we defer further discussion of them until the chapter on particle physics (Particle
Physics and Cosmology).

A Note on Terminology

As noted previously, electric charge is a property that an object can have. This is similar to how an object can
have a property that we call mass, a property that we call density, a property that we call temperature, and so
on. Technically, we should always say something like, “Suppose we have a particle that carries a charge of

3 uC.” However, it is very common to say instead, “Suppose we have a 3-uC charge.” Similarly, we often say
something like, “Six charges are located at the vertices of a regular hexagon.” A charge is not a particle; rather,
it is a property of a particle. Nevertheless, this terminology is extremely common (and is frequently used in
this book, as it is everywhere else). So, keep in the back of your mind what we really mean when we refer to a
“charge.”

5.2 Conductors, Insulators, and Charging by Induction

Learning Objectives
By the end of this section, you will be able to:
e Explain what a conductor is
e Explain what an insulator is
o List the differences and similarities between conductors and insulators
e Describe the process of charging by induction

In the preceding section, we said that scientists were able to create electric charge only on nonmetallic
materials and never on metals. To understand why this is the case, you have to understand more about the
nature and structure of atoms. In this section, we discuss how and why electric charges do—or do not—move
through materials (Figure 5.9). A more complete description is given in a later chapter.
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Figure 5.9 This power adapter uses metal wires and connectors to conduct electricity from the wall socket to a laptop computer. The
conducting wires allow electrons to move freely through the cables, which are shielded by rubber and plastic. These materials act as

insulators that don’t allow electric charge to escape outward. (credit: modification of work by “Evan-Amos”/Wikimedia Commons)

Conductors and Insulators

As discussed in the previous section, electrons surround the tiny nucleus in the form of a (comparatively) vast
cloud of negative charge. However, this cloud does have a definite structure to it. Let’s consider an atom of the
most commonly used conductor, copper.

For reasons that will become clear in Atomic Structure, there is an outermost electron that is only loosely
bound to the atom’s nucleus. It can be easily dislodged; it then moves to a neighboring atom. In a large mass of
copper atoms (such as a copper wire or a sheet of copper), these vast numbers of outermost electrons (one per
atom) wander from atom to atom, and are the electrons that do the moving when electricity flows. These
wandering, or “free,” electrons are called conduction electrons, and copper is therefore an excellent
conductor (of electric charge). All conducting elements have a similar arrangement of their electrons, with one
or two conduction electrons. This includes most metals.

Insulators, in contrast, are made from materials that lack conduction electrons; charge flows only with great
difficulty, if at all. Even if excess charge is added to an insulating material, it cannot move, remaining
indefinitely in place. This is why insulating materials exhibit the electrical attraction and repulsion forces
described earlier, whereas conductors do not; any excess charge placed on a conductor would instantly flow
away (due to mutual repulsion from existing charges), leaving no excess charge around to create forces. Charge
cannot flow along or through an insulator, so its electric forces remain for long periods of time. (Charge will
dissipate from an insulator, given enough time.) As it happens, amber, fur, and most semi-precious gems are
insulators, as are materials like wood, glass, and plastic.

Charging by Induction

Let’s examine in more detail what happens in a conductor when an electrically charged object is brought close
to it. As mentioned, the conduction electrons in the conductor are able to move with nearly complete freedom.
As aresult, when a charged insulator (such as a positively charged glass rod) is brought close to the conductor,
the (total) charge on the insulator exerts an electric force on the conduction electrons. Since the rod is
positively charged, the conduction electrons (which themselves are negatively charged) are attracted, flowing
toward the insulator to the near side of the conductor (Figure 5.10).

Now, the conductor is still overall electrically neutral; the conduction electrons have changed position, but they
are still in the conducting material. However, the conductor now has a charge distribution; the near end (the
portion of the conductor closest to the insulator) now has more negative charge than positive charge, and the
reverse is true of the end farthest from the insulator. The relocation of negative charges to the near side of the
conductor results in an overall positive charge in the part of the conductor farthest from the insulator. We have
thus created an electric charge distribution where one did not exist before. This process is referred to as
inducing polarization—in this case, polarizing the conductor. The resulting separation of positive and negative



charge is called polarization, and a material, or even a molecule, that exhibits polarization is said to be
polarized. A similar situation occurs with a negatively charged insulator, but the resulting polarization is in the
opposite direction.

F ¥+ FF .
+ + + + + | - _ +++
+ + + + + A 0
= _ - +
/\/‘ b — -
o . +
Positively charged == + ¢+
glass rod =
e

Neutral conducting
sphere with charge
distribution

Figure 5.10 Induced polarization. A positively charged glass rod is brought near the left side of the conducting sphere, attracting negative
charge and leaving the other side of the sphere positively charged. Although the sphere is overall still electrically neutral, it now has a
charge distribution, so it can exert an electric force on other nearby charges. Furthermore, the distribution is such that it will be attracted to

the glass rod.

The result is the formation of what is called an electric dipole, from a Latin phrase meaning “two ends.” The
presence of electric charges on the insulator—and the electric forces they apply to the conduction
electrons—creates, or “induces,” the dipole in the conductor.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are
neutral, for example. If you run a plastic comb through your hair, the charged comb can pick up neutral pieces
of paper. Figure 5.11 shows how the polarization of atoms and molecules in neutral objects results in their
attraction to a charged object.
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Figure 5.11 Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object brought near a
neutral insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the molecule, with unlike charges
being brought nearer and like charges moved away. Since the electrostatic force decreases with distance, there is a net attraction. (b) A
negative object produces the opposite polarization, but again attracts the neutral object. (c) The same effect occurs for a conductor; since

the unlike charges are closer, there is a net attraction.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in
atoms and molecules is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like
charge is repelled. Since the electrostatic force decreases with distance, the repulsion of like charges is weaker
than the attraction of unlike charges, and so there is a net attraction. Thus, a positively charged glass rod
attracts neutral pieces of paper, as will a negatively charged rubber rod. Some molecules, like water, are polar
molecules. Polar molecules have a natural or inherent separation of charge, although they are neutral overall.
Polar molecules are particularly affected by other charged objects and show greater polarization effects than
molecules with naturally uniform charge distributions.

When the two ends of a dipole can be separated, this method of charging by induction may be used to create
charged objects without transferring charge. In Figure 5.12, we see two neutral metal spheres in contact with
one another but insulated from the rest of the world. A positively charged rod is brought near one of them,
attracting negative charge to that side, leaving the other sphere positively charged.
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Figure 5.12 Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each other but insulated from the rest
of the world. (b) A positively charged glass rod is brought near the sphere on the left, attracting negative charge and leaving the other
sphere positively charged. (c) The spheres are separated before the rod is removed, thus separating negative and positive charges. (d) The

spheres retain net charges after the inducing rod is removed—without ever having been touched by a charged object.

Another method of charging by induction is shown in Figure 5.13. The neutral metal sphere is polarized when
a charged rod is brought near it. The sphere is then grounded, meaning that a conducting wire is run from the
sphere to the ground. Since Earth is large and most of the ground is a good conductor, it can supply or accept
excess charge easily. In this case, electrons are attracted to the sphere through a wire called the ground wire,
because it supplies a conducting path to the ground. The ground connection is broken before the charged rod
is removed, leaving the sphere with an excess charge opposite to that of the rod. Again, an opposite charge is
achieved when charging by induction, and the charged rod loses none of its excess charge.
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Figure 5.13 Charging by induction using a ground connection. (a) A positively charged rod is brought near a neutral metal sphere,
polarizing it. (b) The sphere is grounded, allowing electrons to be attracted from Earth’s ample supply. (c) The ground connection is broken.

(d) The positive rod is removed, leaving the sphere with an induced negative charge.

5.3 Coulomb's Law

Learning Objectives
By the end of this section, you will be able to:
e Describe the electric force, both qualitatively and quantitatively
e Calculate the force that charges exert on each other
e Determine the direction of the electric force for different source charges
e Correctly describe and apply the superposition principle for multiple source charges

Experiments with electric charges have shown that if two objects each have electric charge, then they exert an
electric force on each other. The magnitude of the force is linearly proportional to the net charge on each
object and inversely proportional to the square of the distance between them. (Interestingly, the force does not
depend on the mass of the objects.) The direction of the force vector is along the imaginary line joining the two
objects and is dictated by the signs of the charges involved.

Let

* q1,q> = the net electric charges of the two objects;
- .
« ryp = the vector displacement from q; to ¢q;.

>
The electric force F on one of the charges is proportional to the magnitude of its own charge and the
magnitude of the other charge, and is inversely proportional to the square of the distance between them:
a9
5
"2

F

This proportionality becomes an equality with the introduction of a proportionality constant. For reasons that
will become clear in a later chapter, the proportionality constant that we use is actually a collection of
constants. (We discuss this constant shortly.)

Coulomb’s Law

The magnitude of the electric force (or Coulomb force) between two electrically charged particles is equal
to
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The unit vector r has a magnitude of 1 and points along the axis as the charges. If the charges have the
same sign, the force is in the same direction as r showing a repelling force. If the charges have different
signs, the force is in the opposite direction of » showing an attracting force. (Figure 5.14).

Fa d Fi, Fyy Fiz

g1 P q1 a;
(@ (b)
Figure 5.14 The electrostatic force f between point charges g1 and g, separated by a distance ris given by Coulomb’s law. Note that
Newton’s third law (every force exerted creates an equal and opposite force) applies as usual—the force on gy is equal in magnitude and

opposite in direction to the force it exerts on g;. (a) Like charges; (b) unlike charges.

It is important to note that the electric force is not constant; it is a function of the separation distance between
the two charges. If either the test charge or the source charge (or both) move, then T changes, and therefore so
does the force. An immediate consequence of this is that direct application of Newton’s laws with this force can
be mathematically difficult, depending on the specific problem at hand. It can (usually) be done, but we almost
always look for easier methods of calculating whatever physical quantity we are interested in. (Conservation of
energy is the most common choice.)

Finally, the new constant £ in Coulomb’s law is called the permittivity of free space, or (better) the
permittivity of vacuum. It has a very important physical meaning that we will discuss in a later chapter; for
now, it is simply an empirical proportionality constant. Its numerical value (to three significant figures) turns
out to be

C2
€p =8.85 x 10712 — .
N - m?
These units are required to give the force in Coulomb’s law the correct units of newtons. Note that in Coulomb’s
law, the permittivity of vacuum is only part of the proportionality constant. For convenience, we often define a
Coulomb’s constant:

N - m?

1 9
= =8.99 x 10
4req C?
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@ EXAMPLE 5.1

The Force on the Electron in Hydrogen

A hydrogen atom consists of a single proton and a single electron. The proton has a charge of +e and the
electron has —e. In the “ground state” of the atom, the electron orbits the proton at most probable distance of
529 x 10711 m (Figure 5.15). Calculate the electric force on the electron due to the proton.




Figure 5.15 A schematic depiction of a hydrogen atom, showing the force on the electron. This depiction is only to enable us to calculate

the force; the hydrogen atom does not really look like this. Recall Figure 5.7.

Strategy

For the purposes of this example, we are treating the electron and proton as two point particles, each with an
electric charge, and we are told the distance between them; we are asked to calculate the force on the electron.
We thus use Coulomb’s law.

Solution
Our two charges and the distance between them are,

g = +e=+1.602 x 10719 C
¢ = —e=-1.602 x 10719 C
ro= 529 x 1071 m.

The magnitude of the force on the electron is
1 Jef? 1 (1.602 x 10719 €)*

- - =825 x 1078 N.
0 1 4r(8.85 x 10712 L) (529 x 107! m)’
-m

As for the direction, since the charges on the two particles are opposite, the force is attractive; the force on the
electron points radially directly toward the proton, everywhere in the electron’s orbit. The force is thus
expressed as

F=(825x10°N)

Significance

This is a three-dimensional system, so the electron (and therefore the force on it) can be anywhere in an
imaginary spherical shell around the proton. In this “classical” model of the hydrogen atom, the electrostatic
force on the electron points in the inward centripetal direction, thus maintaining the electron’s orbit. But note
that the quantum mechanical model of hydrogen (discussed in Quantum Mechanics) is utterly different.

CHECK YOUR UNDERSTANDING 5.1

What would be different if the electron also had a positive charge?

Multiple Source Charges

The analysis that we have done for two particles can be extended to an arbitrary number of particles; we
simply repeat the analysis, two charges at a time. Specifically, we ask the question: Given N charges (which we



refer to as source charge), what is the net electric force that they exert on some other point charge (which we
call the test charge)? Note that we use these terms because we can think of the test charge being used to test
the strength of the force provided by the source charges.

Like all forces that we have seen up to now, the net electric force on our test charge is simply the vector sum of
each individual electric force exerted on it by each of the individual source charges. Thus, we can calculate the
net force on the test charge Q by calculating the force on it from each source charge, taken one at a time, and
then adding all those forces together (as vectors). This ability to simply add up individual forces in this way is
referred to as the principle of superposition, and is one of the more important features of the electric force. In
mathematical form, this becomes

N
2 1 qi
F(r) = r— QZ—%ri. 5.2

In this expression, Q represents the charge of the particle that is experiencing the electric force f? ,and is
located at ¥ from the origin; the g;’s are the N source charges, and the vectors Ti = r;T; are the displacements
from the position of the ith charge to the position of Q. Each of the N unit vectors points directly from its
associated source charge toward the test charge. All of this is depicted in Figure 5.16. Please note that there is
no physical difference between Q and g;; the difference in labels is merely to allow clear discussion, with Q
being the charge we are determining the force on.

X

Figure 5.16 The eight source charges each apply a force on the single test charge Q. Each force can be calculated independently of the

other seven forces. This is the essence of the superposition principle.

2 ~ .
(Note that the force vector F; does not necessarily point in the same direction as the unit vector T;; it may
point in the opposite direction, —T;. The signs of the source charge and test charge determine the direction of
the force on the test charge.)

There is a complication, however. Just as the source charges each exert a force on the test charge, so too (by
Newton’s third law) does the test charge exert an equal and opposite force on each of the source charges. As a
consequence, each source charge would change position. However, by Equation 5.2, the force on the test
charge is a function of position; thus, as the positions of the source charges change, the net force on the test
charge necessarily changes, which changes the force, which again changes the positions. Thus, the entire
mathematical analysis quickly becomes intractable. Later, we will learn techniques for handling this situation,
but for now, we make the simplifying assumption that the source charges are fixed in place somehow, so that
their positions are constant in time. (The test charge is allowed to move.) With this restriction in place, the
analysis of charges is known as electrostatics, where “statics” refers to the constant (that is, static) positions of
the source charges and the force is referred to as an electrostatic force.



@ EXAMPLE 5.2

The Net Force from Two Source Charges

Three different, small charged objects are placed as shown in Figure 5.17. The charges g and g3 are fixed in
place; ¢ is free to move. Given q; = 2e, go = —3e,and g3 = —5e, and thatd = 2.0 X 10~7 m, what is the net
force on the middle charge ¢, ?

y

F B}

F21
~ d
Fas 0 J
= 9 o

g, g3
- 2d -

Figure 5.17 Source charges g1 and g3 each apply a force on g;.

Strategy

We use Coulomb’s law again. The way the question is phrased indicates that ¢, is our test charge, so that gq;
and g3 are source charges. The principle of superposition says that the force on g, from each of the other
charges is unaffected by the presence of the other charge. Therefore, we write down the force on g, from each
and add them together as vectors.

Solution

We have two source charges (g1 and ¢3 ), a test charge (g, ), distances (1 and r,3), and we are asked to find a
force. This calls for Coulomb’s law and superposition of forces. There are two forces:

1 . .
vy, (_eng)|
dmeo | 3 23

N
We can’t add these forces directly because they don’t point in the same direction: F»3 points only in the

5 o >
F=F21 +F23 =

>
-x-direction, while F5 points only in the +y-direction. The net force is obtained from applying the
Pythagorean theorem to its x- and y-components:

F=,/F}+F}

where
1 Q493
Fx =-F3=-g- 5
0 33

(4.806 % 10~19 c)<8.01 % 10~19 C)

2
= — (899 x 107 Nm% ) .
C (4.00x 10=7 m)

=-2.16 x 10714 N

and



92491

2
1

— _ 1
By =t =5

(4.806 x 10~19 C) (3.204 x 10~19 c)

= (8.99 x 10922 :
c (2.00x 10~7 m)

=346 x 10714 N.

F=/F2+F}=408 x 107*N

F. 3.46 x 10714 N
¢ = tan~! <—y> = tan~ ! < ) = —58°,
Fy -2.16 x 1074 N

We find that

at an angle of

that is, 58° above the —x-axis, as shown in the diagram.

Significance

Notice that when we substituted the numerical values of the charges, we did not include the negative sign of
either g, or ¢g3. Recall that negative signs on vector quantities indicate a reversal of direction of the vector in
question. But for electric forces, the direction of the force is determined by the types (signs) of both interacting
charges; we determine the force directions by considering whether the signs of the two charges are the same
or are opposite. If you also include negative signs from negative charges when you substitute numbers, you run
the risk of mathematically reversing the direction of the force you are calculating. Thus, the safest thing to do
is to calculate just the magnitude of the force, using the absolute values of the charges, and determine the
directions physically.

It’s also worth noting that the only new concept in this example is how to calculate the electric forces;
everything else (getting the net force from its components, breaking the forces into their components, finding
the direction of the net force) is the same as force problems you have done earlier.

CHECK YOUR UNDERSTANDING 5.2

What would be different if g; were negative?

5.4 Electric Field

Learning Objectives
By the end of this section, you will be able to:
e Explain the purpose of the electric field concept
e Describe the properties of the electric field
e Calculate the field of a collection of source charges of either sign

As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the
electric forces acting on it, from all of the various source charges, located at their various positions. But what if
we use a different test charge, one with a different magnitude, or sign, or both? Or suppose we have a dozen
different test charges we wish to try at the same location? We would have to calculate the sum of the forces
from scratch. Fortunately, it is possible to define a quantity, called the electric field, which is independent of
the test charge. It only depends on the configuration of the source charges, and once found, allows us to
calculate the force on any test charge.

Defining a Field

Suppose we have N source charges q1, g2, 43,..., gn located at positions ?1 ,?2, ?3 yeres ?N, applying N
electrostatic forces on a test charge Q. The net force on Qis (see Equation 5.2)



> > > > >
F =F;+F,+F3+--+Fp

dre 2 2 2 2
0 " r5 r3 "
1 qa1 Q A~ a3 A aN «
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We can rewrite this as
> >
F = QE 5.3
where
_} 1 Pl Py Py Pl
EE4 q—;r1+q—§r +q—;r+ -+q—gr
TEO \ 1 &) 3 "
or, more compactly,
=S 1 Gi
E(P) = Y S 5.4
TEQ 1 r;

This expression is called the electric field at position P = P (x, y, z) of the N source charges. Here, Pis the
location of the point in space where you are calculating the field and is relative to the positions ¥; of the source
charges (Figure 5.18). Note that we have to impose a coordinate system to solve actual problems.

) qs3
a, E = Z\
o 1
E,
Oqs
E,
y
Qq,
Qa,

X
Figure 5.18 Each of these eight source charges creates its own electric field at every point in space; shown here are the field vectors at an

arbitrary point P. Like the electric force, the net electric field obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically
useful approach is to calculate the electric field and then use it to calculate the force on some test charge later,
if needed. Different test charges experience different forces Equation 5.3, but it is the same electric field
Equation 5.4. That being said, recall that there is no fundamental difference between a test charge and a
source charge; these are merely convenient labels for the system of interest. Any charge produces an electric
field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge is not subject to a force due to
the electric field it generates. Charges are only subject to forces from the electric fields of other charges.

>
In this respect, the electric field E of a point charge is similar to the gravitational field § of Earth; once we have
calculated the gravitational field at some point in space, we can use it any time we want to calculate the



resulting force on any mass we choose to place at that point. In fact, this is exactly what we do when we say the
gravitational field of Earth (near Earth’s surface) has a value of 9.81 m/sz, and then we calculate the resulting
force (i.e., weight) on different masses. Also, the general expression for calculating g at arbitrary distances
from the center of Earth (i.e., not just near Earth’s surface) is very similar to the expression for ﬁ: § = GrMZ’f,

N
where G is a proportionality constant, playing the same role fofg' as ﬁ does for E. The value of § is

calculated once and is then used in an endless number of problems.

To push the analogy further, notice the units of the electric field: From F = QE, the units of E are newtons per
coulomb, N/C, that is, the electric field applies a force on each unit charge. Now notice the units of g: From

w = mg, the units of g are newtons per kilogram, N/kg, that is, the gravitational field applies a force on each
unit mass. We could say that the gravitational field of Earth, near Earth’s surface, has a value of 9.81 N/kg.

The Meaning of “Field”

Recall from your studies of gravity that the word “field” in this context has a precise meaning. A field, in
physics, is a physical quantity whose value depends on (is a function of) position, relative to the source of the
field. In the case of the electric field, Equation 5.4 shows that the value of ﬁ (both the magnitude and the
direction) depends on where in space the point Pis located, measured from the locations ¥; of the source
charges g;.

In addition, since the electric field is a vector quantity, the electric field is referred to as a vector field. (The
gravitational field is also a vector field.) In contrast, a field that has only a magnitude at every point is a scalar
field. The temperature in a room is an example of a scalar field. It is a field because the temperature, in
general, is different at different locations in the room, and it is a scalar field because temperature is a scalar
quantity.

Also, as you did with the gravitational field of an object with mass, you should picture the electric field of a
charge-bearing object (the source charge) as a continuous, immaterial substance that surrounds the source

charge, filling all of space—in principle, to + in all directions. The field exists at every physical point in space.

To put it another way, the electric charge on an object alters the space around the charged object in such a way
that all other electrically charged objects in space experience an electric force as a result of being in that field.
The electric field, then, is the mechanism by which the electric properties of the source charge are transmitted
to and through the rest of the universe. (Again, the range of the electric force is infinite.)

We will see in subsequent chapters that the speed at which electrical phenomena travel is the same as the
speed of light. There is a deep connection between the electric field and light.

Superposition

Yet another experimental fact about the field is that it obeys the superposition principle. In this context, that
means that we can (in principle) calculate the total electric field of many source charges by calculating the
electric field of only g at position P, then calculate the field of g; at P, while—and this is the crucial
idea—ignoring the field of, and indeed even the existence of, g¢; . We can repeat this process, calculating the
field of each individual source charge, independently of the existence of any of the other charges. The total
electric field, then, is the vector sum of all these fields. That, in essence, is what Equation 5.4 says.

In the next section, we describe how to determine the shape of an electric field of a source charge distribution
and how to sketch it.

The Direction of the Field

Equation 5.4 enables us to determine the magnitude of the electric field, but we need the direction also. We use
the convention that the direction of any electric field vector is the same as the direction of the electric force
vector that the field would apply to a positive test charge placed in that field. Such a charge would be repelled
by positive source charges (the force on it would point away from the positive source charge) but attracted to
negative charges (the force points toward the negative source).



Direction of the Electric Field

>
By convention, all electric fields E point away from positive source charges and point toward negative
source charges.

@ INTERACTIVE

Add charges to the Electric Field of Dreams (https://openstax.org/l/21elefiedream) and see how they react to
the electric field. Turn on a background electric field and adjust the direction and magnitude.

@ EXAMPLE 5.3

The E-field of an Atom
In an ionized helium atom, the most probable distance between the nucleus and the electron is
r=126.5 x 10712 m. What is the electric field due to the nucleus at the location of the electron?

Strategy

Note that although the electron is mentioned, it is not used in any calculation. The problem asks for an electric
field, not a force; hence, there is only one charge involved, and the problem specifically asks for the field due to
the nucleus. Thus, the electron is a red herring; only its distance matters. Also, since the distance between the
two protons in the nucleus is much, much smaller than the distance of the electron from the nucleus, we can
treat the two protons as a single charge +2e (Figure 5.19).

Figure 5.19 A schematic representation of a helium atom. Again, helium physically looks nothing like this, but this sort of diagram is

helpful for calculating the electric field of the nucleus.

Solution
The electric field is calculated by

gL i‘b’/ﬁ
" 4ze 4 1.2"

Since there is only one source charge (the nucleus), this expression simplifies to

I q_

5
E= r.
drey 12

Hereg=2e=2 (1.6 x 10719 C) (since there are two protons) and ris given; substituting gives




2(1.6 x 10719 C
! ( ) f=41x 1027,

E= 2 2 C
4r (885 x 1072 L) (265 x 10712 m)
N'm

The direction of 1_7: is radially away from the nucleus in all directions. Why? Because a positive test charge
placed in this field would accelerate radially away from the nucleus (since it is also positively charged), and
again, the convention is that the direction of the electric field vector is defined in terms of the direction of the
force it would apply to positive test charges.

@ EXAMPLE 5.4

The E-Field above Two Equal Charges

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between two equal charges
+¢g that are a distance d apart (Figure 5.20). Check that your result is consistent with what you'd expect when
z>d.

(b) The same as part (a), only this time make the right-hand charge —q instead of +q.

o

Figure 5.20 Finding the field of two identical source charges at the point P. Due to the symmetry, the net field at Pis entirely vertical.

(Notice that this is not true away from the midline between the charges.)

Strategy

We add the two fields as vectors, per Equation 5.4. Notice that the system (and therefore the field) is
symmetrical about the vertical axis; as a result, the horizontal components of the field vectors cancel. This
simplifies the math. Also, we take care to express our final answer in terms of only quantities that are given in
the original statement of the problem: g, z, d, and constants (r, £¢).

Solution

a. By symmetry, the horizontal (x)-components of E cancel (Figure 5.21);

_ 1 4q _ 1 4q —
E, = Tneg 2 sin 6 Tneg 2 sin @ = 0.



Figure 5.21 Note that the horizontal components of the electric fields from the two charges cancel each other out, while the vertical

components add together.

The vertical (z)-component is given by

1 2q
E, = — cos 0 + —cosf = — cos 6.
z 47[6() r2 4ﬂ£0 r2 47[50 r2

Since none of the other components survive, this is the entire electric field, and it points in the Kk direction.
Notice that this calculation uses the principle of superposition; we calculate the fields of the two charges
independently and then add them together.

What we want to do now is replace the quantities in this expression that we don’t know (such as ), or can’t
easily measure (such as cos #) with quantities that we do know, or can measure. In this case, by geometry,

2
d
2 2
d Z+<2>

and

Thus, substituting,
E(z) =

Simplifying, the desired answer is

-
E(z) = k.
() dreg [, . (1 a)\2]32 5.5
2 +(%)
If the source charges are equal and opposite, the vertical components cancel because
—_1 4q __1 a —
E, = Tneg 2 cos @ Tneg 72 cosf=0

5
and we get, for the horizontal component of E,



I_*':‘(z) L 4 gin6i — —— =L sin6i
drey 2 dreg 42

47560 r2

This becomes

dreg [ZZ + (%)2]3/2 ’ 5.6

Significance

It is a very common and very useful technique in physics to check whether your answer is reasonable by
evaluating it at extreme cases. In this example, we should evaluate the field expressions for the cases d = 0,
z > d, and z — %, and confirm that the resulting expressions match our physical expectations. Let’s do so:

Let’s start with Equation 5.5, the field of two identical charges. From far away (i.e., z > d), the two source
charges should “merge” and we should then “see” the field of just one charge, of size 2q. So, let z > d; then we
can neglect d? in Equation 5.5 to obtain

.
imE = L 22k
d—0 0 [22]

_1 2gzg
dreg 3

1 Cogp
47‘[80 22 k

which is the correct expression for a field at a distance z away from a charge 2q.

Next, we consider the field of equal and opposite charges, Equation 5.6. It can be shown (via a Taylor
expansion) that for d < z < , this becomes
1 qd;

N
E = — L .
(2) 4dreg z3 57

5
which is the field of a dipole, a system that we will study in more detail later. (Note that the units of E are still
correct in this expression, since the units of d in the numerator cancel the unit of the “extra” zin the

denominator.) If zis verylarge (z - w), then E — 0, as it should; the two charges “merge” and so cancel out.

) CHECK YOUR UNDERSTANDING 5.3

What is the electric field due to a single point particle?

@ INTERACTIVE

Try this simulation of electric field hockey (https://openstax.org/l/21elefielhocke) to get the charge in the goal
by placing other charges on the field.




5.5 Calculating Electric Fields of Charge Distributions

Learning Objectives
By the end of this section, you will be able to:
e Explain what a continuous source charge distribution is and how it is related to the concept of quantization
of charge
e Describe line charges, surface charges, and volume charges
e Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is
in contrast with a continuous charge distribution, which has at least one nonzero dimension. If a charge
distribution is continuous rather than discrete, we can generalize the definition of the electric field. We simply
divide the charge into infinitesimal pieces and treat each piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution.
However, in most practical cases, the total charge creating the field involves such a huge number of discrete
charges that we can safely ignore the discrete nature of the charge and consider it to be continuous. This is
exactly the kind of approximation we make when we deal with a bucket of water as a continuous fluid, rather
than a collection of Hy O molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a

volume, as shown in Figure 5.22.

A dl .
dA

(@) (b)

dv

(c) (d)
Figure 5.22 The configuration of charge differential elements for a (a) line charge, (b) sheet of charge, and (c) a volume of charge. Also

note that (d) some of the components of the total electric field cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

« A =charge per unit length (linear charge density); units are coulombs per meter (C/m)
« o =charge per unit area (surface charge density); units are coulombs per square meter (C/m2)
« p =charge per unit volume (volume charge density); units are coulombs per cubic meter (C/m?)

Then, for a line charge, a surface charge, and a volume charge, the summation in Equation 5.4 becomes an
integral and g; is replaced by dq = Adl, od A, or pdV , respectively:
1 N

> (

i=1

- 1 Adl
Line charge: E(P) = / (—2> T 5.9
drey Jline

Point charges: E (P)= ) T 5.8

\Ml"s

4reg




> 1 dA
Surface charge: E(P) = / <6 5 ) T 5.10
surface r

47[60
= 1 dVv
Volume charge: E(P) = / <p 5 > T 5.11
4dreo Jvolume r

The integrals are generalizations of the expression for the field of a point charge. They implicitly include and
assume the principle of superposition. The “trick” to using them is almost always in coming up with correct
expressions for dl, dA, or dV, as the case may be, expressed in terms of r, and also expressing the charge
density function appropriately. It may be constant; it might be dependent on location.

Note carefully the meaning of rin these equations: It is the distance from the charge element
(qi, Adl,6d A, pdV') to the location of interest, P (x, y, z) (the point in space where you want to determine the

=
field). However, don’t confuse this with the meaning of T; we are using it and the vector notation E to write
three integrals at once. That is, Equation 5.9 is actually

1 Adl 1 Adl 1 Adl
E,. (P) = — |, E,(P)= — |, E-(P)= .
x (P) 47[80,4%(7‘2 >x v () 4”50.Ane<r2 )y (P 47[£OAne(r2 >z

@ EXAMPLE 5.5

Electric Field of a Line Segment
Find the electric field a distance z above the midpoint of a straight line segment of length L that carries a
uniform line charge density A.

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces
of length dl, each of which carries a differential amount of charge dq = Adl. Then, we calculate the differential
field created by two symmetrically placed pieces of the wire, using the symmetry of the setup to simplify the
calculation (Figure 5.23). Finally, we integrate this differential field expression over the length of the wire (half
of it, actually, as we explain below) to obtain the complete electric field expression.

Zz)

Figure 5.23 A uniformly charged segment of wire. The electric field at point P can be found by applying the superposition principle to

symmetrically placed charge elements and integrating.

Solution

Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment,
from far away, it should look like a point charge. We will check the expression we get to see if it meets this
expectation.

The electric field for a line charge is given by the general expression



1 Adl
E(P) = / =
4rey Jiine 1

The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the
horizontal (x)-components of the field cancel, so that the net field points in the z-direction. Let’s check this
formally.

The total field ﬁ (P) is the vector sum of the fields from each of the two charge elements (call them ]_i"q and I_*iz,
for now):

> > > 2 ~ N =~
E(P)=E; +E; = Ej i+ E|;k+ Ey, (—1) + Ex k.

Because the two charge elements are identical and are the same distance away from the point Pwhere we want
to calculate the field, E1, = Ej,, so those components cancel. This leaves

I_*f(P) = E1Zﬁ+ EZzﬁ = Ej cos 0k + E, cos ok.

These components are also equal, so we have

E(P) = 4”50 /—cosHk 4”50 /—cosHk

L/2

2Ad

= 4”6 / zx cos Ok
0 Jo r

where our differential line element dlis dx, in this example since we are integrating along a line of charge that
lies on the x-axis. (The limits of integration are 0 to =, not — to +%, because we have constructed the net

field from two differential pieces of charge dg. If we 1ntegrated along the entire length, we would pick up an
erroneous factor of 2.)

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables
that are not given. In this case, both rand 6 change as we integrate outward to the end of the line charge, so
those are the variables to get rid of. We can do that the same way we did for the two point charges: by noticing
that

_ (22 " x2)1/2

and

z z
cosf=—=

Substituting, we obtain

L2
= 2Adx -~
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— 24z X
dreg | 2452 0
which simplifies to
1 AL ~
E(z) = ) k.
TEQ L2 5.12



Significance

Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for
calculating electric fields. The fields of nonsymmetrical charge distributions have to be handled with multiple
integrals and may need to be calculated numerically by a computer.

CHECK YOUR UNDERSTANDING 5.4

How would the strategy used above change to calculate the electric field at a point a distance z above one end of
the finite line segment?

@ EXAMPLE 5.6

Electric Field of an Infinite Line of Charge

Find the electric field a distance z above the midpoint of an infinite line of charge that carries a uniform line
charge density A.

Strategy

This is exactly like the preceding example, except the limits of integration will be —o to 400,

Solution
Again, the horizontal components cancel out, so we wind up with

1 * M ~
E (P) = / 22X os 0k
drey J_w 12

where our differential line element dlis dx, in this example, since we are integrating along a line of charge that
lies on the x-axis. Again,

z z
cosf=—= 1
(22 +x2)
Substituting, we obtain
> ® Adx ~
E(P) = / z__k
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which simplifies to

1 244
—k.
4reg z

E(z) =

Significance
Our strategy for working with continuous charge distributions also gives useful results for charges with infinite
dimension.

In the case of a finite line of charge, note that for z > L, z? dominates the L in the denominator, so that



Equation 5.12 simplifies to

1 AL«
—k.

E
~ drey z2

If you recall that AL = g, the total charge on the wire, we have retrieved the expression for the field of a point
charge, as expected.
In the limit L. — o, on the other hand, we get the field of an infinite straight wire, which is a straight wire

whose length is much, much greater than either of its other dimensions, and also much, much greater than the
distance at which the field is to be calculated:

E(z) = nidd 5.13

An interesting artifact of this infinite limit is that we have lost the usual 1/r? dependence that we are used to.
This will become even more intriguing in the case of an infinite plane.

@ EXAMPLE 5.7

Electric Field due to a Ring of Charge
A ring has a uniform charge density 4, with units of coulomb per unit meter of arc. Find the electric field at a
point on the axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a
circle. We divide the circle into infinitesimal elements shaped as arcs on the circle and use polar coordinates
shown in Figure 5.24.

JR2 + 72
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Figure 5.24 The system and variable for calculating the electric field due to a ring of charge.

Solution
The electric field for a line charge is given by the general expression

E(P) = ! / Adl o
1

Arey Jline r?

A general element of the arc between 0 and 8 + d6 is of length Rd6 and therefore contains a charge equal to
ARd6. The element is at a distance of » = \/2z2 4+ R2 from P, the angle is cos ¢ = —=2—, and therefore the

vV z2+R2

electric field is
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Significance
As usual, symmetry simplified this problem, in this particular case resulting in a trivial integral. Also, when we
take the limit of z >> R, we find that
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as we expect.

@ EXAMPLE 5.8

The Field of a Disk
Find the electric field of a circular thin disk of radius R and uniform charge density at a distance z above the
center of the disk (Figure 5.25)

N

<

Figure 5.25 A uniformly charged disk. As in the line charge example, the field above the center of this disk can be calculated by taking

advantage of the symmetry of the charge distribution.

Strategy
The electric field for a surface charge is given by

1 dA
e
drey Jsurface T

To solve surface charge problems, we break the surface into symmetrical differential “stripes” that match the
shape of the surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal
components cancel and the field is entirely in the vertical (ﬁ) direction. The vertical component of the electric
field is extracted by multiplying by cos 0, so

1 dA ~
]_*f(P) = / ° 5 Cos ok.
dreo Jsurface




As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this
case,

dA = 2zrdr

o= 72
cos) = ——=2 .
1/2

<r’2+z2>

(Please take note of the two different “r's” here; ris the distance from the differential ring of charge to the point
Pwhere we wish to determine the field, whereas r’ is the distance from the center of the disk to the differential
ring of charge.) Also, we already performed the polar angle integral in writing down dA.

Solution

Substituting all this in, we get

or, more simply,

B 1 ) 2noz ~ 514
= 0 — ——
47[60 v/ R2 + 72

Significance
Again, it can be shown (via a Taylor expansion) that when z > R, this reduces to

1 oxR%* A

E(z) ~ K,

4718() 22

which is the expression for a point charge Q = o R2.

CHECK YOUR UNDERSTANDING 5.5

How would the above limit change with a uniformly charged rectangle instead of a disk?

As R — o, Equation 5.14 reduces to the field of an infinite plane, which is a flat sheet whose area is much,

much greater than its thickness, and also much, much greater than the distance at which the field is to be
calculated:

> o ~
E= 2—k. 5.15
€0

Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will
make use of repeatedly in the future. To understand why this happens, imagine being placed above an infinite
plane of constant charge. Does the plane look any different if you vary your altitude? No—you still see the plane
going off to infinity, no matter how far you are from it. It is important to note that Equation 5.15 is because we
are above the plane. If we were below, the field would point in the —K direction.



@ EXAMPLE 5.9

The Field of Two Infinite Planes
Find the electric field everywhere resulting from two infinite planes with equal but opposite charge densities
(Figure 5.26).
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Figure 5.26 Two charged infinite planes. Note the direction of the electric field.

Strategy

We already know the electric field resulting from a single infinite plane, so we may use the principle of
superposition to find the field from two.

Solution

The electric field points away from the positively charged plane and toward the negatively charged plane. Since
the o are equal and opposite, this means that in the region outside of the two planes, the electric fields cancel
each other out to zero.

However, in the region between the planes, the electric fields add, and we get
> [N
= —i
&0
for the electric field. The i is because in the figure, the field is pointing in the +x-direction.

Significance
Systems that may be approximated as two infinite planes of this sort provide a useful means of creating
uniform electric fields.

) CHECK YOUR UNDERSTANDING 5.6

What would the electric field look like in a system with two parallel positively charged planes with equal charge
densities?




5.6 Electric Field Lines

Learning Objectives
By the end of this section, you will be able to:
e Explain the purpose of an electric field diagram
e Describe the relationship between a vector diagram and a field line diagram
e Explain the rules for creating a field diagram and why these rules make physical sense
e Sketch the field of an arbitrary source charge

Now that we have some experience calculating electric fields, let’s try to gain some insight into the geometry of
electric fields. As mentioned earlier, our model is that the charge on an object (the source charge) alters space
in the region around it in such a way that when another charged object (the test charge) is placed in that region
of space, that test charge experiences an electric force. The concept of electric field lines, and of electric field
line diagrams, enables us to visualize the way in which the space is altered, allowing us to visualize the field.
The purpose of this section is to enable you to create sketches of this geometry, so we will list the specific steps
and rules involved in creating an accurate and useful sketch of an electric field.

It is important to remember that electric fields are three-dimensional. Although in this book we include some
pseudo-three-dimensional images, several of the diagrams that you’ll see (both here, and in subsequent
chapters) will be two-dimensional projections, or cross-sections. Always keep in mind that in fact, you're
looking at a three-dimensional phenomenon.

Our starting point is the physical fact that the electric field of the source charge causes a test charge in that
field to experience a force. By definition, electric field vectors point in the same direction as the electric force
that a (hypothetical) positive test charge would experience, if placed in the field (Figure 5.27)
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Figure 5.27 The electric field of a positive point charge. A large number of field vectors are shown. Like all vector arrows, the length of

each vector is proportional to the magnitude of the field at each point. (a) Field in two dimensions; (b) field in three dimensions.

We’ve plotted many field vectors in the figure, which are distributed uniformly around the source charge. Since
the electric field is a vector, the arrows that we draw correspond at every point in space to both the magnitude
and the direction of the field at that point. As always, the length of the arrow that we draw corresponds to the
magnitude of the field vector at that point. For a point source charge, the length decreases by the square of the
distance from the source charge. In addition, the direction of the field vector is radially away from the source
charge, because the direction of the electric field is defined by the direction of the force that a positive test



charge would experience in that field. (Again, keep in mind that the actual field is three-dimensional; there are
also field lines pointing out of and into the page.)

This diagram is correct, but it becomes less useful as the source charge distribution becomes more
complicated. For example, consider the vector field diagram of a dipole (Figure 5.28).

2
1 Vo P T T T
LI W O S Y T Y A
BT VIEER T b
~ N //—-\\ Vs
EO— -~ —_——— — -
: - — = = —
,/ \'\.-....// \\
¢ f \\-—/,f AN
L T N L 2 A T T
14 [ T SR LI B T T
—2 4
I T I | T I I
-2 -1 0 1 2 3 4
x (m)

Figure 5.28 The vector field of a dipole. Even with just two identical charges, the vector field diagram becomes difficult to understand.

There is a more useful way to present the same information. Rather than drawing a large number of
increasingly smaller vector arrows, we instead connect all of them together, forming continuous lines and
curves, as shown in Figure 5.29.
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Figure 5.29 (a) The electric field line diagram of a positive point charge. (b) The field line diagram of a dipole. In both diagrams, the

magnitude of the field is indicated by the field line density. The field vectors (not shown here) are everywhere tangent to the field lines.

Although it may not be obvious at first glance, these field diagrams convey the same information about the
electric field as do the vector diagrams. First, the direction of the field at every point is simply the direction of
the field vector at that same point. In other words, at any point in space, the field vector at each point is tangent



to the field line at that same point. The arrowhead placed on a field line indicates its direction.

As for the magnitude of the field, that is indicated by the field line density—that is, the number of field lines
per unit area passing through a small cross-sectional area perpendicular to the electric field. This field line
density is drawn to be proportional to the magnitude of the field at that cross-section. As a result, if the field
lines are close together (that is, the field line density is greater), this indicates that the magnitude of the field is
large at that point. If the field lines are far apart at the cross-section, this indicates the magnitude of the field is
small. Figure 5.30 shows the idea.

Figure 5.30 Electric field lines passing through imaginary areas. Since the number of lines passing through each area is the same, but the

areas themselves are different, the field line density is different. This indicates different magnitudes of the electric field at these points.

In Figure 5.30, the same number of field lines passes through both surfaces (Sand S"), but the surface Sis
larger than surface .S’. Therefore, the density of field lines (number of lines per unit area) is larger at the
location of .§”, indicating that the electric field is stronger at the location of .S’ than at S. The rules for creating
an electric field diagram are as follows.

@ PROBLEM-SOLVING STRATEGY

Drawing Electric Field Lines

1. Electric field lines either originate on positive charges or come in from infinity, and either terminate on
negative charges or extend out to infinity.

2. The number of field lines originating or terminating at a charge is proportional to the magnitude of that
charge. A charge of 2q will have twice as many lines as a charge of g.

3. Atevery point in space, the field vector at that point is tangent to the field line at that same point.

4. The field line density at any point in space is proportional to (and therefore is representative of) the
magnitude of the field at that point in space.

5. Field lines can never cross. Since a field line represents the direction of the field at a given point, if two
field lines crossed at some point, that would imply that the electric field was pointing in two different



directions at a single point. This in turn would suggest that the (net) force on a test charge placed at that
point would point in two different directions. Since this is obviously impossible, it follows that field lines
must never cross.

Always keep in mind that field lines serve only as a convenient way to visualize the electric field; they are not
physical entities. Although the direction and relative intensity of the electric field can be deduced from a set of
field lines, the lines can also be misleading. For example, the field lines drawn to represent the electric field in
aregion must, by necessity, be discrete. However, the actual electric field in that region exists at every point in
space.

Field lines for three groups of discrete charges are shown in Figure 5.31. Since the charges in parts (a) and (b)
have the same magnitude, the same number of field lines are shown starting from or terminating on each
charge. In (c), however, we draw three times as many field lines leaving the +3¢ charge as entering the —q. The
field lines that do not terminate at —q emanate outward from the charge configuration, to infinity.
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Figure 5.31 Three typical electric field diagrams. (a) A dipole. (b) Two identical charges. (c) Two charges with opposite signs and different

magnitudes. Can you tell from the diagram which charge has the larger magnitude?

The ability to construct an accurate electric field diagram is an important, useful skill; it makes it much easier
to estimate, predict, and therefore calculate the electric field of a source charge. The best way to develop this
skill is with software that allows you to place source charges and then will draw the net field upon request. We
strongly urge you to search the Internet for a program. Once you’ve found one you like, run several simulations
to get the essential ideas of field diagram construction. Then practice drawing field diagrams, and checking
your predictions with the computer-drawn diagrams.

@ INTERACTIVE

One example of a field-line drawing program (https://openstax.org/l/21fieldlindrapr) is from the PhET
“Charges and Fields” simulation.

5.7 Electric Dipoles

Learning Objectives
By the end of this section, you will be able to:
e Describe a permanent dipole
e Describe an induced dipole
e Define and calculate an electric dipole moment
e Explain the physical meaning of the dipole moment

Earlier we discussed, and calculated, the electric field of a dipole: two equal and opposite charges that are
“close” to each other. (In this context, “close” means that the distance d between the two charges is much,



much less than the distance of the field point P, the location where you are calculating the field.) Let’s now

>
consider what happens to a dipole when it is placed in an external field E. We assume that the dipole is a
permanent dipole; it exists without the field, and does not break apart in the external field.

Rotation of a Dipole due to an Electric Field

For now, we deal with only the simplest case: The external field is uniform in space. Suppose we have the

5
situation depicted in Figure 5.32, where we denote the distance between the charges as the vector d, pointing
from the negative charge to the positive charge. The forces on the two charges are equal and opposite, so there
is no net force on the dipole. However, there is a torque:

7 =(%XF+>+<—%XF_>

Figure 5.32 A dipole in an external electric field. (a) The net force on the dipole is zero, but the net torque is not. As a result, the dipole
-
rotates, becoming aligned with the external field. (b) The dipole moment is a convenient way to characterize this effect. The d points in the

. . -
same direction as p.

The quantity q(_i (the magnitude of each charge multiplied by the vector distance between them) is a property
of the dipole; its value, as you can see, determines the torque that the dipole experiences in the external field. It
is useful, therefore, to define this product as the so-called dipole moment of the dipole:

-

qd. 5.16
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We can therefore write

>
T=p X E. 5.17
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Recall that a torque changes the angular velocity of an object, the dipole, in this case. In this situation, the
effect is to rotate the dipole (that is, align the direction of ﬁ) so that it is parallel to the direction of the external
field.

Induced Dipoles

Neutral atoms are, by definition, electrically neutral; they have equal amounts of positive and negative charge.
Furthermore, since they are spherically symmetrical, they do not have a “built-in” dipole moment the way
most asymmetrical molecules do. They obtain one, however, when placed in an external electric field, because
the external field causes oppositely directed forces on the positive nucleus of the atom versus the negative
electrons that surround the nucleus. The result is a new charge distribution of the atom, and therefore, an
induced dipole moment (Figure 5.33).



(a) Neutral atom (b) Induced dipole
Figure 5.33 Adipole is induced in a neutral atom by an external electric field. The induced dipole moment is aligned with the external

field.

An important fact here is that, just as for a rotated polar molecule, the result is that the dipole moment ends up
aligned parallel to the external electric field. Generally, the magnitude of an induced dipole is much smaller
than that of an inherent dipole. For both kinds of dipoles, notice that once the alignment of the dipole (rotated
or induced) is complete, the net effect is to decrease the total electric field Etotal = Eextemal + Edipole in the
regions inside the dipole charges (Figure 5.34). By “inside” we mean in between the charges. This effect is
crucial for capacitors, as you will see in Capacitance.

external

Figure 5.34 The net electric field is the vector sum of the field of the dipole plus the external field.

Recall that we found the electric field of a dipole in Equation 5.7. If we rewrite it in terms of the dipole moment
we get:

-

P

E(z) = .
(Z) 47[80 z3

The form of this field is shown in Figure 5.34. Notice that along the plane perpendicular to the axis of the
dipole and midway between the charges, the direction of the electric field is opposite that of the dipole and gets
weaker the further from the axis one goes. Similarly, on the axis of the dipole (but outside it), the field points in
the same direction as the dipole, again getting weaker the further one gets from the charges.



CHAPTER REVIEW
Key Terms

charging by induction process by which an
electrically charged object brought near a neutral
object creates a charge separation in that object

conduction electron electron that is free to move
away from its atomic orbit

conductor material that allows electrons to move
separately from their atomic orbits; object with
properties that allow charges to move about freely
within it

continuous charge distribution total source
charge composed of so large a number of
elementary charges that it must be treated as
continuous, rather than discrete

coulomb ST unit of electric charge

Coulomb force another term for the electrostatic
force

Coulomb’s law mathematical equation calculating
the electrostatic force vector between two
charged particles

dipole two equal and opposite charges that are
fixed close to each other

dipole moment property of a dipole; it
characterizes the combination of distance
between the opposite charges, and the magnitude
of the charges

electric charge physical property of an object that
causes it to be attracted toward or repelled from
another charged object; each charged object
generates and is influenced by a force called an
electric force

electric field physical phenomenon created by a
charge; it “transmits” a force between a two
charges

electric force noncontact force observed between
electrically charged objects

electron particle surrounding the nucleus of an
atom and carrying the smallest unit of negative
charge

electrostatic attraction phenomenon of two
objects with opposite charges attracting each
other

electrostatic force amount and direction of
attraction or repulsion between two charged
bodies; the assumption is that the source charges
have no acceleration

electrostatic repulsion phenomenon of two
objects with like charges repelling each other

electrostatics study of charged objects which are
not in motion

field line smooth, usually curved line that

indicates the direction of the electric field

field line density number of field lines per square
meter passing through an imaginary area; its
purpose is to indicate the field strength at
different points in space

induced dipole typically an atom, or a spherically
symmetric molecule; a dipole created due to
opposite forces displacing the positive and
negative charges

infinite plane flat sheet in which the dimensions
making up the area are much, much greater than
its thickness, and also much, much greater than
the distance at which the field is to be calculated;
its field is constant

infinite straight wire straight wire whose length is
much, much greater than either of its other
dimensions, and also much, much greater than
the distance at which the field is to be calculated

insulator material that holds electrons securely
within their atomic orbits

ion atom or molecule with more or fewer electrons
than protons

law of conservation of charge net electric charge
of a closed system is constant

linear charge density amount of charge in an
element of a charge distribution that is essentially
one-dimensional (the width and height are much,
much smaller than its length); its units are C/m

neutron neutral particle in the nucleus of an atom,
with (nearly) the same mass as a proton

permanent dipole typically a molecule; a dipole
created by the arrangement of the charged
particles from which the dipole is created

permittivity of vacuum also called the permittivity
of free space, and constant describing the
strength of the electric force in a vacuum

polarization slight shifting of positive and negative
charges to opposite sides of an object

principle of superposition useful fact that we can
simply add up all of the forces due to charges
acting on an object

proton particle in the nucleus of an atom and
carrying a positive charge equal in magnitude to
the amount of negative charge carried by an
electron

static electricity buildup of electric charge on the
surface of an object; the arrangement of the
charge remains constant (“static”)

superposition concept that states that the net
electric field of multiple source charges is the



vector sum of the field of each source charge
calculated individually
surface charge density amount of charge in an

(the thickness is small); its units are C/m?
volume charge density amount of charge in an
element of a three-dimensional charge

element of a two-dimensional charge distribution

distribution; its units are C/m?3

Key Equations

Coulomb’s law

Superposition of electric forces

Electric force due to an electric field  F = Qﬁ

N
. .
Electric field at point P E(P) = 4,T150 Z q_é/r\i
i

Field of an infinite wire

=2 A~

Field of an infinite plane E= %Ok
. L =
Dipole moment p=qd

Torque on dipole in external E-field 7 = i)’ X E

Summary

5.1 Electric Charge neutral objects and can be separated by
bringing the two objects into physical contact;
rubbing the objects together can remove
electrons from the bonds in one object and
place them on the other object, increasing the
charge separation.

« For macroscopic objects, negatively charged
means an excess of electrons and positively
charged means a depletion of electrons.

« The law of conservation of charge states that the
net charge of a closed system is constant.

« There are only two types of charge, which we
call positive and negative. Like charges repel,
unlike charges attract, and the force between
charges decreases with the square of the
distance.

« The vast majority of positive charge in nature is
carried by protons, whereas the vast majority of
negative charge is carried by electrons. The
electric charge of one electron is equal in
magnitude and opposite in sign to the charge of
one proton.

« Anionisan atom or molecule that has nonzero
total charge due to having unequal numbers of
electrons and protons.

« The SI unit for charge is the coulomb (C), with
protons and electrons having charges of
opposite sign but equal magnitude; the
magnitude of this basic charge is
e=1.602 x 10719 C

« Both positive and negative charges exist in

5.2 Conductors, Insulators, and Charging
by Induction

« A conductor is a substance that allows charge to
flow freely through its atomic structure.

« Aninsulator holds charge fixed in place.

» Polarization is the separation of positive and
negative charges in a neutral object. Polarized
objects have their positive and negative charges
concentrated in different areas, giving them a




charge distribution.

5.3 Coulomb's Law

Coulomb’s law gives the magnitude of the force
vector between point charges. It is

2 q192
Fio(r) = — T2

47T80 r12

where g1 and ¢, are two point charges
separated by a distance r. This Coulomb force is
extremely basic, since most charges are due to
point-like particles. It is responsible for all
electrostatic effects and underlies most
macroscopic forces.

5.4 Electric Field

The electric field is an alteration of space caused
by the presence of an electric charge. The
electric field mediates the electric force between
a source charge and a test charge.

The electric field, like the electric force, obeys
the superposition principle

The field is a vector; by definition, it points away
from positive charges and toward negative
charges.

5.5 Calculating Electric Fields of Charge

Distributions

A very large number of charges can be treated

as a continuous charge distribution, where the

calculation of the field requires integration.

Common cases are:

o one-dimensional (like a wire); uses a line
charge density 4

o two-dimensional (metal plate); uses surface

Conceptual Questions
5.1 Electric Charge

1.

There are very large numbers of charged
particles in most objects. Why, then, don’t most
objects exhibit static electricity?

Why do most objects tend to contain nearly equal
numbers of positive and negative charges?

A positively charged rod attracts a small piece of
cork. (a) Can we conclude that the cork is
negatively charged? (b) The rod repels another
small piece of cork. Can we conclude that this
piece is positively charged?

. Two bodies attract each other electrically. Do

they both have to be charged? Answer the same
question if the bodies repel one another.
How would you determine whether the charge on

charge density o
o three-dimensional (metal sphere); uses
volume charge density p

The “source charge” is a differential amount of
charge dq. Calculating dq depends on the type of

source charge distribution:
dg= Adl, dq=o0dA; dq= pdV.

Symmetry of the charge distribution is usually
key.

Important special cases are the field of an
“infinite” wire and the field of an “infinite”
plane.

5.6 Electric Field Lines

Electric field diagrams assist in visualizing the
field of a source charge.

The magnitude of the field is proportional to the
field line density.

Field vectors are everywhere tangent to field
lines.

5.7 Electric Dipoles

If a permanent dipole is placed in an external
electric field, it results in a torque that aligns it
with the external field.

If a nonpolar atom (or molecule) is placed in an
external field, it gains an induced dipole that is
aligned with the external field.

The net field is the vector sum of the external
field plus the field of the dipole (physical or
induced).

The strength of the polarization is described by

the dipole moment of the dipole, ﬁ = q(_i.

a particular rod is positive or negative?

5.2 Conductors, Insulators, and Charging

by Induction

6. An eccentric inventor attempts to levitate a cork

ball by wrapping it with foil and placing a large
negative charge on the ball and then putting a
large positive charge on the ceiling of his
workshop. Instead, while attempting to place a
large negative charge on the ball, the foil flies off.
Explain.

When a glass rod is rubbed with silk, it becomes
positive and the silk becomes negative—yet both
attract dust. Does the dust have a third type of
charge that is attracted to both positive and



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

negative? Explain.

Why does a car always attract dust right after it is
polished? (Note that car wax and car tires are
insulators.)

Does the uncharged conductor shown below
experience a net electric force?

While walking on a rug, a person frequently
becomes charged because of the rubbing
between his shoes and the rug. This charge then
causes a spark and a slight shock when the
person gets close to a metal object. Why are
these shocks so much more common on a dry
day?

Compare charging by conduction to charging by
induction.

Small pieces of tissue are attracted to a charged
comb. Soon after sticking to the comb, the
pieces of tissue are repelled from it. Explain.
Trucks that carry gasoline often have chains
dangling from their undercarriages and
brushing the ground. Why?

Why do electrostatic experiments work so
poorly in humid weather?

Why do some clothes cling together after being
removed from the clothes dryer? Does this
happen if they’re still damp?

Can induction be used to produce charge on an
insulator?

Suppose someone tells you that rubbing quartz
with cotton cloth produces a third kind of
charge on the quartz. Describe what you might
do to test this claim.

A handheld copper rod does not acquire a
charge when you rub it with a cloth. Explain
why.

Suppose you place a charge g near a large metal
plate. (a) If g is attracted to the plate, is the plate

necessarily charged? (b) If q is repelled by the
plate, is the plate necessarily charged?

5.3 Coulomb's Law

20.

21.

22.

Would defining the charge on an electron to be
positive have any effect on Coulomb’s law?

An atomic nucleus contains positively charged
protons and uncharged neutrons. Since nuclei
do stay together, what must we conclude about
the forces between these nuclear particles?

Is the force between two fixed charges
influenced by the presence of other charges?

5.4 Electric Field

23.

24.

25.

26.

When measuring an electric field, could we use
a negative rather than a positive test charge?
During fair weather, the electric field due to the
net charge on Earth points downward. Is Earth
charged positively or negatively?

If the electric field at a point on the line between
two charges is zero, what do you know about the
charges?

Two charges lie along the x-axis. Is it true that
the net electric field always vanishes at some
point (other than infinity) along the x-axis?

5.5 Calculating Electric Fields of Charge

Distributions

27.

28.

29.

30.

Give a plausible argument as to why the electric
field outside an infinite charged sheet is
constant.

Compare the electric fields of an infinite sheet
of charge, an infinite, charged conducting plate,
and infinite, oppositely charged parallel plates.
Describe the electric fields of an infinite
charged plate and of two infinite, charged
parallel plates in terms of the electric field of an
infinite sheet of charge.

A negative charge is placed at the center of a
ring of uniform positive charge. What is the
motion (if any) of the charge? What if the charge
were placed at a point on the axis of the ring
other than the center?

5.6 Electric Field Lines

31.

32.

If a point charge is released from rest in a
uniform electric field, will it follow a field line?
Will it do so if the electric field is not uniform?
Under what conditions, if any, will the trajectory
of a charged particle not follow a field line?

. How would you experimentally distinguish an




34.

35.

electric field from a gravitational field?

A representation of an electric field shows 10
field lines perpendicular to a square plate. How
many field lines should pass perpendicularly
through the plate to depict a field with twice the
magnitude?

What is the ratio of the number of electric field
lines leaving a charge 10q and a charge g?

Problems
5.1 Electric Charge

37.

38.

39.

40.

41.

42.

Common static electricity involves charges
ranging from nanocoulombs to microcoulombs.
(a) How many electrons are needed to form a
charge of -2.00 nC? (b) How many electrons
must be removed from a neutral object to leave
a net charge of 0.500 uC?

1f 1.80 x 10%0 electrons move through a pocket
calculator during a full day’s operation, how
many coulombs of charge moved through it?

To start a car engine, the car battery moves
3.75 x 10?! electrons through the starter
motor. How many coulombs of charge were
moved?

A certain lightning bolt moves 40.0 C of charge.
How many fundamental units of charge is this?
A 2.5-g copper penny is given a charge of
-2.0x 1079 C. (a) How many excess electrons
are on the penny? (b) By what percent do the
excess electrons change the mass of the penny?
A 2.5-g copper penny is given a charge of

4.0 x 1072 C. (a) How many electrons are
removed from the penny? (b) If no more than
one electron is removed from an atom, what
percent of the atoms are ionized by this
charging process?

5.2 Conductors, Insulators, and Charging

by Induction

43.

44.

45.

Suppose a speck of dust in an electrostatic
precipitator has 1.0000 x 1012 protons in it
and has a net charge of -5.00 nC (a very large
charge for a small speck). How many electrons
does it have?

An amoeba has 1.00 x 1010 protons and a net
charge of 0.300 pC. (a) How many fewer
electrons are there than protons? (b) If you
paired them up, what fraction of the protons
would have no electrons?

A 50.0-g ball of copper has a net charge of
2.00 uC. What fraction of the copper’s electrons

5.7 Electric Dipoles

36.

46.

47.

What are the stable orientation(s) for a dipole in
an external electric field? What happens if the
dipole is slightly perturbed from these
orientations?

has been removed? (Each copper atom has 29
protons, and copper has an atomic mass of
63.5.)

What net charge would you place on a 100-g
piece of sulfur if you put an extra electron on 1
in 10!2 of its atoms? (Sulfur has an atomic mass
of 32.1u.)

How many coulombs of positive charge are
there in 4.00 kg of plutonium, given its atomic
mass is 244 and that each plutonium atom has
94 protons?

5.3 Coulomb's Law

48.

49.

50.

51.

52.

Two point particles with charges +3 uC and

+5 uC are held in place by 3-N forces on each
charge in appropriate directions. (a) Draw a
free-body diagram for each particle. (b) Find the
distance between the charges.

Two charges +3 uC and +12 uC are fixed 1 m
apart, with the second one to the right. Find the
magnitude and direction of the net force on a
-2-nC charge when placed at the following
locations: (a) halfway between the two (b) half a
meter to the left of the +3 uC charge (c) half a
meter above the +12 uC charge in a direction
perpendicular to the line joining the two fixed
charges

In a salt crystal, the distance between adjacent
sodium and chloride ions is 2.82 x 10710 m
What is the force of attraction between the two
singly charged ions?

Protons in an atomic nucleus are typically
1075 m apart. What is the electric force of
repulsion between nuclear protons?

Suppose Earth and the Moon each carried a net
negative charge —Q. Approximate both bodies as
point masses and point charges.

(a) What value of Qis required to balance the
gravitational attraction between Earth and the
Moon?

(b) Does the distance between Earth and the
Moon affect your answer? Explain.



(c) How many electrons would be needed to removed, they repel each other with a force of

produce this charge? 0.060 N. What is the original charge on each
53. Point charges q; = 50 uC and ¢ = =25 uC are sphere?

placed 1.0 m apart. What is the force on a third 59. Acharge g = 2.0 uC is placed at the point P

charge g3 = 20 uC placed midway between q; shown below. What is the force on g?

and g ? O—20m ——=Q=—10m—e
54. Where must g3 of the preceding problem be 1.0 uC -3.0 uC P

placed so that the net force on it is zero? 60. What is the net electric force on the charge
55. Two small balls, each of mass 5.0 g, are attached located at the lower right-hand corner of the

to silk threads 50 cm long, which are in turn triangle shown here?

tied to the same point on the ceiling, as shown Yi -2q

below. When the balls are given the same
charge Q, the threads hang at 5.0° to the
vertical, as shown below. What is the magnitude
of Q? What are the signs of the two charges?

=3¢

61. Two fixed particles, each of charge
5.0 x 107° C, are 24 cm apart. What force do
they exert on a third particle of charge

5.0° —2.5 x 107° C that is 13 cm from each of
-c-\) them?

62. The charges
g1 =20 x 1077 C,qy = —-4.0 x 1077 C,and
g3 =—-1.0 x 10~7 C are placed at the corners

X

— of the triangle shown below. What is the force on
! ?
I q1!
| 9y
|
0@ | Qo
|
|
I 3.0m Sam
|
56. Point charges Q1 = 2.0 uCand Q; = 4.0 uC

arelocated at ¥j = (4.01 — 2.0j + 5.0k)m and (=)

?2 = (8.0i + 5.0j — 9.0k)m. What is the force of g3 40m g,

Oy on 0y? 63. What is the force on the charge g at the lower-

57. The net excess charge on two small spheres
(small enough to be treated as point charges) is
Q. Show that the force of repulsion between the
spheres is greatest when each sphere has an
excess charge Q/2. Assume that the distance
between the spheres is so large compared with
their radii that the spheres can be treated as
point charges.

58. Two small, identical conducting spheres repel
each other with a force of 0.050 N when they are
0.25 m apart. After a conducting wire is
connected between the spheres and then

right-hand corner of the square shown here?




64.

q“ a aq
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Point charges g; = 10 uC and gp = —30 uC are
fixedatr) = (3.0i - 4.0}) m and

ry = (9.0i + 6.0./]'\) m. What is the force of

g2 ong;?

5.4 Electric Field

65.

66.

67.

68.

A particle of charge 2.0 X 10°8 C experiences
an upward force of magnitude 4.0 X 107N
when it is placed in a particular point in an
electric field. (a) What is the electric field at that
point? (b) If a charge ¢ = —1.0 X 1078 Cis
placed there, what is the force on it?

On a typical clear day, the atmospheric electric
field points downward and has a magnitude of
approximately 100 N/C. Compare the
gravitational and electric forces on a small dust
particle of mass 2.0 x 10713 g that carries a
single electron charge. What is the acceleration
(both magnitude and direction) of the dust
particle?

Consider an electron that is 1071 m from an
alpha particle (g = 3.2 X 10719 C). (a) What is
the electric field due to the alpha particle at the
location of the electron? (b) What is the electric
field due to the electron at the location of the
alpha particle? (c) What is the electric force on
the alpha particle? On the electron?

Each the balls shown below carries a charge g
and has a mass m. The length of each thread is
I, and at equilibrium, the balls are separated by
an angle 260. How does 6 vary with g and I? Show
that 0 satisfies

in(#)? tan (6 i
S tan = —.
©) ©) 167r£0g12m

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

g \!
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What is the electric field at a point where the
forceona —2.0 x 107% —C charge is

(4.01 - 6.07) x 1076 N?

A proton is suspended in the air by an electric
field at the surface of Earth. What is the strength
of this electric field?

The electric field in a particular thundercloud is
2.0 x 10° N/C. What is the acceleration of an
electron in this field?

A small piece of cork whose mass is 2.0 g is
given a charge of 5.0 X 10~7 C. What electric
field is needed to place the cork in equilibrium
under the combined electric and gravitational
forces?

If the electric field is 100 N/C at a distance of 50
cm from a point charge g, what is the value of g?
What is the electric field of a proton at the first
Bohr orbit for hydrogen (r = 5.29 x 10~ m)?
What is the force on the electron in that orbit?
(a) What is the electric field of an oxygen
nucleus at a point that is 10719 m from the
nucleus? (b) What is the force this electric field
exerts on a second oxygen nucleus placed at
that point?

Two point charges, g; = 2.0 X 1077 C and

g =—6.0 X 1078 C, are held 25.0 cm apart.
(a) What is the electric field at a point 5.0 cm
from the negative charge and along the line
between the two charges? (b)What is the force
on an electron placed at that point?

Point charges q; = 50 uC and ¢p = —25 uC are
placed 1.0 m apart. (a) What is the electric field
at a point midway between them? (b) What is
the force on a charge g3 = 20 uC situated there?
Can you arrange the two point charges

g1 =-2.0 % 10°°Candg, =4.0 x 107°C
along the x-axis so that E = 0 at the origin?
Point charges q; = ¢ = 4.0 X 1076 C are fixed



on the x-axisat x = —3.0mand x = 3.0 m.
What charge g must be placed at the origin so
that the electric field vanishes at
x=0,y=3.0m?

5.5 Calculating Electric Fields of Charge

Distributions

80.

81.

82.

83.

84.

85.

86.

A thin conducting plate 1.0 m on the side is

given a charge of —2.0 X 1079 C. An electron is
placed 1.0 cm above the center of the plate.

What is the acceleration of the electron?

Calculate the magnitude and direction of the
electric field 2.0 m from a long wire that is

charged uniformly at A = 4.0 X 107¢ C/m.

Two thin conducting plates, each 25.0 cm on a

side, are situated parallel to one another and 5.0
mm apart. If 10!! electrons are moved from one
plate to the other, what is the electric field

between the plates?

The charge per unit length on the thin rod shown
below is 4. What is the electric field at the point P?
(Hint: Solve this problem by first considering the
electric field dl_i at Pdue to a small segment dx of the
rod, which contains charge dq = Adx. Then find the

net field by integrating dl_*f over the length of the

e o
~ L =

a —a—]

The charge per unit length on the thin
semicircular wire shown below is A. What is the

electric field at the point P?
p

Two thin parallel conducting plates are placed
2.0 cm apart. Each plate is 2.0 cm on a side; one
plate carries a net charge of 8.0 uC, and the
other plate carries a net charge of —8.0 uC.
What is the charge density on the inside surface
of each plate? What is the electric field between
the plates?

A thin conducting plate 2.0 m on a side is given
a total charge of —10.0 uC. (a) What is the
electric field 1.0 cm above the plate? (b) What is
the force on an electron at this point? (c) Repeat
these calculations for a point 2.0 cm above the
plate. (d) When the electron moves from 1.0 to

87.

88.

89.

90.

91.

92.

93.

94.

2,0 cm above the plate, how much work is done

on it by the electric field?

A total charge q is distributed uniformly along a thin,
straight rod of length L (see below). What is the

electric field at P; 7 At P,?
P1

]
2

Charge is distributed along the entire x-axis
with uniform density A. How much work does
the electric field of this charge distribution do
on an electron that moves along the y-axis from
y=atoy=>b?

Charge is distributed along the entire x-axis
with uniform density A, and along the entire
y-axis with uniform density 4,. Calculate the
resulting electric field at (a) F=a + b:]'\ and (b)
= ck.

A rod bent into the arc of a circle subtends an
angle 20 at the center P of the circle (see below).
If the rod is charged uniformly with a total
charge Q, what is the electric field at P?

A proton moves in the electric field

}-35 = 200i N/C. (a) What are the force on and the
acceleration of the proton? (b) Do the same
calculation for an electron moving in this field.

An electron and a proton, each starting from

rest, are accelerated by the same uniform

electric field of 200 N/C. Determine the distance

and time for each particle to acquire a kinetic
energy of 3.2 X 107167,

A spherical water droplet of radius 25 ym

carries an excess 250 electrons. What vertical
electric field is needed to balance the

gravitational force on the droplet at the surface

of the earth?

A proton enters the uniform electric field produced
by the two charged plates shown below. The
magnitude of the electric field is 4.0 X 10° N/C, and
the speed of the proton when it enters is

1.5 x 107 m/s. What distance d has the proton been
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95.

96.

97.
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deflected downward when it leaves the plates?

e————12.0 cm———]
[ 5 o S — S S

- 0>— e il :‘{a ______

Shown below is a small sphere of mass 0.25 g
that carries a charge of 9.0 X 10~10 C. The
sphere is attached to one end of a very thin silk
string 5.0 cm long. The other end of the string is
attached to a large vertical conducting plate that
has a charge density of 30 X 1076 C/m?. What
is the angle that the string makes with the
vertical?

Two infinite rods, each carrying a uniform charge
density A, are parallel to one another and
perpendicular to the plane of the page. (See
below.) What is the electrical field at P; ? At P>?

T .
—LO,\

Positive charge is distributed with a uniform

OA .
|

3 |
a - = =

density A along the positive x-axis from r to o,

along the positive y-axis from r to %, and along

a90° arc of a circle of radius r, as shown below.
What is the electric field at O?

Access for free at openstax.org.

98.

99.
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O X
From a distance of 10 cm, a proton is projected
with a speed of v = 4.0 x 10° m/s directly ata
large, positively charged plate whose charge
densityiso = 2.0 X 1075 C/m?. (See below.)
(a) Does the proton reach the plate? (b) If not,
how far from the plate does it turn around?

+ +

le——10cm—+ +

4.0 X 108 m/s + +

A particle of mass m and charge —g moves
along a straight line away from a fixed particle
of charge Q. When the distance between the two
particles is ry, —q is moving with a speed vg. (a)
Use the work-energy theorem to calculate the
maximum separation of the charges. (b) What
do you have to assume about vy to make this
calculation? (c) What is the minimum value of
vg such that —q escapes from Q?

5.6 Electric Field Lines

100. Which of the following electric field lines are

incorrect for point charges? Explain why.



101.

102.

103.

(@) (b)
© (d)

() ()

+5uC -5uC

(@)

In this exercise, you will practice drawing
electric field lines. Make sure you represent
both the magnitude and direction of the
electric field adequately. Note that the number
of lines into or out of charges is proportional to
the charges.

(a) Draw the electric field lines map for two
charges +20 uC and —20 uC situated 5 cm
from each other.

(b) Draw the electric field lines map for two
charges +20 uC and 420 uC situated 5 cm
from each other.

(c) Draw the electric field lines map for two
charges +20 uC and —30 uC situated 5 cm
from each other.

Draw the electric field for a system of three
particles of charges +1 uC, +2 uC, and —3 uC
fixed at the corners of an equilateral triangle of
side 2 cm.

Two charges of equal magnitude but opposite
sign make up an electric dipole. A quadrupole

104.
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consists of two electric dipoles that are placed

anti-parallel at two edges of a square as shown.
+10nC @ @-10nC

-10nc@ @ +10nC

Draw the electric field of the charge
distribution.

Suppose the electric field of an isolated point
charge decreased with distance as 1/r2té
rather than as 1/r2. Show that it is then
impossible to draw continous field lines so that
their number per unit area is proportional to
E.

5.7 Electric Dipoles

105.

106.

107.

Consider the equal and opposite charges
shown below. (a) Show that at all points on the
x-axis for which |x| > a, E ~ Qal27ex>. (b)
Show that at all points on the y-axis for which
ly| > a, E ~ Qalneyy .

y

W

SR N —

-Q¢

<9
(a) What is the dipole moment of the
configuration shown above? If Q = 4.0 uC, (b)
what is the torque on this dipole with an
electric field of 4.0 x 10° N/Ci? (c) What is the
torque on this dipole with an electric field of
—4.0 x 10° N/Ci? (d) What is the torque on
this dipole with an electric field of
+4.0 x 105 N/Cj?
A water molecule consists of two hydrogen
atoms bonded with one oxygen atom. The
bond angle between the two hydrogen atoms is
104° (see below). Calculate the net dipole
moment of a hypothetical water molecule
where the charge at the oxygen molecule is
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—-2e and at each hydrogen atom is +e. The net
dipole moment of the molecule is the vector "
sum of the individual dipole moment between eo+e
the two O-Hs. The separation O-H is 0.9578 5
!
angstroms. y |
_2e .\ 104
hY
hY
by
[ BY=)
H

Additional Problems

108. Point charges q; = 2.0 uC and q; = 4.0 uC are 111. Four charged particles are positioned at the corners

located at r; = (4.0f - 2,03 + 2.0E) m and of a parallelogram as shown below. If g = 5.0 4C and
ry = (8.0i +5.0] — 9.0i<\) m. What is the force Q :}?'0 uC, what is the net force on g?
of gp ongq?
109. What is the force on the 5.0-uC charge shown _30{ 30m |
below? g femme————— q
1.0m
30°
I 6.0 uC <& -
Q 2Q
3. 112. A charge Qis fixed at the origin and a second
' charge g moves along the x-axis, as shown
|—— 3.0m - 3.0m ——| below. How much work is done on g by the

—Q o o— electric force when g moves from x; to x;?
3.0 uC 5.0 uC 9.0uc” y

110. What is the force on the 2.0-uC charge placed
at the center of the square shown below?

50 uC 40 uC o) + . oO——
¢ o o &
113. Acharge g = —2.0 uC is released from rest
when it is 2.0 m from a fixed charge
20 pC 10m O = 6.0 uC. What is the kinetic energy of q
(4 ' when it is 1.0 m from Q?
114. What is the electric field at the midpoint M of
the hypotenuse of the triangle shown below?
g 1.0m o
4.0 uC 20 uC

Access for free at openstax.org.
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115. Find the electric field at P for the charge 117. Point charges are placed at the four corners of
configurations shown below. arectangle as shown below:
q -q P g1 =20x%x1079C, g = -2.0 x 1076 C,
(4 a—eQ a . g3 =40 x 10°°C,and gy = 1.0 x 10°° C.
(@) What is the electric field at P?

q q | P ?
- a - | |
| |
| |
4.0cm)| :
I |
| I
a a | 1
o S
as 44
118. Three charges are positioned at the corners of
P a parallelogram as shown below. (a) If
(b) O = 8.0 uC, what is the electric field at the

unoccupied corner? (b) What is the force on a
5.0-uC charge placed at this corner?

a
- X d
N pa
: ™ P : | 3.0m -
| N i : | |
i \\\ /// : _3Q
! AN ! £.00m 30°
| - I -
al o P : a v x
I | 20
I |
| |
I |
| I
I |
|

Q

,// \\\ 119. A positive charge qis released from rest at the
// \\ origin of a rectangular coordinate system and
! // \\ moves under the influence of the electric field
q&--——--—- = @ 4 I_*f = Ey (1 + x/a) 1. What is the kinetic energy
of g when it passes through x = 3a?
© 120. A particle of charge —g and mass m is placed
116. (a) What is the electric field at the lower-right- at the center of a uniformaly charged ring of
hand corner of the square shown below? (b) total charge Q and radius R. The particle is
What is the force on a charge g placed at that displaced a small distance along the axis
point? perpendicular to the plane of the ring and
-2q Q ——————— - S Q q released. Assuming that the particle is

constrained to move along the axis, show that
the particle oscillates in simple harmonic

motion with a frequency f = 5= 99

27 47rsOmR3 )
121. Charge is distributed uniformly along the
entire y-axis with a density A, and along the
positive x-axis from x = ato x = bwith a
q 0 ________________ . density Ax. What is the force between the two
distributions?
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122. The circular arc shown below carries a charge
per unit length 4 = A cos 8, where @ is
measured from the x-axis. What is the electric

field at the origin?
y
/f/’
,/
///
r-~
//
-
//
"0
~ J X
.
--.\\\
“‘-“-.
Ir ““‘-.
“"-..
““"‘-.
\..\“‘-
."‘.

123. Calculate the electric field due to a uniformly
charged rod of length I, aligned with the x-axis
with one end at the origin; at a point Pon the
Z-axis.

124. The charge per unit length on the thin rod
shown below is A. What is the electric force on
the point charge g? Solve this problem by first
considering the electric force df‘ on gduetoa
small segment dx of the rod, which contains
charge Adx. Then, find the net force by

integrating di{‘ over the length of the rod.
Yi

2@t
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125.

126.

The charge per unit length on the thin rod
shown here is A. What is the electric force on
the point charge q? (See the preceding
problem.)

y

r =

| =

The charge per unit length on the thin
semicircular wire shown below is A. What is
the electric force on the point charge g? (See
the preceding problems.)




CHAPTERI 6
Gauss's Law

Figure 6.1 This chapter introduces the concept of flux, which relates a physical quantity and the area through
which it is flowing. Although we introduce this concept with the electric field, the concept may be used for many
other quantities, such as fluid flow. (credit: modification of work by “Alessandro”/Flickr)

Chapter Outline

6.1 Electric Flux

6.2 Explaining Gauss’s Law

6.3 Applying Gauss’s Law

6.4 Conductors in Electrostatic Equilibrium

INTRODUCTION Flux is a general and broadly applicable concept in physics. However, in this chapter, we
concentrate on the flux of the electric field. This allows us to introduce Gauss’s law, which is particularly useful
for finding the electric fields of charge distributions exhibiting spatial symmetry. The main topics discussed
here are

1. Electric flux. We define electric flux for both open and closed surfaces.

2. Gauss’s law. We derive Gauss’s law for an arbitrary charge distribution and examine the role of electric
flux in Gauss’s law.

3. Calculating electric fields with Gauss’s law. The main focus of this chapter is to explain how to use
Gauss’s law to find the electric fields of spatially symmetrical charge distributions. We discuss the
importance of choosing a Gaussian surface and provide examples involving the applications of Gauss’s
law.



4. Electric fields in conductors. Gauss’s law provides useful insight into the absence of electric fields in
conducting materials.

So far, we have found that the electrostatic field begins and ends at point charges and that the field of a point
charge varies inversely with the square of the distance from that charge. These characteristics of the
electrostatic field lead to an important mathematical relationship known as Gauss’s law. This law is named in
honor of the extraordinary German mathematician and scientist Karl Friedrich Gauss (Figure 6.2). Gauss’s law
gives us an elegantly simple way of finding the electric field, and, as you will see, it can be much easier to use
than the integration method described in the previous chapter. However, there is a catch—Gauss’s law has a
limitation in that, while always true, it can be readily applied only for charge distributions with certain
symmetries.

Figure 6.2 Karl Friedrich Gauss (1777-1855) was a legendary mathematician of the nineteenth century. Although his major contributions

were to the field of mathematics, he also did important work in physics and astronomy.

6.1 Electric Flux

Learning Objectives

By the end of this section, you will be able to:
e Define the concept of flux
e Describe electric flux
e Calculate electric flux for a given situation

The concept of flux describes how much of something goes through a given area. More formally, it is the dot
product of a vector field (in this chapter, the electric field) with an area. You may conceptualize the flux of an
electric field as a measure of the number of electric field lines passing through an area (Figure 6.3). The larger
the area, the more field lines go through it and, hence, the greater the flux; similarly, the stronger the electric
field is (represented by a greater density of lines), the greater the flux. On the other hand, if the area rotated so
that the plane is aligned with the field lines, none will pass through and there will be no flux.
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Figure 6.3 The flux of an electric field through the shaded area captures information about the “number” of electric field lines passing
through the area. The numerical value of the electric flux depends on the magnitudes of the electric field and the area, as well as the

relative orientation of the area with respect to the direction of the electric field.

A macroscopic analogy that might help you imagine this is to put a hula hoop in a flowing river. As you change
the angle of the hoop relative to the direction of the current, more or less of the flow will go through the hoop.
Similarly, the amount of flow through the hoop depends on the strength of the current and the size of the hoop.
Again, flux is a general concept; we can also use it to describe the amount of sunlight hitting a solar panel or
the amount of energy a telescope receives from a distant star, for example.

To quantify this idea, Figure 6.4(a) shows a planar surface S| of area A; that is perpendicular to the uniform

electric field E) = EY¥.If Nfield lines pass through .S}, then we know from the definition of electric field lines
(Electric Charges and Fields) that N/A; « E,or N x EA;.

The quantity EA| is the electric flux through .5 . We represent the electric flux through an open surface like
S by the symbol ®. Electric flux is a scalar quantity and has an SI unit of newton-meters squared per coulomb
(N - m?2/C). Notice that N o EA| may also be written as N « @, demonstrating that electric flux is a measure
of the number of field lines crossing a surface.

ZT 4
S, n,
g . = ’// AB .
// - " ﬁg.7 S —— )
S -
X X
(a) (b)

Figure 6.4 (a) A planar surface S| of area A is perpendicular to the electric field E./f Nfield lines cross surface .S . (b) A surface .S, of

area Ay whose projection onto the xz-plane is .S .The same number of field lines cross each surface.

Now consider a planar surface that is not perpendicular to the field. How would we represent the electric flux?
Figure 6.4(b) shows a surface S, of area A, that is inclined at an angle 8 to the xz-plane and whose projection
in that plane is .S (area A). The areas are related by A, cos 8 = A;. Because the same number of field lines
crosses both S| and .S, the fluxes through both surfaces must be the same. The flux through S, is therefore
® = EA| = EA; cos 0. Designating i, as a unit vector normal to .S, (see Figure 6.4(b)), we obtain

®=E mA,.
@ INTERACTIVE

Check out this video (https://openstax.org/1/21fluxsizeangl) to observe what happens to the flux as the area
changes in size and angle, or the electric field changes in strength.




Area Vector

—

For discussing the flux of a vector field, it is helpful to introduce an area vector A. This allows us to write the
last equation in a more compact form. What should the magnitude of the area vector be? What should the
direction of the area vector be? What are the implications of how you answer the previous question?

The area vector of a flat surface of area A has the following magnitude and direction:

« Magnitude is equal to area (A)
- Direction is along the normal to the surface (h); that is, perpendicular to the surface.

Since the normal to a flat surface can point in either direction from the surface, the direction of the area vector
of an open surface needs to be chosen, as shown in Figure 6.5.

AlA.
n
A A

=

A

Figure 6.5 The direction of the area vector of an open surface needs to be chosen; it could be either of the two cases displayed here. The
area vector of a part of a closed surface is defined to point from the inside of the closed space to the outside. This rule gives a unique

direction.

Since fi is a unit normal to a surface, it has two possible directions at every point on that surface (Figure 6.6(a)).
For an open surface, we can use either direction, as long as we are consistent over the entire surface. Part (c) of
the figure shows several cases.
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Figure 6.6 (a) Two potential normal vectors arise at every point on a surface. (b) The outward normal is used to calculate the flux through

a closed surface. (c) Only S3 has been given a consistent set of normal vectors that allows us to define the flux through the surface.

However, if a surface is closed, then the surface encloses a volume. In that case, the direction of the normal
vector at any point on the surface points from the inside to the outside. On a closed surface such as that of
Figure 6.6(b), fi is chosen to be the outward normal at every point, to be consistent with the sign convention for
electric charge.

Electric Flux

Now that we have defined the area vector of a surface, we can define the electric flux of a uniform electric field
through a flat area as the scalar product of the electric field and the area vector, as defined in Products of
Vectors:

- - . -
® = E - A (uniform E, flat surface). 6.1

Figure 6.7 shows the electric field of an oppositely charged, parallel-plate system and an imaginary box
between the plates. The electric field between the plates is uniform and points from the positive plate toward
the negative plate. A calculation of the flux of this field through various faces of the box shows that the net flux
through the box is zero. Why does the flux cancel out here?
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Figure 6.7 Electric flux through a cube, placed between two charged plates. Electric flux through the bottom face (ABCD) is negative,
because E is in the opposite direction to the normal to the surface. The electric flux through the top face (FGHK) is positive, because the
electric field and the normal are in the same direction. The electric flux through the other faces is zero, since the electric field is
perpendicular to the normal vectors of those faces. The net electric flux through the cube is the sum of fluxes through the six faces. Here,
the net flux through the cube is equal to zero. The magnitude of the flux through rectangle BCKF is equal to the magnitudes of the flux

through both the top and bottom faces.

The reason is that the sources of the electric field are outside the box. Therefore, if any electric field line enters
the volume of the box, it must also exit somewhere on the surface because there is no charge inside for the
lines to land on. Therefore, quite generally, electric flux through a closed surface is zero if there are no sources
of electric field, whether positive or negative charges, inside the enclosed volume. In general, when field lines
leave (or “flow out of”) a closed surface, ® is positive; when they enter (or “flow into”) the surface, ® is
negative.

Any smooth, non-flat surface can be replaced by a collection of tiny, approximately flat surfaces, as shown in
Figure 6.8. If we divide a surface Sinto small patches, then we notice that, as the patches become smaller, they
can be approximated by flat surfaces. This is similar to the way we treat the surface of Earth as locally flat, even
though we know that globally, it is approximately spherical.
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Figure 6.8 A surface is divided into patches to find the flux.

To keep track of the patches, we can number them from 1 through N. Now, we define the area vector for each
patch as the area of the patch pointed in the direction of the normal. Let us denote the area vector for the ith

—
patch by 6A ;. (We have used the symbol 6 to remind us that the area is of an arbitrarily small patch.) With
sufficiently small patches, we may approximate the electric field over any given patch as uniform. Let us

denote the average electric field at the location of the ith patch by E,-.

ﬁl; = average electric field over the ith patch.

Therefore, we can write the electric flux ®@; through the area of the ith patch as
- -
®; = E; - 6A; (ith patch).

The flux through each of the individual patches can be constructed in this manner and then added to give us
an estimate of the net flux through the entire surface S, which we denote simply as ®.

N N .
o= Z o; = E; - 5§A; (N patch estimate).
i=1 i=1

This estimate of the flux gets better as we decrease the size of the patches. However, when you use smaller
patches, you need more of them to cover the same surface. In the limit of infinitesimally small patches, they
may be considered to have area dA and unit normal fi. Since the elements are infinitesimal, they may be

—
assumed to be planar, and E; may be taken as constant over any element. Then the flux d® through an area

- —
dAis given by d® = E - fi dA. It is positive when the angle between E; and fi is less than 90° and negative
when the angle is greater than 90°. The net flux is the sum of the infinitesimal flux elements over the entire
surface. With infinitesimally small patches, you need infinitely many patches, and the limit of the sum

becomes a surface integral. With / representing the integral over S,
S

= . -
()] =/ E  -ndA =/ E - dA (open surface). 6.2
S S

In practical terms, surface integrals are computed by taking the antiderivatives of both dimensions defining
the area, with the edges of the surface in question being the bounds of the integral.

To distinguish between the flux through an open surface like that of Figure 6.4 and the flux through a closed



surface (one that completely bounds some volume), we represent flux through a closed surface by
=2 - -
b = }2{ E -ndA= }1{ E - dA (closed surface) 6.3
S S

where the circle through the integral symbol simply means that the surface is closed, and we are integrating
over the entire thing. If you only integrate over a portion of a closed surface, that means you are treating a
subset of it as an open surface.

@ EXAMPLE 6.1

Flux of a Uniform Electric Field

A constant electric field of magnitude E( points in the direction of the positive z-axis (Figure 6.9). What is the
electric flux through a rectangle with sides a and b in the (a) xy-plane and in the (b) xz-plane?

z)

X

Figure 6.9 Calculating the flux of E( through a rectangular surface.
Strategy
. . _) ﬁ . _) o, . . .
Apply the definition of flux: ® = E - A (uniform E), where the definition of dot product is crucial.

Solution

> ->
a. Inthiscase, ® =Ey-A = EyA = Eyab.
b. Here, the direction of the area vector is either along the positive y-axis or toward the negative y-axis.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

Significance
The relative directions of the electric field and area can cause the flux through the area to be zero.

@ EXAMPLE 6.2

Flux of a Uniform Electric Field through a Closed Surface
A constant electric field of magnitude E( points in the direction of the positive z-axis (Figure 6.10). What is the
net electric flux through a cube?
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Figure 6.10 Calculating the flux of Eq through a closed cubic surface.

Strategy

- - -
Apply the definition of flux: ® = E - A (uniform E), noting that a closed surface eliminates the ambiguity in
the direction of the area vector.

Solution
Through the top face of the cube, ® = ]_*fo . K = EyA.
Through the bottom face of the cube, ® = fﬂo . K = —E( A, because the area vector here points downward.

Along the other four sides, the direction of the area vector is perpendicular to the direction of the electric field.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

The net flux is ®pet = EgA — EgA+0+0+0+0=0.

Significance
The net flux of a uniform electric field through a closed surface is zero.

@ EXAMPLE 6.3

Electric Flux through a Plane, Integral Method

A uniform electric field 1_35 of magnitude 10 N/C is directed parallel to the yz-plane at 30° above the xy-plane, as
shown in Figure 6.11. What is the electric flux through the plane surface of area 6.0 m? located in the
xz-plane? Assume that i points in the positive y-direction.
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Figure 6.11 The electric field produces a net electric flux through the surface S.
Strategy

_)
Apply ® = / E - i dA, where the direction and magnitude of the electric field are constant.
S

Solution

—

The angle between the uniform electric field E and the unit normal @i to the planar surface is 30°. Since both
the direction and magnitude are constant, E comes outside the integral. All that is left is a surface integral over
dA, which is A. Therefore, using the open-surface equation, we find that the electric flux through the surface is

_)
o} =/E-ﬁdA=EAcos9
S

= (10 N/C)(6.0 m?)( cos 30°) = 52 N - m?/C.

Significance
Again, the relative directions of the field and the area matter, and the general equation with the integral will
simplify to the simple dot product of area and electric field.

CHECK YOUR UNDERSTANDING 6.1

What angle should there be between the electric field and the surface shown in Figure 6.11 in the previous
example so that no electric flux passes through the surface?

@ EXAMPLE 6.4

Inhomogeneous Electric Field
g ~
What is the total flux of the electric field E = cy2k through the rectangular surface shown in Figure 6.12?
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Figure 6.12 Since the electric field is not constant over the surface, an integration is necessary to determine the flux.
Strategy
_) N . N\ . . . ., .
Apply ® = E - n dA. We assume that the unit normal i to the given surface points in the positive
S

z-direction, sofi = K. Since the electric field is not uniform over the surface, it is necessary to divide the

_)
surface into infinitesimal strips along which E is essentially constant. As shown in Figure 6.12, these strips
are parallel to the x-axis, and each strip has an area dA = b dy.

Solution
From the open surface integral, we find that the net flux through the rectangular surface is

—_ a ~ ~
@ =/E~ﬁdA=/ (cy*K) - K(b dy)
S 0
a 1
=cb/ yzdy=—a3bc.
0 3

Significance
For a non-constant electric field, the integral method is required.

) CHECK YOUR UNDERSTANDING 6.2

If the electric field in Example 6.4 is ﬁ = mxﬁ, what is the flux through the rectangular area?

6.2 Explaining Gauss’s Law

Learning Objectives

By the end of this section, you will be able to:
e State Gauss’s law
e Explain the conditions under which Gauss's law may be used
e Apply Gauss's law in appropriate systems

We can now determine the electric flux through an arbitrary closed surface due to an arbitrary charge
distribution. We found that if a closed surface does not have any charge inside where an electric field line can
terminate, then any electric field line entering the surface at one point must necessarily exit at some other
point of the surface. Therefore, if a closed surface does not have any charges inside the enclosed volume, then
the electric flux through the surface is zero. Now, what happens to the electric flux if there are some charges
inside the enclosed volume? Gauss’s law gives a quantitative answer to this question.



To get a feel for what to expect, let’s calculate the electric flux through a spherical surface around a positive
point charge g, since we already know the electric field in such a situation. Recall that when we place the point
charge at the origin of a coordinate system, the electric field at a point P that is at a distance r from the charge
at the origin is given by

I q._

E
= r,
P 47[50 r2

where T is the radial vector from the charge at the origin to the point P. We can use this electric field to find the
flux through the spherical surface of radius r, as shown in Figure 6.13.

Figure 6.13 A closed spherical surface surrounding a point charge g.

Then we apply © = / I_*f -1l d A to this system and substitute known values. On the sphere,fi = Fandr = R,
S

so for an infinitesimal area dA,

dd=E -ndA = —T -TdA= — dA.
4ren R2 4rey R2
We now find the net flux by integrating this flux over the surface of the sphere:
1 ¢ 1 ¢ 2y _ 4
= — dA = —— —@4zR") = —.
4reg R?2 Jg 4reg R2 ( ) £0

where the total surface area of the spherical surface is 47 R?. This gives the flux through the closed spherical
surface at radius ras

q
O =—. 6.4

€0
A remarkable fact about this equation is that the flux is independent of the size of the spherical surface. This
can be directly attributed to the fact that the electric field of a point charge decreases as 1/r? with distance,
which just cancels the r? rate of increase of the surface area.

Electric Field Lines Picture

An alternative way to see why the flux through a closed spherical surface is independent of the radius of the
surface is to look at the electric field lines. Note that every field line from g that pierces the surface at radius R
also pierces the surface at Ry (Figure 6.14).
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Figure 6.14 Flux through spherical surfaces of radii R; and R; enclosing a charge g are equal, independent of the size of the surface,

since all E-field lines that pierce one surface from the inside to outside direction also pierce the other surface in the same direction.

Therefore, the net number of electric field lines passing through the two surfaces from the inside to outside
direction is equal. This net number of electric field lines, which is obtained by subtracting the number of lines
in the direction from outside to inside from the number of lines in the direction from inside to outside gives a
visual measure of the electric flux through the surfaces.

You can see that if no charges are included within a closed surface, then the electric flux through it must be
zero. A typical field line enters the surface at dA; and leaves at dA;. Every line that enters the surface must
also leave that surface. Hence the net “flow” of the field lines into or out of the surface is zero (Figure 6.15(a)).
The same thing happens if charges of equal and opposite sign are included inside the closed surface, so that
the total charge included is zero (part (b)). A surface that includes the same amount of charge has the same
number of field lines crossing it, regardless of the shape or size of the surface, as long as the surface encloses
the same amount of charge (part (c)).
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Figure 6.15 Understanding the flux in terms of field lines. (a) The electric flux through a closed surface due to a charge outside that
surface is zero. (b) Charges are enclosed, but because the net charge included is zero, the net flux through the closed surface is also zero.
(c) The shape and size of the surfaces that enclose a charge does not matter because all surfaces enclosing the same charge have the same

flux.

Statement of Gauss’s Law

Gauss’s law generalizes this result to the case of any number of charges and any location of the charges in the

_)
space inside the closed surface. According to Gauss’s law, the flux of the electric field E through any closed



surface, also called a Gaussian surface, is equal to the net charge enclosed (genc ) divided by the permittivity of

free space (g):
Genc
DCiosed Surface = —— -
&0

This equation holds for charges of either sign, because we define the area vector of a closed surface to point
outward. If the enclosed charge is negative (see Figure 6.16(b)), then the flux through either S or .§" is negative.

E
S S

(@ (b)
Figure 6.16 The electric flux through any closed surface surrounding a point charge g is given by Gauss’s law. (a) Enclosed charge is

positive. (b) Enclosed charge is negative.

The Gaussian surface does not need to correspond to a real, physical object; indeed, it rarely will. It is a
mathematical construct that may be of any shape, provided that it is closed. However, since our goal is to
integrate the flux over it, we tend to choose shapes that are highly symmetrical.

If the charges are discrete point charges, then we just add them. If the charge is described by a continuous
distribution, then we need to integrate appropriately to find the total charge that resides inside the enclosed
volume. For example, the flux through the Gaussian surface Sof Figure 6.17 is ® = (q; + g + g5) /€. Note
that genc is simply the sum of the point charges. If the charge distribution were continuous, we would need to
integrate appropriately to compute the total charge within the Gaussian surface.
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Figure 6.17 The flux through the Gaussian surface shown, due to the charge distribution, is ® = |q; | + |g2| + |g5| /€9-

Recall that the principle of superposition holds for the electric field. Therefore, the total electric field at any
point, including those on the chosen Gaussian surface, is the sum of all the electric fields present at this point.
This allows us to write Gauss’s law in terms of the total electric field.



Gauss’s Law

p—
The flux ® of the electric field E through any closed surface S (a Gaussian surface) is equal to the net
charge enclosed (genc ) divided by the permittivity of free space (gq) :

q>=§[ﬁ.ﬁdA=qﬂ. 6.5
S =0}

To use Gauss’s law effectively, you must have a clear understanding of what each term in the equation

represents. The field ﬁ is the total electric field at every point on the Gaussian surface. This total field includes
contributions from charges both inside and outside the Gaussian surface. However, genc is just the charge
inside the Gaussian surface. Finally, the Gaussian surface is any closed surface in space. That surface can
coincide with the actual surface of a conductor, or it can be an imaginary geometric surface. The only
requirement imposed on a Gaussian surface is that it be closed (Figure 6.18).

Figure 6.18 A Klein bottle partially filled with a liquid. Could the Klein bottle be used as a Gaussian surface?

@ EXAMPLE 6.5

Electric Flux through Gaussian Surfaces
Calculate the electric flux through each Gaussian surface shown in Figure 6.19.
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Figure 6.19 Various Gaussian surfaces and charges.

Strategy
From Gauss’s law, the flux through each surface is given by genc/€(, Where gepc is the charge enclosed by that
surface.
Solution

For the surfaces and charges shown, we find

a. ® =22 =23 x 1°N-m/C.

b &= 2 =23 x 10°N-m*/C.

c. ®=2UC_23 % 105N-m¥/C.

d. = ZHCERCTIDIE - 1] x 10°N-m?/C.
o o 0 ;4C+6.06;(;C—10.0 uC _ o

Significance

In the special case of a closed surface, the flux calculations become a sum of charges. In the next section, this
will allow us to work with more complex systems.

CHECK YOUR UNDERSTANDING 6.3

Calculate the electric flux through the closed cubical surface for each charge distribution shown in Figure 6.20.
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Figure 6.20 A cubical Gaussian surface with various charge distributions.

@ INTERACTIVE

Use this simulation (https://openstax.org/l/21gaussimulat) to adjust the magnitude of the charge and the
radius of the Gaussian surface around it. See how this affects the total flux and the magnitude of the electric
field at the Gaussian surface.

6.3 Applying Gauss’s Law

Learning Objectives
By the end of this section, you will be able to:
e Explain what spherical, cylindrical, and planar symmetry are
e Recognize whether or not a given system possesses one of these symmetries
e Apply Gauss’s law to determine the electric field of a system with one of these symmetries

Gauss’s law is very helpful in determining expressions for the electric field, even though the law is not directly
about the electric field; it is about the electric flux. It turns out that in situations that have certain symmetries
(spherical, cylindrical, or planar) in the charge distribution, we can deduce the electric field based on
knowledge of the electric flux. In these systems, we can find a Gaussian surface S over which the electric field
- - g
has constant magnitude. Furthermore, if E is parallel to ii everywhere on the surface, then E -fi = E. (If E

Py . _) N . .
and n are antiparallel everywhere on the surface, then E - = —E.) Gauss’s law then simplifies to



q>=fﬁ-ﬁdA=E7§ dA = EA = % 6.6
S S €0

where A is the area of the surface. Note that these symmetries lead to the transformation of the flux integral
into a product of the magnitude of the electric field and an appropriate area. When you use this flux in the
expression for Gauss’s law, you obtain an algebraic equation that you can solve for the magnitude of the
electric field, which looks like

denc
£p area

The direction of the electric field at point Pis obtained from the symmetry of the charge distribution and the

_)
type of charge in the distribution. Therefore, Gauss’s law can be used to determine E. Here is a summary of
the steps we will follow:

@ PROBLEM-SOLVING STRATEGY

Gauss’s Law

1. Identify the spatial symmetry of the charge distribution. This is an important first step that allows us to
choose the appropriate Gaussian surface. As examples, an isolated point charge has spherical symmetry,
and an infinite line of charge has cylindrical symmetry.

2. Choose a Gaussian surface with the same symmetry as the charge distribution and identify its

_)
consequences. With this choice, E - i is easily determined over the Gaussian surface.

_)
3. Evaluate the integral jl{ E - fi dA over the Gaussian surface, that is, calculate the flux through the surface.
S

The symmetry of the Gaussian surface allows us to factor ]_E) - fl outside the integral.

4. Determine the amount of charge enclosed by the Gaussian surface. This is an evaluation of the right-hand
side of the equation representing Gauss’s law. It is often necessary to perform an integration to obtain the
net enclosed charge.

5. Evaluate the electric field of the charge distribution. The field may now be found using the results of steps
3 and 4.

Basically, there are only three types of symmetry that allow Gauss’s law to be used to deduce the electric field.
They are

« A charge distribution with spherical symmetry
« A charge distribution with cylindrical symmetry
« A charge distribution with planar symmetry

To exploit the symmetry, we perform the calculations in appropriate coordinate systems and use the right kind
of Gaussian surface for that symmetry, applying the remaining four steps.

Charge Distribution with Spherical Symmetry

A charge distribution has spherical symmetry if the density of charge depends only on the distance from a
point in space and not on the direction. In other words, if you rotate the system, it doesn’t look different. For
instance, if a sphere of radius R is uniformly charged with charge density pg then the distribution has
spherical symmetry (Figure 6.21(a)). On the other hand, if a sphere of radius R is charged so that the top half of
the sphere has uniform charge density p; and the bottom half has a uniform charge density p, # pj, then the
sphere does not have spherical symmetry because the charge density depends on the direction (Figure
6.21(b)). Thus, it is not the shape of the object but rather the shape of the charge distribution that determines
whether or not a system has spherical symmetry.

Figure 6.21(c) shows a sphere with four different shells, each with its own uniform charge density. Although
this is a situation where charge density in the full sphere is not uniform, the charge density function depends



only on the distance from the center and not on the direction. Therefore, this charge distribution does have
spherical symmetry.

P
Po
(2
(a) Spherically symmetric (b) Not spherically symmetric (c) Spherically symmetric

Figure 6.21 Illustrations of spherically symmetrical and nonsymmetrical systems. Different shadings indicate different charge densities.
Charges on spherically shaped objects do not necessarily mean the charges are distributed with spherical symmetry. The spherical
symmetry occurs only when the charge density does not depend on the direction. In (a), charges are distributed uniformly in a sphere. In
(b), the upper half of the sphere has a different charge density from the lower half; therefore, (b) does not have spherical symmetry. In (c),
the charges are in spherical shells of different charge densities, which means that charge density is only a function of the radial distance

from the center; therefore, the system has spherical symmetry.

One good way to determine whether or not your problem has spherical symmetry is to look at the charge
density function in spherical coordinates, p (r, 8, ¢). If the charge density is only a function of r, that is

p = p(r), then you have spherical symmetry. If the density depends on 8 or ¢, you could change it by rotation;
hence, you would not have spherical symmetry.

Consequences of symmetry

In all spherically symmetrical cases, the electric field at any point must be radially directed, because the
charge and, hence, the field must be invariant under rotation. Therefore, using spherical coordinates with their
origins at the center of the spherical charge distribution, we can write down the expected form of the electric
field at a point Plocated at a distance r from the center:

Spherical symmetry: E p = Ep(rrT, 6.7

where T is the unit vector pointed in the direction from the origin to the field point P. The radial component
E p of the electric field can be positive or negative. When Ep > 0, the electric field at P points away from the
origin, and when Ep < 0, the electric field at P points toward the origin.

Gaussian surface and flux calculations

We can now use this form of the electric field to obtain the flux of the electric field through the Gaussian
surface. For spherical symmetry, the Gaussian surface is a closed spherical surface that has the same center as
the center of the charge distribution. Thus, the direction of the area vector of an area element on the Gaussian
surface at any point is parallel to the direction of the electric field at that point, since they are both radially
directed outward (Figure 6.22).



Figure 6.22 The electric field at any point of the spherical Gaussian surface for a spherically symmetrical charge distribution is parallel to
the area element vector at that point, giving flux as the product of the magnitude of electric field and the value of the area. Note that the

radius R of the charge distribution and the radius r of the Gaussian surface are different quantities.

—
The magnitude of the electric field E must be the same everywhere on a spherical Gaussian surface
concentric with the distribution. For a spherical surface of radius r,

q):%ﬁp.ﬁdA:Epj{ dA = Ep 4z
S S

Using Gauss’s law

According to Gauss’s law, the flux through a closed surface is equal to the total charge enclosed within the
closed surface divided by the permittivity of vacuum (. Let genc be the total charge enclosed inside the
distance rfrom the origin, which is the space inside the Gaussian spherical surface of radius r. This gives the
following relation for Gauss’s law:

4nr*E = Gene .
€0
Hence, the electric field at point Pthat is a distance r from the center of a spherically symmetrical charge
distribution has the following magnitude and direction:

I Genc
drey 12

Magnitude: E(r) = 6.8

Direction: radial from Oto Por from Pto O.

The direction of the field at point P depends on whether the charge in the sphere is positive or negative. For a
net positive charge enclosed within the Gaussian surface, the direction is from Oto P, and for a net negative
charge, the direction is from Pto O. This is all we need for a point charge, and you will notice that the result
above is identical to that for a point charge. However, Gauss’s law becomes truly useful in cases where the
charge occupies a finite volume.

Computing enclosed charge

The more interesting case is when a spherical charge distribution occupies a volume, and asking what the
electric field inside the charge distribution is thus becomes relevant. In this case, the charge enclosed depends
on the distance rof the field point relative to the radius of the charge distribution R, such as that shown in

Figure 6.23.
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Figure 6.23 A spherically symmetrical charge distribution and the Gaussian surface used for finding the field (a) inside and (b) outside the

distribution.

If point Pis located outside the charge distribution—that is, if » > R—then the Gaussian surface containing P
encloses all charges in the sphere. In this case, genc €quals the total charge in the sphere. On the other hand, if
point Pis within the spherical charge distribution, that is, if » < R, then the Gaussian surface encloses a
smaller sphere than the sphere of charge distribution. In this case, genc is less than the total charge present in
the sphere. Referring to Figure 6.23, we can write gepc as

_ qtot (tOtal Charge) ifr >R
denc = Gwithin » < r(only charge within 7 < R)if r < R .

The field at a point outside the charge distribution is also called Eout, and the field at a point inside the charge

-
distribution is called E;;,, . Focusing on the two types of field points, either inside or outside the charge
distribution, we can now write the magnitude of the electric field as

. 1
P outside sphere Eqy = —— ot 6.9
drey 12
Pinside sphere E;;, = Quithinr <R 6.10
4reg 2

Note that the electric field outside a spherically symmetrical charge distribution is identical to that of a point
charge at the center that has a charge equal to the total charge of the spherical charge distribution. This is
remarkable since the charges are not located at the center only. We now work out specific examples of
spherical charge distributions, starting with the case of a uniformly charged sphere.

@ EXAMPLE 6.6

Uniformly Charged Sphere
A sphere of radius R, such as that shown in Figure 6.23, has a uniform volume charge density pq. Find the
electric field at a point outside the sphere and at a point inside the sphere.

Strategy
Apply the Gauss’s law problem-solving strategy, where we have already worked out the flux calculation.

Solution
The charge enclosed by the Gaussian surface is given by

r 2 4
denc = /p dv =/ p047£r' dr' = 0 (—7[1’3> .
0 0 3



The answer for electric field amplitude can then be written down immediately for a point outside the sphere,
labeled Eqy¢, and a point inside the sphere, labeled Ejj,.

1 dtot 4 3
Eouw = Tneg =3 dot = 3R po,
denc por . 4 3
E., = — = — since = >7r .
mn 4rme) 2 3¢ Jenc 3 po

It is interesting to note that the magnitude of the electric field increases inside the material as you go out, since
the amount of charge enclosed by the Gaussian surface increases with the volume. Specifically, the charge
enclosed grows o 3, whereas the field from each infinitesimal element of charge drops off « 1/r? with the net
result that the electric field within the distribution increases in strength linearly with the radius. The
magnitude of the electric field outside the sphere decreases as you go away from the charges, because the
included charge remains the same but the distance increases. Figure 6.24 displays the variation of the
magnitude of the electric field with distance from the center of a uniformly charged sphere.

E
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Figure 6.24 Electric field of a uniformly charged, non-conducting sphere increases inside the sphere to a maximum at the surface and

R
then decreases as 1/r2. Here, Er = 2070. The electric field is due to a spherical charge distribution of uniform charge density and total

charge Q as a function of distance from the center of the distribution.

The direction of the electric field at any point Pis radially outward from the origin if pg is positive, and inward
(i.e., toward the center) if pg is negative. The electric field at some representative space points are displayed in
Figure 6.25 whose radial coordinates rarer = R/2,r = R,and r = 2R.



Figure 6.25 Electric field vectors inside and outside a uniformly charged sphere.
Significance

Notice that Eqy; has the same form as the equation of the electric field of an isolated point charge. In
determining the electric field of a uniform spherical charge distribution, we can therefore assume that all of
the charge inside the appropriate spherical Gaussian surface is located at the center of the distribution.

@ EXAMPLE 6.7

Non-Uniformly Charged Sphere

A non-conducting sphere of radius R has a non-uniform charge density that varies with the distance from its
center as given by

p(ry=ar" (r < R;n>0),

where a is a constant. We require n > 0 so that the charge density is not undefined at r = 0. Find the electric
field at a point outside the sphere and at a point inside the sphere.

Strategy

Apply the Gauss’s law strategy given above, where we work out the enclosed charge integrals separately for
cases inside and outside the sphere.

Solution

Since the given charge density function has only a radial dependence and no dependence on direction, we
have a spherically symmetrical situation. Therefore, the magnitude of the electric field at any point is given

above and the direction is radial. We just need to find the enclosed charge genc, which depends on the location
of the field point.

A note about symbols: We use / for locating charges in the charge distribution and rfor locating the field
point(s) at the Gaussian surface(s). The letter R is used for the radius of the charge distribution.



As charge density is not constant here, we need to integrate the charge density function over the volume
enclosed by the Gaussian surface. Therefore, we set up the problem for charges in one spherical shell, say
between ' and r’ + dr’, as shown in Figure 6.26. The volume of charges in the shell of infinitesimal width is
equal to the product of the area of surface 47+’ 2 and the thickness dr’. Multiplying the volume with the density
at this location, which is ar’ ", gives the charge in the shell:

dqg = ar’” 47tr'2dr’.

Gaussian surface

Figure 6.26 Spherical symmetry with non-uniform charge distribution. In this type of problem, we need four radii: R is the radius of the
charge distribution, ris the radius of the Gaussian surface, ' is the inner radius of the spherical shell, and '+ dr' is the outer radius of the
spherical shell. The spherical shell is used to calculate the charge enclosed within the Gaussian surface. The range for #/ is from 0 to rfor
the field at a point inside the charge distribution and from 0 to R for the field at a point outside the charge distribution. If r > R, then the

Gaussian surface encloses more volume than the charge distribution, but the additional volume does not contribute to genc.

(a) Field at a point outside the charge distribution. In this case, the Gaussian surface, which contains the field
point P, has a radius rthat is greater than the radius R of the charge distribution, r > R. Therefore, all charges
of the charge distribution are enclosed within the Gaussian surface. Note that the space between ' = R and

¥’ = ris empty of charges and therefore does not contribute to the integral over the volume enclosed by the

Gaussian surface:
R
dra
denc = / dq =/ ar’" 47rr’2dr' = —Rn+3,
0 n+ 3

-
This is used in the general result for Eqy; above to obtain the electric field at a point outside the charge
distribution as

aer+3

= 1
Bou = |~ | =4,
out [eo(n +3)| 12 r

where T is a unit vector in the direction from the origin to the field point at the Gaussian surface.

(b) Field at a point inside the charge distribution. The Gaussian surface is now buried inside the charge
distribution, with » < R. Therefore, only those charges in the distribution that are within a distance rof the
center of the spherical charge distribution count in repc:

.
2 dra

Genc = ar'" 4z’ < dr' = 3
0 n+ 3




>
Now, using the general result above for E;,,, we find the electric field at a point that is a distance r from the
center and lies within the charge distribution as

n+1i,\

>

B a
T eg(n+3)

where the direction information is included by using the unit radial vector.

CHECK YOUR UNDERSTANDING 6.4

Check that the electric fields for the sphere reduce to the correct values for a point charge.

Charge Distribution with Cylindrical Symmetry

A charge distribution has cylindrical symmetry if the charge density depends only upon the distance r from
the axis of a cylinder and must not vary along the axis or with direction about the axis. In other words, if your
system varies if you rotate it around the axis, or shift it along the axis, you do not have cylindrical symmetry.

Figure 6.27 shows four situations in which charges are distributed in a cylinder. A uniform charge density pg.
in an infinite straight wire has a cylindrical symmetry, and so does an infinitely long cylinder with constant
charge density pg. An infinitely long cylinder that has different charge densities along its length, such as a
charge density p; for z > 0 and p, # p; for z < 0, does not have a usable cylindrical symmetry for this course.
Neither does a cylinder in which charge density varies with the direction, such as a charge density p; for

0 <0 < mand py # p; for r < 6 < 2x. A system with concentric cylindrical shells, each with uniform charge
densities, albeit different in different shells, as in Figure 6.27(d), does have cylindrical symmetry if they are
infinitely long. The infinite length requirement is due to the charge density changing along the axis of a finite
cylinder. In real systems, we don’t have infinite cylinders; however, if the cylindrical object is considerably
longer than the radius from it that we are interested in, then the approximation of an infinite cylinder becomes
useful.

2
Po P P2
P2
(a) Cylindrically (b) Not (c) Not (d) Cylindrically
symmetric cylindrically cylindrically symmetric
symmetric symmetric

Figure 6.27 To determine whether a given charge distribution has cylindrical symmetry, look at the cross-section of an “infinitely long”
cylinder. If the charge density does not depend on the polar angle of the cross-section or along the axis, then you have cylindrical
symmetry. (a) Charge density is constant in the cylinder; (b) upper half of the cylinder has a different charge density from the lower half; (c)
left half of the cylinder has a different charge density from the right half; (d) charges are constant in different cylindrical rings, but the

density does not depend on the polar angle. Cases (a) and (d) have cylindrical symmetry, whereas (b) and (c) do not.

Consequences of symmetry

-
In all cylindrically symmetrical cases, the electric field E p at any point P must also display cylindrical
symmetry.

Cylindrical symmetry: E p = Ep(r)ft,



where ris the distance from the axis and T is a unit vector directed perpendicularly away from the axis (Figure

6.28).
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Figure 6.28 The electric field in a cylindrically symmetrical situation depends only on the distance from the axis. The direction of the

electric field is pointed away from the axis for positive charges and toward the axis for negative charges.

Gaussian surface and flux calculation

To make use of the direction and functional dependence of the electric field, we choose a closed Gaussian
surface in the shape of a cylinder with the same axis as the axis of the charge distribution. The flux through
this surface of radius s and height L is easy to compute if we divide our task into two parts: (a) a flux through
the flat ends and (b) a flux through the curved surface (Figure 6.29).

Axis
AR

—

E
J EP

Figure 6.29 The Gaussian surface in the case of cylindrical symmetry. The electric field at a patch is either parallel or perpendicular to the

normal to the patch of the Gaussian surface.

The electric field is perpendicular to the cylindrical side and parallel to the planar end caps of the surface. The
flux through the cylindrical part is

/E’-ﬁdA:E/ dA = EQrrL),
S S

_) Py .
whereas the flux through the end caps is zero because E - i = 0 there. Thus, the flux is

/ E -fidA = EQzrL)+0+0 = 27rLE.
S

Using Gauss’s law
According to Gauss’s law, the flux must equal the amount of charge within the volume enclosed by this surface,

divided by the permittivity of free space. When you do the calculation for a cylinder of length L, you find that
genc Of Gauss’s law is directly proportional to L. Let us write it as charge per unit length (Adenc ) times length L:

Genc = Aenc L.

Hence, Gauss’s law for any cylindrically symmetrical charge distribution yields the following magnitude of the
electric field a distance s away from the axis:



A‘enc l
2rey 1

Magnitude: E(r) =

The charge per unit length Aepc depends on whether the field point is inside or outside the cylinder of charge
distribution, just as we have seen for the spherical distribution.

Computing enclosed charge

Let R be the radius of the cylinder within which charges are distributed in a cylindrically symmetrical way. Let
the field point P be at a distance s from the axis. (The side of the Gaussian surface includes the field point P.)
When r > R (that is, when Pis outside the charge distribution), the Gaussian surface includes all the charge in
the cylinder of radius R and length L. When r < R (Pis located inside the charge distribution), then only the
charge within a cylinder of radius s and length L is enclosed by the Gaussian surface:

(total charge) ifr > R
Aenc L = cp . . .
(only charge withinr < R)ifr < R

@ EXAMPLE 6.8

Uniformly Charged Cylindrical Shell

A very long non-conducting cylindrical shell of radius R has a uniform surface charge densityog. Find the
electric field (a) at a point outside the shell and (b) at a point inside the shell.

Strategy
Apply the Gauss’s law strategy given earlier, where we treat the cases inside and outside the shell separately.

Solution

a. Electric field at a point outside the shell. For a point outside the cylindrical shell, the Gaussian surface is
the surface of a cylinder of radius » > R and length L, as shown in Figure 6.30. The charge enclosed by the

Gaussian cylinder is equal to the charge on the cylindrical shell of length L. Therefore, Aenc is given by
cp27 RL

L
Axis

ﬂenc =

=27 Roy.
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Figure 6.30 A Gaussian surface surrounding a cylindrical shell.

Hence, the electric field at a point P outside the shell at a distance r away from the axis is

2R Roy 1
E=22290 2520 236> R)
2ne, r g, T

1/\
-7

where T is a unit vector, perpendicular to the axis and pointing away from it, as shown in the figure. The
electric field at P points in the direction of ¥ given in Figure 6.30 if 6y > 0 and in the opposite direction to
T if op < 0.



b. Electric field at a point inside the shell. For a point inside the cylindrical shell, the Gaussian surface is a
cylinder whose radius ris less than R (Figure 6.31). This means no charges are included inside the
Gaussian surface:

Aenc = 0.
Axis
|
I P
J; Ein

Figure 6.31 A Gaussian surface within a cylindrical shell.

This gives the following equation for the magnitude of the electric field E;, at a point whose ris less than R
of the shell of charges.
Ein 2zarL =0(r < R),

This gives us
Ej, =0(r <R).
Significance
Notice that the result inside the shell is exactly what we should expect: No enclosed charge means zero electric
field. Outside the shell, the result becomes identical to a wire with uniform charge Roy.

CHECK YOUR UNDERSTANDING 6.5

A thin straight wire has a uniform linear charge density 4. Find the electric field at a distance d from the wire,
where dis much less than the length of the wire.

Charge Distribution with Planar Symmetry

A planar symmetry of charge density is obtained when charges are uniformly spread over a large flat surface.
In planar symmetry, all points in a plane parallel to the plane of charge are identical with respect to the
charges.

Consequences of symmetry

We take the plane of the charge distribution to be the xy-plane and we find the electric field at a space point P
with coordinates (x, y, 2). Since the charge density is the same at all (x, y)-coordinates in the z = 0 plane, by
symmetry, the electric field at P cannot depend on the x- or y-coordinates of point P, as shown in Figure 6.32.
Therefore, the electric field at P can only depend on the distance from the plane and has a direction either
toward the plane or away from the plane. That is, the electric field at Phas only a nonzero z-component.

Uniform charges in xy plane: E = FE(2)Z

where zis the distance from the plane and Z is the unit vector normal to the plane. Note that in this system,
E (z) = E(—z), although of course they point in opposite directions.
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Figure 6.32 The components of the electric field parallel to a plane of charges cancel out the two charges located symmetrically from the
field point P. Therefore, the field at any point is pointed vertically from the plane of charges. For any point Pand charge g1, we can always

find a gy with this effect.

Gaussian surface and flux calculation

In the present case, a convenient Gaussian surface is a box, since the expected electric field points in one
direction only. To keep the Gaussian box symmetrical about the plane of charges, we take it to straddle the
plane of the charges, such that one face containing the field point Pis taken parallel to the plane of the charges.
In Figure 6.33, sides I and II of the Gaussian surface (the box) that are parallel to the infinite plane have been
shaded. They are the only surfaces that give rise to nonzero flux because the electric field and the area vectors
of the other faces are perpendicular to each other.
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Figure 6.33 A thin charged sheet and the Gaussian box for finding the electric field at the field point P. The normal to each face of the box

is from inside the box to outside. On two faces of the box, the electric fields are parallel to the area vectors, and on the other four faces, the

electric fields are perpendicular to the area vectors.

Let A be the area of the shaded surface on each side of the plane and Ep be the magnitude of the electric field
at point P. Since sides I and II are at the same distance from the plane, the electric field has the same
magnitude at points in these planes, although the directions of the electric field at these points in the two
planes are opposite to each other.

Magnitude atIor II: E(z) = Ep.

If the charge on the plane is positive, then the direction of the electric field and the area vectors are as shown in
Figure 6.33. Therefore, we find for the flux of electric field through the box

q):}[E’P-ﬁdA=EPA+EPA+0+0+0+0=2EPA 6.11
S

where the zeros are for the flux through the other sides of the box. Note that if the charge on the plane is
negative, the directions of electric field and area vectors for planes I and II are opposite to each other, and we
get a negative sign for the flux. According to Gauss’s law, the flux must equal gepc/€q. From Figure 6.33, we see
that the charges inside the volume enclosed by the Gaussian box reside on an area A of the xy-plane. Hence,

Genc = 00 A. 6.12



Using the equations for the flux and enclosed charge in Gauss’s law, we can immediately determine the electric
field at a point at height z from a uniformly charged plane in the xy-plane:
= 0'0 ~
Ep = —n.
P 280
The direction of the field depends on the sign of the charge on the plane and the side of the plane where the
field point Pis located. Note that above the plane, i = +Z, while below the plane, h = —Z.

You may be surprised to note that the electric field does not actually depend on the distance from the plane;
this is an effect of the assumption that the plane is infinite. In practical terms, the result given above is still a
useful approximation for finite planes near the center.

6.4 Conductors in Electrostatic Equilibrium

Learning Objectives
By the end of this section, you will be able to:
e Describe the electric field within a conductor at equilibrium
e Describe the electric field immediately outside the surface of a charged conductor at equilibrium
e Explain why if the field is not as described in the first two objectives, the conductor is not at equilibrium

So far, we have generally been working with charges occupying a volume within an insulator. We now study
what happens when free charges are placed on a conductor. Generally, in the presence of a (generally external)
electric field, the free charge in a conductor redistributes and very quickly reaches electrostatic equilibrium.
The resulting charge distribution and its electric field have many interesting properties, which we can
investigate with the help of Gauss’s law and the concept of electric potential.

The Electric Field inside a Conductor Vanishes

If an electric field is present inside a conductor, it exerts forces on the free electrons (also called conduction
electrons), which are electrons in the material that are not bound to an atom. These free electrons then
accelerate. However, moving charges by definition means nonstatic conditions, contrary to our assumption.
Therefore, when electrostatic equilibrium is reached, the charge is distributed in such a way that the electric
field inside the conductor vanishes.

If you place a piece of a metal near a positive charge, the free electrons in the metal are attracted to the
external positive charge and migrate freely toward that region. The region the electrons move to then has an
excess of electrons over the protons in the atoms and the region from where the electrons have migrated has
more protons than electrons. Consequently, the metal develops a negative region near the charge and a
positive region at the far end (Figure 6.34). As we saw in the preceding chapter, this separation of equal
magnitude and opposite type of electric charge is called polarization. If you remove the external charge, the
electrons migrate back and neutralize the positive region.

L +
(4 A- +B
q - +
-0, +0g

Figure 6.34 Polarization of a metallic sphere by an external point charge +4. The near side of the metal has an opposite surface charge
compared to the far side of the metal. The sphere is said to be polarized. When you remove the external charge, the polarization of the

metal also disappears.

The polarization of the metal happens only in the presence of external charges. You can think of this in terms
of electric fields. The external charge creates an external electric field. When the metal is placed in the region
of this electric field, the electrons and protons of the metal experience electric forces due to this external



electric field, but only the conduction electrons are free to move in the metal over macroscopic distances. The
movement of the conduction electrons leads to the polarization, which creates an induced electric field in
addition to the external electric field (Figure 6.35). The net electric field is a vector sum of the fields of +g and
the surface charge densities —64 and +og. This means that the net field inside the conductor is different from
the field outside the conductor.
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Figure 6.35 Inthe presence of an external charge g, the charges in a metal redistribute. The electric field at any point has three

contributions, from +g and the induced charges —c 4 and +ocg. Note that the surface charge distribution will not be uniform in this case.

The redistribution of charges is such that the sum of the three contributions at any point Pinside the
conductor is

> > > - >
Ep =Eq +Eg+E 4 =0.

Now, thanks to Gauss’s law, we know that there is no net charge enclosed by a Gaussian surface that is solely
within the volume of the conductor at equilibrium. That is, genc = 0 and hence

- >
Epet = 0 (at points inside a conductor). 6.13

Charge on a Conductor

An interesting property of a conductor in static equilibrium is that extra charges on the conductor end up on
the outer surface of the conductor, regardless of where they originate. Figure 6.36 illustrates a system in which
we bring an external positive charge inside the cavity of a metal and then touch it to the inside surface.
Initially, the inside surface of the cavity is negatively charged and the outside surface of the conductor is
positively charged. When we touch the inside surface of the cavity, the induced charge is neutralized, leaving
the outside surface and the whole metal charged with a net positive charge.

@) N Touch inside cavity

Conductor Conductor
+ +

+ + + +

Figure 6.36 Electric charges on a conductor migrate to the outside surface no matter where you put them initially.

To see why this happens, note that the Gaussian surface in Figure 6.37 (the dashed line) follows the contour of
the actual surface of the conductor and is located an infinitesimal distance within it. Since E = 0 everywhere

inside a conductor,
N
}{ E -ndA =0.
N

Thus, from Gauss’s law, there is no net charge inside the Gaussian surface. But the Gaussian surface lies just



below the actual surface of the conductor; consequently, there is no net charge inside the conductor. Any
excess charge must lie on its surface.

Figure 6.37 The dashed line represents a Gaussian surface that is just beneath the actual surface of the conductor.

This particular property of conductors is the basis for an extremely accurate method developed by Plimpton
and Lawton in 1936 to verify Gauss’s law and, correspondingly, Coulomb’s law. A sketch of their apparatus is
shown in Figure 6.38. Two spherical shells are connected to one another through an electrometer E, a device
that can detect a very slight amount of charge flowing from one shell to the other. When switch S is thrown to
the left, charge is placed on the outer shell by the battery B. Will charge flow through the electrometer to the
inner shell?

No. Doing so would mean a violation of Gauss’s law. Plimpton and Lawton did not detect any flow and, knowing
the sensitivity of their electrometer, concluded that if the radial dependence in Coulomb’s law were l/r(2+5), 1)
would be less than 2 X 10~21. More recent measurements place § atless than 3 X 10~162
that the validity of Coulomb’s law seems indisputable.

Mirror for viewing
/ the electrometer

Two concentric
conducting spheres

, anumber so small

Figure 6.38 A representation of the apparatus used by Plimpton and Lawton. Any transfer of charge between the spheres is detected by

1 S.Plimpton and W. Lawton. 1936. “A Very Accurate Test of Coulomb’s Law of Force between Charges.” Physical Review 50, No. 11:
1066, doi:10.1103/PhysRev.50.1066

2 E.Williams, J. Faller, and H. Hill. 1971. “New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest
Mass.” Physical Review Letters 26 , No. 12: 721, doi:10.1103/PhysRevLett.26.721



the electrometer E.

The Electric Field at the Surface of a Conductor

If the electric field had a component parallel to the surface of a conductor, free charges on the surface would
move, a situation contrary to the assumption of electrostatic equilibrium. Therefore, the electric field is always
perpendicular to the surface of a conductor.

At any point just above the surface of a conductor, the surface charge density ¢ and the magnitude of the
electric field E are related by

E=—.
€0 6.14

To see this, consider an infinitesimally small Gaussian cylinder that surrounds a point on the surface of the
conductor, as in Figure 6.39. The cylinder has one end face inside and one end face outside the surface. The
height and cross-sectional area of the cylinder are 6 and A A, respectively. The cylinder’s sides are
perpendicular to the surface of the conductor, and its end faces are parallel to the surface. Because the cylinder
is infinitesimally small, the charge density o is essentially constant over the surface enclosed, so the total
charge inside the Gaussian cylinder is cA A. Now E is perpendicular to the surface of the conductor outside the
conductor and vanishes within it, because otherwise, the charges would accelerate, and we would not be in
equilibrium. Electric flux therefore crosses only the outer end face of the Gaussian surface and may be written
as EAA, since the cylinder is assumed to be small enough that E is approximately constant over that area.
From Gauss’ law,

AA
Eaa =222
€0
Thus,
E=2.
€0
E
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Figure 6.39 An infinitesimally small cylindrical Gaussian surface surrounds point P, which is on the surface of the conductor. The field I_i is

perpendicular to the surface of the conductor outside the conductor and vanishes within it.

@ EXAMPLE 6.9

Electric Field of a Conducting Plate

The infinite conducting plate in Figure 6.40 has a uniform surface charge density 6. Use Gauss’ law to find the
electric field outside the plate. Compare this result with that previously calculated directly.
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Figure 6.40 A side view of an infinite conducting plate and Gaussian cylinder with cross-sectional area A.

Strategy
For this case, we use a cylindrical Gaussian surface, a side view of which is shown.

Solution
The flux calculation is similar to that for an infinite sheet of charge from the previous chapter with one major

- -
exception: The left face of the Gaussian surface is inside the conductor where E = 0, so the total flux through
the Gaussian surface is EA rather than 2 EA. Then from Gauss’ law,

A
EA=22
&0
and the electric field outside the plate is
o
E=—.
&0

Significance
This result is in agreement with the result from the previous section, and consistent with the rule stated above.

@ EXAMPLE 6.10

Electric Field between Oppositely Charged Parallel Plates

Two large conducting plates carry equal and opposite charges, with a surface charge density ¢ of magnitude
6.81 x 1077 C/mz, as shown in Figure 6.41. The separation between the plates is / = 6.50 mm. What is the
electric field between the plates?
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Figure 6.41 The electric field between oppositely charged parallel plates. A test charge is released at the positive plate.

Strategy

Note that the electric field at the surface of one plate only depends on the charge on that plate. Thus, apply
E = o/g( with the given values.

Solution

The electric field is directed from the positive to the negative plate, as shown in the figure, and its magnitude is
given by
c 6.81 x 1077 C/m?

E="2 _ — 2=7.69><104N/c.
€0 885 x 10712C2/Nm

Significance
This formula is applicable to more than just a plate. Furthermore, two-plate systems will be important later.

@ EXAMPLE 6.11

A Conducting Sphere
The isolated conducting sphere (Figure 6.42) has a radius R and an excess charge g. What is the electric field
both inside and outside the sphere?
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Figure 6.42 Anisolated conducting sphere.

Strategy
The sphere is isolated, so its surface change distribution and the electric field of that distribution are

=
spherically symmetrical. We can therefore represent the field as E = E(r)T. To calculate E(1), we apply
Gauss’s law over a closed spherical surface S of radius rthat is concentric with the conducting sphere.

Solution

Since ris constant and i = ¥ on the sphere,
b d ~ 2
E -ndA = E(r) dA = E(r)4nr-.
S S

For r < R, Sis within the conductor, S0 genc = 0, and Gauss’s law gives

E(r)=0,
as expected inside a conductor. If r > R, Sencloses the conductor so gepnc = ¢. From Gauss’s law,
E(r)4mr® = L.
€0
The electric field of the sphere may therefore be written as
- -
=0 (r< R),
E =L 9% (>R
T dmeg 2 =

Significance

Notice that in the region r > R, the electric field due to a charge g placed on an isolated conducting sphere of
radius Ris identical to the electric field of a point charge g located at the center of the sphere. The difference
between the charged metal and a point charge occurs only at the space points inside the conductor. For a point
charge placed at the center of the sphere, the electric field is not zero at points of space occupied by the sphere,
but a conductor with the same amount of charge has a zero electric field at those points (Figure 6.43). However,
there is no distinction at the outside points in space where r > R, and we can replace the isolated charged
spherical conductor by a point charge at its center with impunity.
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Figure 6.43 Electric field of a positively charged metal sphere. The electric field inside is zero, and the electric field outside is same as the

electric field of a point charge at the center, although the charge on the metal sphere is at the surface.

CHECK YOUR UNDERSTANDING 6.6

How will the system above change if there are charged objects external to the sphere?

For a conductor with a cavity, if we put a charge +¢ inside the cavity, then the charge separation takes place in
the conductor, with —g amount of charge on the inside surface and a +¢ amount of charge at the outside
surface (Figure 6.44(a)). For the same conductor with a charge +q outside it, there is no excess charge on the
inside surface; both the positive and negative induced charges reside on the outside surface (Figure 6.44(b)).

" / Metal Cavity Metal

+ -
+ + b .
— . + _—
E=0 -(, =— Cavity +E=0 -
— +
= + _ q
+ + I B
+ -
+
+q
(@) (b)

Figure 6.44 (a) A charge inside a cavity in a metal. The distribution of charges at the outer surface does not depend on how the charges
are distributed at the inner surface, since the E-field inside the body of the metal is zero. That magnitude of the charge on the outer surface
does depend on the magnitude of the charge inside, however. (b) A charge outside a conductor containing an inner cavity. The cavity

remains free of charge. The polarization of charges on the conductor happens at the surface.

If a conductor has two cavities, one of them having a charge +q, inside it and the other a charge —qj, the
polarization of the conductor results in —q, on the inside surface of the cavity a, +¢g; on the inside surface of
the cavity b, and g, — qp on the outside surface (Figure 6.45). The charges on the surfaces may not be
uniformly spread out; their spread depends upon the geometry. The only rule obeyed is that when the
equilibrium has been reached, the charge distribution in a conductor is such that the electric field by the
charge distribution in the conductor cancels the electric field of the external charges at all space points inside
the body of the conductor.
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Figure 6.45 The charges induced by two equal and opposite charges in two separate cavities of a conductor. If the net charge on the

cavity is nonzero, the external surface becomes charged to the amount of the net charge.



CHAPTER REVIEW
Key Terms

area vector vector with magnitude equal to the
area of a surface and direction perpendicular to
the surface

cylindrical symmetry system only varies with
distance from the axis, not direction

electric flux dot product of the electric field and
the area through which it is passing

flux quantity of something passing through a given
area

free electrons also called conduction electrons,

Key Equations

Definition of electric flux, for uniform electric field

Electric flux through an open surface

Electric flux through a closed surface

Gauss’s law

Gauss’s Law for systems with symmetry

The magnitude of the electric field just outside the surface

of a conductor

Summary
6.1 Electric Flux

» The electric flux through a surface is
proportional to the number of field lines
crossing that surface. Note that this means the
magnitude is proportional to the portion of the
field perpendicular to the area.

« The electric flux is obtained by evaluating the
surface integral
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II):}{E-ﬁdA:}{ E - dA,
S S

where the notation used here is for a closed
surface S.

6.2 Explaining Gauss’s Law

« Gauss’s law relates the electric flux through a
closed surface to the net charge within that

these are the electrons in a conductor that are not
bound to any particular atom, and hence are free
to move around

Gaussian surface any enclosed (usually
imaginary) surface

planar symmetry system only varies with distance
from a plane

spherical symmetry system only varies with the
distance from the origin, not in direction
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where genc is the total charge inside the
Gaussian surface S.

« All surfaces that include the same amount of
charge have the same number of field lines
crossing it, regardless of the shape or size of the
surface, as long as the surfaces enclose the
same amount of charge.

6.3 Applying Gauss’s Law

« For a charge distribution with certain spatial
symmetries (spherical, cylindrical, and planar),
we can find a Gaussian surface over which

_) N .
E -n = E, where Eis constant over the surface.




The electric field is then determined with
Gauss’s law.

For spherical symmetry, the Gaussian surface is
also a sphere, and Gauss’s law simplifies to
47r’E = %.

For cylindrical symmetry, we use a cylindrical
Gaussian surface, and find that Gauss’s law

simplifies to 2zrLE = %.

For planar symmetry, a convenient Gaussian
surface is a box penetrating the plane, with two
faces parallel to the plane and the remainder

Conceptual Questions
6.1 Electric Flux

1.

Discuss how to orient a planar surface of area A
in a uniform electric field of magnitude E to
obtain (a) the maximum flux and (b) the
minimum flux through the area.

What are the maximum and minimum values of
the flux in the preceding question?

The net electric flux crossing a closed surface is
always zero. True or false?

The net electric flux crossing an open surface is
never zero. True or false?

6.2 Explaining Gauss’s Law

5.

10.

11.

12.

Two concentric spherical surfaces enclose a
point charge g. The radius of the outer sphere is
twice that of the inner one. Compare the electric
fluxes crossing the two surfaces.

Compare the electric flux through the surface of a
cube of side length a that has a charge g at its
center to the flux through a spherical surface of
radius a with a charge g at its center.

. (a) If the electric flux through a closed surface is

zero, is the electric field necessarily zero at all
points on the surface? (b) What is the net charge
inside the surface?
Discuss how Gauss’s law would be affected if the
electric field of a point charge did not vary as
1/
Discuss the similarities and differences between
the gravitational field of a point mass m and the
electric field of a point charge q.
Discuss whether Gauss’s law can be applied to
other forces, and if so, which ones.

Is the term E) in Gauss’s law the electric field
produced by just the charge inside the Gaussian
surface?

Reformulate Gauss’s law by choosing the unit

perpendicular, resulting in Gauss’s law being

_ 4
2AE_:—3°.

6.4 Conductors in Electrostatic Equilibrium

The electric field inside a conductor vanishes.
Any excess charge placed on a conductor
resides entirely on the surface of the conductor.
The electric field is perpendicular to the surface
of a conductor everywhere on that surface.

The magnitude of the electric field just above

the surface of a conductor is given by E = %.

normal of the Gaussian surface to be the one
directed inward.

6.3 Applying Gauss’s Law

13.

14.

15.

Would Gauss’s law be helpful for determining
the electric field of two equal but opposite
charges a fixed distance apart?

Discuss the role that symmetry plays in the
application of Gauss’s law. Give examples of
continuous charge distributions in which
Gauss’s law is useful and not useful in
determining the electric field.

Discuss the restrictions on the Gaussian surface
used to discuss planar symmetry. For example,
is its length important? Does the cross-section
have to be square? Must the end faces be on
opposite sides of the sheet?

6.4 Conductors in Electrostatic Equilibrium

16.
17.

18.

Is the electric field inside a metal always zero?
Under electrostatic conditions, the excess
charge on a conductor resides on its surface.
Does this mean that all the conduction electrons
in a conductor are on the surface?

A charge g is placed in the cavity of a conductor
as shown below. Will a charge outside the
conductor experience an electric field due to the
presence of g?



Problems
6.1 Electric Flux

20.

21.

22.

23.

24.

25.

A uniform electric field of magnitude

1.1 x 10* N/Cis perpendicular to a square
sheet with sides 2.0 m long. What is the electric
flux through the sheet?

Calculate the flux through the sheet of the
previous problem if the plane of the sheet is at
an angle of 60° to the field. Find the flux for both
directions of the unit normal to the sheet.

Find the electric flux through a rectangular area
3cm X 2cm between two parallel plates where
there is a constant electric field of 30 N/C for the
following orientations of the area: (a) parallel to
the plates, (b) perpendicular to the plates, and
(c) the normal to the area making a 30° angle
with the direction of the electric field. Note that
this angle can also be given as 180° + 30°.

The electric flux through a square-shaped area
of side 5 cm near a large charged sheet is found
tobe 3 x 107> N - m2/C when the area is
parallel to the plate. Find the charge density on
the sheet.

Two large rectangular aluminum plates of area
150 cm? face each other with a separation of 3
mm between them. The plates are charged with
equal amount of opposite charges, +20 uC. The
charges on the plates face each other. Find the
flux through a circle of radius 3 cm between the
plates when the normal to the circle makes an
angle of 5° with a line perpendicular to the
plates. Note that this angle can also be given as
180° + 5°.

A square surface of area 2 cm? is in a space of
uniform electric field of magnitude 103 N/C.
The amount of flux through it depends on how

19.

27.

28.

29.

The conductor in the preceding figure has an
excess charge of —5.0 uC. If a 2.0-uC point
charge is placed in the cavity, what is the net
charge on the surface of the cavity and on the
outer surface of the conductor?

the square is oriented relative to the direction of
the electric field. Find the electric flux through
the square, when the normal to it makes the
following angles with electric field: (a) 30°, (b)
90°, and (c) 0°. Note that these angles can also
be given as 180° + 6.

. Avector field is pointed along the z-axis,

-
V=

23‘_ 5 Z. (a) Find the flux of the vector field
x“+y

through a rectangle in the xy-plane between
a< x<bandc < y<d. (b)Dothe same
through a rectangle in the yz-plane between

a < z<bandc < y<d.(Leave your answer as
an integral.)

Consider the uniform electric field
E=4.07+3.0K x 103 N/C. What is its
electric flux through a circular area of radius
2.0 m that lies in the xy-plane?

Repeat the previous problem, given that the
circular area is (a) in the yz-plane and (b) 45°
above the xy-plane.

An infinite charged wire with charge per unit
length 4 lies along the central axis of a
cylindrical surface of radius rand length 1. What
is the flux through the surface due to the
electric field of the charged wire?

6.2 Explaining Gauss’s Law

30.

Determine the electric flux through each closed

surface where the cross-section inside the surface is

shown below.
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31. Find the electric flux through the closed surface
whose cross-sections are shown below. o
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32. Apoint charge qis located at the center of a
cube whose sides are of length a. If there are no
other charges in this system, what is the electric
flux through one face of the cube?

33. Apoint charge of 10 uC is at an unspecified
location inside a cube of side 2 cm. Find the net
electric flux though the surfaces of the cube.

Access for free at openstax.org.




34.

35.

36.

37.

38.

39.

40.

Anetfluxof 1.0 x 10* N-m2/C passes inward
through the surface of a sphere of radius 5 cm.
(a) How much charge is inside the sphere? (b)
How precisely can we determine the location of
the charge from this information?

A charge q is placed at one of the corners of a
cube of side a, as shown below. Find the
magnitude of the electric flux through the

shaded face due to g. Assume g > 0.
a

q

The electric flux through a cubical box 8.0 cm
onasideis 1.2 x 10° N - m2/C. What is the
total charge enclosed by the box?

The electric flux through a spherical surface is
4.0 x 10* N - m?/C. What is the net charge
enclosed by the surface?

A cube whose sides are of length dis placed in a
uniform electric field of magnitude

E =4.0 x 10° N/C so that the field is
perpendicular to two opposite faces of the cube.
What is the net flux through the cube?

Repeat the previous problem, assuming that the
electric field is directed along a body diagonal of
the cube.

A total charge 5.0 x 1070 C is distributed
uniformly throughout a cubical volume whose
edges are 8.0 cm long. (a) What is the charge
density in the cube? (b) What is the electric flux
through a cube with 12.0-cm edges that is
concentric with the charge distribution? (c) Do
the same calculation for cubes whose edges are
10.0 cm long and 5.0 cm long. (d) What is the
electric flux through a spherical surface of
radius 3.0 cm that is also concentric with the
charge distribution?

6.3 Applying Gauss’s Law

41.

42.

Recall that in the example of a uniform charged
sphere, pg = O/ (%HR3) . Rewrite the answers
in terms of the total charge Q on the sphere.
Suppose that the charge density of the spherical
charge distribution shown in Figure 6.23 is

p(r) = por/R for r £ R and zero forr > R.

43.

44.

45.

46.

47.

48.

49.

50.

Obtain expressions for the electric field both
inside and outside the distribution.

A very long, thin wire has a uniform linear
charge density of 50 C/m. What is the electric
field at a distance 2.0 cm from the wire?

A charge of —30 uC is distributed uniformly
throughout a spherical volume of radius 10.0
cm. Determine the electric field due to this
charge at a distance of (a) 2.0 cm, (b) 5.0 cm,
and (c) 20.0 cm from the center of the sphere.
Repeat your calculations for the preceding
problem, given that the charge is distributed
uniformly over the surface of a spherical
conductor of radius 10.0 cm.

A total charge Qs distributed uniformly
throughout a spherical shell of inner and outer
radii 7y and r;, respectively. Show that the
electric field due to the charge is

- >
E=0 (r<ry);
3 3

=, r—=r N

E= QZ( 3 13>r (ri £r<m);
dreqyr rp2—rq

= ~

E=—2 7% r > r).
dreqr

When a charge is placed on a metal sphere, it
ends up in equilibrium at the outer surface. Use
this information to determine the electric field
of +3.0 uC charge put on a 5.0-cm aluminum
spherical ball at the following two points in
space: (a) a point 1.0 cm from the center of the
ball (an inside point) and (b) a point 10 cm from
the center of the ball (an outside point).

Alarge sheet of charge has a uniform charge
density of 10 ﬂC/IIlz. What is the electric field
due to this charge at a point just above the
surface of the sheet?

Determine if approximate cylindrical symmetry
holds for the following situations. State why or
why not. (a) A 300-cm long copper rod of radius
1 cm is charged with +500 nC of charge and we
seek electric field at a point 5 cm from the
center of the rod. (b) A 10-cm long copper rod of
radius 1 cm is charged with +500 nC of charge
and we seek electric field at a point 5 cm from
the center of the rod. (¢c) A 150-cm wooden rod
is glued to a 150-cm plastic rod to make a
300-cm long rod, which is then painted with a
charged paint so that one obtains a uniform
charge density. The radius of each rod is 1 cm,
and we seek an electric field at a point that is 4
cm from the center of the rod. (d) Same rod as
(c), but we seek electric field at a point that is
500 cm from the center of the rod.

Along silver rod of radius 3 cm has a charge of




51.

52.

53.

54.

55.

—5 uC/cm on its surface. (a) Find the electric
field at a point 5 cm from the center of the rod
(an outside point). (b) Find the electric field at a
point 2 cm from the center of the rod (an inside
point).

The electric field at 2 cm from the center of long
copper rod of radius 1 cm has a magnitude 3 N/
C and directed outward from the axis of the rod.
(a) How much charge per unit length exists on
the copper rod? (b) What would be the electric
flux through a cube of side 5 cm situated such
that the rod passes through opposite sides of
the cube perpendicularly?

Along copper cylindrical shell of inner radius 2
cm and outer radius 3 cm surrounds
concentrically a charged long aluminum rod of
radius 1 cm with a charge density of 4 pC/m. All
charges on the aluminum rod reside at its
surface. The inner surface of the copper shell
has exactly opposite charge to that of the
aluminum rod while the outer surface of the
copper shell has the same charge as the
aluminum rod. Find the magnitude and
direction of the electric field at points that are at
the following distances from the center of the
aluminum rod: (a) 0.5 cm, (b) 1.5 cm, (c) 2.5 cm,
(d) 3.5 cm, and (e) 7 cm.

Charge is distributed uniformly with a density p
throughout an infinitely long cylindrical volume
of radius R. Show that the field of this charge
distribution is directed radially with respect to
the cylinder and that

_ _pr .
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Charge is distributed throughout a very long
cylindrical volume of radius R such that the
charge density increases with the distance r
from the central axis of the cylinder according
to p = ar, where « is a constant. Show that the
field of this charge distribution is directed
radially with respect to the cylinder and that

2

— ar .
= 3eg (r £ R);
_ atR3

G (r= R).

The electric field 10.0 cm from the surface of a
copper ball of radius 5.0 cm is directed toward

56.

57.

58.

59.

the ball’s center and has magnitude

4.0 x 102 N/C. How much charge is on the
surface of the ball?

Charge is distributed throughout a spherical
shell of inner radius r; and outer radius rp with
a volume density given by p = pgry/r, where pg
is a constant. Determine the electric field due to
this charge as a function of r, the distance from
the center of the shell.

Charge is distributed throughout a spherical
volume of radius R with a density p = ar?,
where «a is a constant. Determine the electric
field due to the charge at points both inside and
outside the sphere.

Consider a uranium nucleus to be sphere of
radius R = 7.4 x 10~ mwitha charge of 92¢e
distributed uniformly throughout its volume. (a)
What is the electric force exerted on an electron
whenitis 3.0 X 10~!9m from the center of the
nucleus? (b) What is the acceleration of the
electron at this point?

The volume charge density of a spherical charge
distribution is given by p(r) = pge™*", where pg
and a are constants. What is the electric field
produced by this charge distribution?

6.4 Conductors in Electrostatic Equilibrium

60.

61.

An uncharged conductor with an internal cavity
is shown in the following figure. Use the closed
surface Salong with Gauss’ law to show that
when a charge g is placed in the cavity a total
charge —q is induced on the inner surface of the
conductor. What is the charge on the outer
surface of the conductor?

" / Metal

+ v\
A i B
E=0 <L) <+ ——Cavily
+ B +
+
+q

Figure 6.46 A charge inside a cavity of a metal. Charges at
the outer surface do not depend on how the charges are
distributed at the inner surface since E field inside the body

of the metal is zero.

An uncharged spherical conductor S of radius R
has two spherical cavities A and B of radii aand
b, respectively as shown below. Two point

charges +q, and +g; are placed at the center of



62.

63.

64.

65.

the two cavities by using non-conducting
supports. In addition, a point charge +qq is
placed outside at a distance rfrom the center of
the sphere. (a) Draw approximate charge
distributions in the metal although metal
sphere has no net charge. (b) Draw electric field
lines. Draw enough lines to represent all
distinctly different places.

ap 9, r do

A positive point charge is placed at the angle
bisector of two uncharged plane conductors
that make an angle of 45°. See below. Draw the
electric field lines.

Along cylinder of copper of radius 3 cm is
charged so that it has a uniform charge per unit
length on its surface of 3 C/m. (a) Find the
electric field inside and outside the cylinder. (b)
Draw electric field lines in a plane
perpendicular to the rod.

An aluminum spherical ball of radius 4 cm is
charged with 5 uC of charge. A copper spherical
shell of inner radius 6 cm and outer radius 8 cm
surrounds it. A total charge of —8 uC is put on
the copper shell. (a) Find the electric field at all
points in space, including points inside the
aluminum and copper shell when copper shell
and aluminum sphere are concentric. (b) Find
the electric field at all points in space, including
points inside the aluminum and copper shell
when the centers of copper shell and aluminum
sphere are 1 cm apart.

Along cylinder of aluminum of radius R meters
is charged so that it has a uniform charge per
unit length on its surface of A. (a) Find the
electric field inside and outside the cylinder. (b)
Plot electric field as a function of distance from

66.

67.

68.

69.

70.

71.

the center of the rod.

At the surface of any conductor in electrostatic
equilibrium, E = o/g(. Show that this equation
is consistent with the fact that E = kq/r2 at the
surface of a spherical conductor.

Two parallel plates 10 cm on a side are given
equal and opposite charges of magnitude

5.0 x 107 C. The plates are 1.5 mm apart.
What is the electric field at the center of the
region between the plates?

Two parallel conducting plates, each of cross-
sectional area 400 cmz, are 2.0 cm apart and
uncharged. If 1.0 X 10'2 electrons are
transferred from one plate to the other, what are
(a) the charge density on each plate? (b) The
electric field between the plates?

The surface charge density on a long straight
metallic pipe is 0. What is the electric field
outside and inside the pipe? Assume the pipe

has a diameter of 2a.
o0

[es]

A point charge g = —5.0 X 10712 C is placed at
the center of a spherical conducting shell of
inner radius 3.5 cm and outer radius 4.0 cm.
The electric field just above the surface of the
conductor is directed radially outward and has
magnitude 8.0 N/C. (a) What is the charge
density on the inner surface of the shell? (b)
What is the charge density on the outer surface
of the shell? (c) What is the net charge on the
conductor?

A solid cylindrical conductor of radius a is
surrounded by a concentric cylindrical shell of
inner radius b. The solid cylinder and the shell




carry charges +Q and —Q, respectively.
Assuming that the length L of both conductors
is much greater than a or b, determine the

Additional Problems

72. Avector field I_*f (not necessarily an electric field;
- ~
note units) is given by E = 3x2k. Calculate

=, Py .
E - 1 da, where Sis the area shown below.
S
Assume that i = k.
ry

<

a ‘?—S

X
73. Repeat the preceding problem, with
> A ~
E = 2xi + 3x2k.
74. Acircular area Sis concentric with the origin,
has radius a, and lies in the yz-plane. Calculate
/ E-fidAfor E = 3220,
S
75. (a) Calculate the electric flux through the open
hemispherical surface due to the electric field

1_45 = Eoi(\ (see below). (b) If the hemisphere is
rotated by 90° around the x-axis, what is the

flux through it?
1 E = Ejk

z

X

76. Suppose that the electric field of an isolated
point charge were proportional to 1/r2*° rather
than 1/r2. Determine the flux that passes
through the surface of a sphere of radius R
centered at the charge. Would Gauss’s law
remain valid?

77.

78.

79.

electric field as a function of r, the distance from
the common central axis of the cylinders, for (a)
r<a,(b)a<r<b;and(c)r > b.

The electric field in a region is given by

I_i =al (b+ cx) f, where

a=200N-m/C,b =2.0m, and ¢ = 2.0. What is
the net charge enclosed by the shaded volume

shown below?
Z)

mi

1.5m

2.0m
1.0m

<V

X

Two equal and opposite charges of magnitude Q
are located on the x-axis at the points +a and —a,
as shown below. What is the net flux due to
these charges through a square surface of side
2athat lies in the yz-plane and is centered at
the origin? (Hint: Determine the flux due to each
charge separately, then use the principle of
superposition. You may be able to make a
symmetry argument.)

(]

A fellow student calculated the flux through the
square for the system in the preceding problem
and got 0. What went wrong?



80.

81.

82.

83.

A 10cm X 10 cm piece of aluminum foil of 0.1
mm thickness has a charge of 20 uC that
spreads on both wide side surfaces evenly. You
may ignore the charges on the thin sides of the
edges. (a) Find the charge density. (b) Find the
electric field 1 cm from the center, assuming
approximate planar symmetry.

Two 10cm X 10 cm pieces of aluminum foil of
thickness 0.1 mm face each other with a
separation of 5 mm. One of the foils has a
charge of +30 uC and the other has —30 uC. (a)
Find the charge density at all surfaces, i.e., on
those facing each other and those facing away.
(b) Find the electric field between the plates
near the center assuming planar symmetry.
Two large copper plates facing each other have
charge densities +4.0 C/m? on the surface
facing the other plate, and zero in between the
plates. Find the electric flux through a

3cm X 4 cmrectangular area between the
plates, as shown below, for the following
orientations of the area. (a) If the area is parallel
to the plates, and (b) if the area is tilted 8 = 30°
from the parallel direction. Note, this angle can
also be 8 = 180° + 30°.

The infinite slab between the planes defined by
z = —a/2 and z = a/2 contains a uniform
volume charge density p (see below). What is the
electric field produced by this charge
distribution, both inside and outside the
distribution?

o

84. Atotal charge Qis distributed uniformly

throughout a spherical volume that is centered
at O and has a radius R. Without disturbing the
charge remaining, charge is removed from the
spherical volume that is centered at O, (see
below). Show that the electric field everywhere
in the empty region is given by
o0

471'60 R3
where T is the displacement vector directed
from O; to O;.

. Anon-conducting spherical shell of inner

radius a; and outer radius b is uniformly
charged with charged density p; inside another
non-conducting spherical shell of inner radius
ap and outer radius b, that is also uniformly
charged with charge density p;. See below. Find
the electric field at space point P at a distance r
from the common center such that (@) r > by,
M)ay <r<by, ()b <r<ap,(d)

ap <r<bj,and(e)r < aj.




86.

Two non-conducting spheres of radii Ry and

R, are uniformly charged with charge densities
p1 and p,, respectively. They are separated at
center-to-center distance a (see below). Find the
electric field at point Plocated at a distance r
from the center of sphere 1 and is in the
direction 6 from the line joining the two spheres
assuming their charge densities are not affected
by the presence of the other sphere. (Hint: Work
one sphere at a time and use the superposition
principle.)

P

%,

joi]

RNK

89. Shown below are two concentric conducting

spherical shells of radii Ry and Ry, each of
finite thickness much less than either radius.
The inner and outer shell carry net charges ¢q;
and ¢, respectively, where both ¢q; and ¢, are
positive. What is the electric field for (a) r < Ry;
(b) Ry <r < Ry;and (c) r > Ry?(d) What is the
net charge on the inner surface of the inner
shell, the outer surface of the inner shell, the
inner surface of the outer shell, and the outer
surface of the outer shell?

87. Adisk of radius Ris cut in a non-conducting large
plate that is uniformly charged with charge density
o (coulomb per square meter). See below. Find the

88.

electric field at a height h above the center of the
disk. (h >> R,h << [orw). (Hint:Fill the hole
with +0.)

P

T
-

Concentric conducting spherical shells carry
charges Q and —Q, respectively (see below). The
inner shell has negligible thickness. Determine
the electric field for (a) ¥ < a; (b) a < r < b; (c)
b<r<cyand(d)r > c.

A point charge of g = 5.0 x 1078 Cis placed at
the center of an uncharged spherical
conducting shell of inner radius 6.0 cm and
outer radius 9.0 cm. Find the electric field at (a)
r=40cm, (b)r =8.0cm, and (c) r = 12.0 cm.
(d) What are the charges induced on the inner
and outer surfaces of the shell?



Challenge Problems

91. The Hubble Space Telescope can measure the 94,

energy flux from distant objects such as
supernovae and stars. Scientists then use this
data to calculate the energy emitted by that
object. Choose an interstellar object which
scientists have observed the flux at the Hubble
with (for example, Vegai), find the distance to
that object and the size of Hubble’s primary
mirror, and calculate the total energy flux. (Hint:
The Hubble intercepts only a small part of the
total flux.)

95.

92. Re-derive Gauss’s law for the gravitational field,
with g directed positively outward.

93. An infinite plate sheet of charge of surface charge
density o is shown below. What is the electric field at
a distance x from the sheet? Compare the result of
this calculation with that of worked out in the text.

+

E E
+ — —
+ .
+ +
+ +
-t
+ +
+ +
+
+

A spherical rubber balloon carries a total charge
Qdistributed uniformly over its surface. At

t = 0, the radius of the balloon is R. The balloon
is then slowly inflated until its radius reaches
2R at the time #. Determine the electric field
due to this charge as a function of time (a) at the
surface of the balloon, (b) at the surface of
radius R, and (c) at the surface of radius 2R.
Ignore any effect on the electric field due to the
material of the balloon and assume that the
radius increases uniformly with time.

Find the electric field of a large conducting plate
containing a net charge g. Let A be area of one
side of the plate and h the thickness of the plate
(see below). The charge on the metal plate will
distribute mostly on the two planar sides and
very little on the edges if the plate is thin.

1]

+ +
+ +

L NS ——

|E| = |EP| [, P
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AR i AR

+ + R
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3 http://adsabs.harvard.edu/abs/2004AJ....127.3508B




CHAPTER 7 .
Electric Potential
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Figure 7.1 The energy released in a lightning strike is an excellent illustration of the vast quantities of energy that
may be stored and released by an electric potential difference. In this chapter, we calculate just how much energy
can be released in a lightning strike and how this varies with the height of the clouds from the ground. (credit:
modification of work by Anthony Quintano)

Chapter Outline

7.1 Electric Potential Energy

7.2 Electric Potential and Potential Difference

7.3 Calculations of Electric Potential

7.4 Determining Field from Potential

7.5 Equipotential Surfaces and Conductors

7.6 Applications of Electrostatics

INTRODUCTION In Electric Charges and Fields, we just scratched the surface (or at least rubbed it) of
electrical phenomena. Two terms commonly used to describe electricity are its energy and voltage, which we
show in this chapter is directly related to the potential energy in a system.

We know, for example, that great amounts of electrical energy can be stored in batteries, are transmitted cross-
country via currents through power lines, and may jump from clouds to explode the sap of trees. In a similar
manner, at the molecular level, ions cross cell membranes and transfer information.



We also know about voltages associated with electricity. Batteries are typically a few volts, the outlets in your
home frequently produce 120 volts, and power lines can be as high as hundreds of thousands of volts. But
energy and voltage are not the same thing. A motorcycle battery, for example, is small and would not be very
successful in replacing a much larger car battery, yet each has the same voltage. In this chapter, we examine
the relationship between voltage and electrical energy, and begin to explore some of the many applications of
electricity.

7.1 Electric Potential Energy

Learning Objectives
By the end of this section, you will be able to:
e Define the work done by an electric force
e Define electric potential energy
e Apply work and potential energy in systems with electric charges

When a free positive charge g is accelerated by an electric field, it is given kinetic energy (Figure 7.2). The
process is analogous to an object being accelerated by a gravitational field, as if the charge were going down an
electrical hill where its electric potential energy is converted into kinetic energy, although of course the
sources of the forces are very different. Let us explore the work done on a charge q by the electric field in this
process, so that we may develop a definition of electric potential energy.
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Figure 7.2 A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases, potential energy decreases as

kinetic energy increases, — AU = AK. Work is done by a force, but since this force is conservative, we can write W =— AU.

The electrostatic or Coulomb force is conservative, which means that the work done on g is independent of the
path taken, as we will demonstrate later. This is exactly analogous to the gravitational force. When a force is
conservative, it is possible to define a potential energy associated with the force. It is usually easier to work
with the potential energy (because it depends only on position) than to calculate the work directly.

To show this explicitly, consider an electric charge +q fixed at the origin and move another charge +Q toward

—_ =
gin such a manner that, at each instant, the applied force F exactly balances the electric force F, on Q (Figure

—
7.3). The work done by the applied force F on the charge Q changes the potential energy of Q. We call this
potential energy the electrical potential energy of Q.

g, fixed F g—o—-Fc
c - F g Y -
o O o

Figure 7.3 Displacement of “test” charge Qin the presence of fixed “source” charge g.

—_
The work W7, done by the applied force F when the particle moves from P; to P, may be calculated by



L5 N
lez/ F -dl.
Py

- =
Since the applied force F balances the electric force F, on Q, the two forces have equal magnitude and
opposite directions. Therefore, the applied force is

where we have defined positive to be pointing away from the origin and ris the distance from the origin. The
directions of both the displacement and the applied force in the system in Figure 7.3 are parallel, and thus the
work done on the system is positive.

We use the letter Uto denote electric potential energy, which has units of joules (J). When a conservative force
does negative work, the system gains potential energy. When a conservative force does positive work, the
system loses potential energy, AU = —W . In the system in Figure 7.3, the Coulomb force acts in the opposite
direction to the displacement; therefore, the work is negative. However, we have increased the potential energy
in the two-charge system.

@ EXAMPLE 7.1

Kinetic Energy of a Charged Particle
A +3.0-nC charge Qis initially at rest a distance of 10 cm (r1) from a +5.0-nC charge q fixed at the origin
(Figure 7.4). Naturally, the Coulomb force accelerates Q away from g, eventually reaching 15 cm (rp).

g =+5.0nC Q:+3'DLE9

o o .

rp=10cm r,

15cm
Figure 7.4 The charge Qis repelled by g, thus having work done on it and gaining kinetic energy.

a. What is the work done by the electric field between r; and r,?
b. How much kinetic energy does Q have at r?

Strategy

Calculate the work with the usual definition. Since Q started from rest, this is the same as the kinetic energy.

Solution
Integrating force over distance, we obtain

rn r L)

Wi = [ F.di= K90 4= |-K217 _ ko[t + L

r2 r ) 8|
r1 r r

= (8.99 x 10° Nm?/C?) (5.0 x 107 C) (3.0 x 107 C) [;52= + 515

=45 x 10771.

This is also the value of the kinetic energy at r;.

Significance
Charge Qwas initially at rest; the electric field of g did work on Q, so now Q has kinetic energy equal to the
work done by the electric field.

CHECK YOUR UNDERSTANDING 7.1
If Q has a mass of 4.00 ug, what is the speed of Qat rp?



In this example, the work W done to accelerate a positive charge from rest is positive and results from a loss in
U, or a negative AU. A value for U can be found at any point by taking one point as a reference and calculating
the work needed to move a charge to the other point.

Electric Potential Energy

Work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a negative
AU. Mathematically,

W = —-AU. 7.1

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for
work done by a conservative force and gives added insight regarding energy and energy transformation
without the necessity of dealing with the force directly. It is much more common, for example, to use the
concept of electric potential energy than to deal with the Coulomb force directly in real-world applications.

-
In polar coordinates with g at the origin and Qlocated at r, the displacement element vector is dl = T dr and
thus the work becomes

21 . 1 1
Wir = kqO —zr-rdr=kqQ——kqQ—.
r r rp ri

Notice that this result only depends on the endpoints and is otherwise independent of the path taken. To
explore this further, compare path P, to P, with path P P3 P4 P, in Figure 7.5.

Figure 7.5 Two paths for displacement P; to P,. The work on segments P; P; and P4 P, are zero due to the electrical force being

perpendicular to the displacement along these paths. Therefore, work on paths P; P, and Py P Py P> are equal.

The segments P; P and Py P, are arcs of circles centered at g. Since the force on Q points either toward or
away from g, no work is done by a force balancing the electric force, because it is perpendicular to the
displacement along these arcs. Therefore, the only work done is along segment P3 P4, which is identical to
P P.

One implication of this work calculation is that if we were to go around the path P; P3 Py P, Py, the net work
would be zero (Figure 7.6). Recall that this is how we determine whether a force is conservative or not. Hence,

= -
because the electric force is related to the electric field by F = gE, the electric field is itself conservative. That

is,
- o
}Z{E-dl=0.

Note that Qis a constant.
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Figure 7.6 A closed path in an electric field. The net work around this path is zero.

Another implication is that we may define an electric potential energy. Recall that the work done by a
conservative force is also expressed as the difference in the potential energy corresponding to that force.
Therefore, the work Wit to bring a charge from a reference point to a point of interest may be written as

55
I’Vref=/ F-dl

Iref

and, by Equation 7.1, the difference in potential energy (U, — U} ) of the test charge Q between the two points
is

Therefore, we can write a general expression for the potential energy of two point charges (in spherical

coordinates):
"k kqO " 1 1
AU=—/ qZer=_[_LQ] =kqQ[———
r

r r I
'ref Fref ref

We may take the second term to be an arbitrary constant reference level, which serves as the zero reference:

qQ
U(r) = kT - Uref.

A convenient choice of reference that relies on our common sense is that when the two charges are infinitely
far apart, there is no interaction between them. (Recall the discussion of reference potential energy in
Potential Energy and Conservation of Energy.) Taking the potential energy of this state to be zero removes the
term U from the equation (just like when we say the ground is zero potential energy in a gravitational
potential energy problem), and the potential energy of Q when it is separated from g by a distance rassumes
the form

U(r) = kg <zer0 reference at r = 00) . 7.2
r

This formula is symmetrical with respect to g and Q, so it is best described as the potential energy of the two-
charge system.

@ EXAMPLE 7.2

Potential Energy of a Charged Particle

A +3.0-nC charge Qis initially at rest a distance of 10 cm (1) from a +5.0-nC charge q fixed at the origin
(Figure 7.7). Naturally, the Coulomb force accelerates Q away from g, eventually reaching 15 cm (7).



g =+5.0nC . +3‘0_’_nC E“"

o o .

rp,=10cm r,=15cm

Figure 7.7 The charge Qis repelled by g, thus having work done on it and losing potential energy.
What is the change in the potential energy of the two-charge system from ry to rp ?

Strategy
n o_
Calculate the potential energy with the definition given above: AU |y = — / F - dr. Since Qstarted from
1
rest, this is the same as the kinetic energy.

Solution
We have

r 2k kg0 "2
AU}, =—/ F’-d’r’:—/ qudr=—[—LQ] :kqQ[%—i]
r 7'1 r rl

"
1 r
= (8.99 x 10° Nm?/C?) (5.0 x 107 C) (3.0 x 107 C) [55= — 5707
=—45x 1071
Significance

The change in the potential energy is negative, as expected, and equal in magnitude to the change in kinetic
energy in this system. Recall from Example 7.1 that the change in kinetic energy was positive.

CHECK YOUR UNDERSTANDING 7.2

What is the potential energy of Q relative to the zero reference at infinity at 7, in the above example?

Due to Coulomb’s law, the forces due to multiple charges on a test charge Q superimpose; they may be
calculated individually and then added. This implies that the work integrals and hence the resulting potential
energies exhibit the same behavior. To demonstrate this, we consider an example of assembling a system of
four charges.

@ EXAMPLE 7.3

Assembling Four Positive Charges
Find the amount of work an external agent must do in assembling four charges +2.0 uC,+3.0 uC, +4.0 uC,
and +5.0 uC at the vertices of a square of side 1.0 c¢m, starting each charge from infinity (Figure 7.8).

5.0 uC 4.0 uC
[+ Q
1.0cm
Q Q

20uc  1OCM  35,.c

Figure 7.8 How much work is needed to assemble this charge configuration?



Strategy

We bring in the charges one at a time, giving them starting locations at infinity and calculating the work to
bring them in from infinity to their final location. We do this in order of increasing charge.

Solution
Step 1. First bring the +2.0-uC charge to the origin. Since there are no other charges at a finite distance from
this charge yet, no work is done in bringing it from infinity,

Wi =0.

Step 2. While keeping the +2.0-uC charge fixed at the origin, bring the +3.0-uC charge to

(x,y,2z) = (1.0cm, 0, 0) (Figure 7.9). Now, the applied force must do work against the force exerted by the
+2.0-uC charge fixed at the origin. The work done equals the change in the potential energy of the +3.0-uC
charge:

a9
r12

W, =k =547

9N-m2) (2.0 x 1070 C) (3.0 x 107° C)

={9.0 x 10
< C? 1.0 x 102 m

Q 4]
20puc  LOCM  344c
Figure 7.9 Step 2. Work W, to bring the 4+3.0-uC charge from infinity.

Step 3. While keeping the charges of +2.0 uC and +3.0 uC fixed in their places, bring in the +4.0-uC charge to
(x,y,z) =(1.0cm, 1.0 cm, 0) (Figure 7.10). The work done in this step is

q1493 q243
Wy = kU8B 029
3 3 3

(3.0 x 10~6 c) (4.0 x 10~6 c)

2y [ (20x 1076 c)(40x 1076 C)
= . 1 9 N'm ) = 1 ° °
<9OX 0 c? [ V2x1072 m * 1.0x 1072 m 597
4.0 uC
Q
1.0cm
Q o

20uc  LOCM  30,c
Figure 7.10 Step 3. The work W73 to bring the +4.0-uC charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the +5.0-uC charge to
(x,y,z)=(0, 1.0cm, 0) (Figure 7.11). The work done here is



_ 1 3
Wi = ka [’14 tog +a]’
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5.0 uC 4.0 uC
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Figure 7.11  Step 4. The work W} to bring the +5.0-uC charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work
in bringing each charge from infinity to its final position:

Wr=W1+Wo+W3+W; =04+54]+1591+365)=57.81.

Significance

The work on each charge depends only on its pairwise interactions with the other charges. No more
complicated interactions need to be considered; the work on the third charge only depends on its interaction
with the first and second charges, the interaction between the first and second charge does not affect the third.

CHECK YOUR UNDERSTANDING 7.3

Is the electrical potential energy of two point charges positive or negative if the charges are of the same sign?
Opposite signs? How does this relate to the work necessary to bring the charges into proximity from infinity?

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or
negative, and negative if the two charges are of opposite types. This makes sense if you think of the change in
the potential energy AU as you bring the two charges closer or move them farther apart. Depending on the
relative types of charges, you may have to work on the system or the system would do work on you, that is, your
work is either positive or negative. If you have to do positive work on the system (actually push the charges
closer), then the energy of the system should increase. If you bring two positive charges or two negative
charges closer, you have to do positive work on the system, which raises their potential energy. Since potential
energy is proportional to 1/r, the potential energy goes up when r goes down between two positive or two
negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the
system (the charges are pulling you), which means that you take energy away from the system. This reduces
the potential energy. Since potential energy is negative in the case of a positive and a negative charge pair, the
increase in 1/r makes the potential energy more negative, which is the same as a reduction in potential energy.

The result from Example 7.1 may be extended to systems with any arbitrary number of charges. In this case, it
is most convenient to write the formula as

N N
k iqj
VVH'“N_EZZ Jforz;éj 7.3
i



The factor of 1/2 accounts for adding each pair of charges twice.

7.2 Electric Potential and Potential Difference

Learning Objectives
By the end of this section, you will be able to:
e Define electric potential, voltage, and potential difference
e Define the electron-volt
e Calculate electric potential and potential difference from potential energy and electric field
e Describe systems in which the electron-volt is a useful unit
e Apply conservation of energy to electric systems

Recall that earlier we defined electric field to be a quantity independent of the test charge in a given system,
which would nonetheless allow us to calculate the force that would result on an arbitrary test charge. (The
default assumption in the absence of other information is that the test charge is positive.) We briefly defined a
field for gravity, but gravity is always attractive, whereas the electric force can be either attractive or repulsive.
Therefore, although potential energy is perfectly adequate in a gravitational system, it is convenient to define a
quantity that allows us to calculate the work on a charge independent of the magnitude of the charge.
Calculating the work directly may be difficult, since W = i‘) . (_i and the direction and magnitude of i‘) can be
complex for multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that because
f*’) = qﬁ, the work, and hence AU, is proportional to the test charge q. To have a physical quantity that is
independent of test charge, we define electric potential V (or simply potential, since electric is understood) to
be the potential energy per unit charge:

Electric Potential

The electric potential energy per unit charge is

V=

U
—. 7.4
q

Since Uis proportional to g, the dependence on g cancels. Thus, Vdoes not depend on g. The change in
potential energy AU is crucial, so we are concerned with the difference in potential or potential difference AV

between two points, where
AU
AV =Vp -V = —.
q

Electric Potential Difference

The electric potential difference between points A and B, Vg — V4, is defined to be the change in
potential energy of a charge g moved from A to B, divided by the charge. Units of potential difference are
joules per coulomb, given the name volt (V) after Alessandro Volta.

1v=1J/IC

The familiar term voltage is the common name for electric potential difference. Keep in mind that whenever a
voltage is quoted, it is understood to be the potential difference between two points. For example, every battery
has two terminals, and its voltage is the potential difference between them. More fundamentally, the point you
choose to be zero volts is arbitrary. This is analogous to the fact that gravitational potential energy has an
arbitrary zero, such as sea level or perhaps a lecture hall floor. It is worthwhile to emphasize the distinction
between potential difference and electrical potential energy.



Potential Difference and Electrical Potential Energy

The relationship between potential difference (or voltage) and electrical potential energy is given by

AU
AV = — or AU = ¢gAV. 7.5
q

Voltage is not the same as energy. Voltage is the energy per unit charge. Thus, a motorcycle battery and a car
battery can both have the same voltage (more precisely, the same potential difference between battery
terminals), yet one stores much more energy than the other because AU = gAV'. The car battery can move
more charge than the motorcycle battery, although both are 12-V batteries.

@ EXAMPLE 7.4

Calculating Energy

You have a 12.0-V motorcycle battery that can move 5000 C of charge, and a 12.0-V car battery that can move
60,000 C of charge. How much energy does each deliver? (Assume that the numerical value of each charge is
accurate to three significant figures.)

Strategy

To say we have a 12.0-V battery means that its terminals have a 12.0-V potential difference. When such a
battery moves charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a
change in potential energy equal to AU = gAV'. To find the energy output, we multiply the charge moved by
the potential difference.

Solution

For the motorcycle battery, ¢ = 5000 C and AV = 12.0 V. The total energy delivered by the motorcycle battery
is

AUcycle = (5000 C)(12.0 V) = (5000 C)(12.0J/C) = 6.00 X 104 7.
Similarly, for the car battery, ¢ = 60,000 C and
AUqyr = (60,000 C)(12.0 V) = 7.20 x 10° J.

Significance

Voltage and energy are related, but they are not the same thing. The voltages of the batteries are identical, but
the energy supplied by each is quite different. A car battery has a much larger engine to start than a
motorcycle. Note also that as a battery is discharged, some of its energy is used internally and its terminal
voltage drops, such as when headlights dim because of a depleted car battery. The energy supplied by the
battery is still calculated as in this example, but not all of the energy is available for external use.

CHECK YOUR UNDERSTANDING 7.4

How much energy does a 1.5-V AAA battery have that can move 100 C?

Note that the energies calculated in the previous example are absolute values. The change in potential energy
for the battery is negative, since it loses energy. These batteries, like many electrical systems, actually move
negative charge—electrons in particular. The batteries repel electrons from their negative terminals (A)
through whatever circuitry is involved and attract them to their positive terminals (B), as shown in Figure 7.12.
The change in potential is AV = Vg — V4 = +12 V and the charge q is negative, so that AU = gAV is
negative, meaning the potential energy of the battery has decreased when g has moved from A to B.



Headlight

Figure 7.12 A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate
combinations of chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is repelled
by it and attracted to the excess positive charge on the other terminal. In terms of potential, the positive terminal is at a higher voltage than

the negative terminal. Inside the battery, both positive and negative charges move.

@ EXAMPLE 7.5

How Many Electrons Move through a Headlight Each Second?
When a 12.0-V car battery powers a single 30.0-W headlight, how many electrons pass through it each second?

Strategy

To find the number of electrons, we must first find the charge that moves in 1.00 s. The charge moved is related
to voltage and energy through the equations AU = gAV'. A 30.0-W lamp uses 30.0 joules per second. Since the
battery loses energy, we have AU = —30 7] and, since the electrons are going from the negative terminal to the
positive, we see that AV = +12.0 V.
Solution
To find the charge g moved, we solve the equation AU = gAV :
_ AU
N7

Entering the values for AU and AV, we get

-30.0J -30.0J

9= oV - T200c - 20C

The number of electrons n, is the total charge divided by the charge per electron. That is,

B -250C
—1.60 x 10719 Cle~

=1.56 x 10'? electrons.

Ne

Significance

This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so
many being present in ordinary systems. In fact, electricity had been in use for many decades before it was
determined that the moving charges in many circumstances were negative. Positive charge moving in the
opposite direction of negative charge often produces identical effects; this makes it difficult to determine
which is moving or whether both are moving.

) CHECK YOUR UNDERSTANDING 7.5

How many electrons would go through a 24.0-W lamp?
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7 e Electric Potential

The Electron-Volt

The energy per electron is very small in macroscopic situations like that in the previous example—a tiny
fraction of a joule. But on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of
great importance. For example, even a tiny fraction of a joule can be great enough for these particles to destroy
organic molecules and harm living tissue. The particle may do its damage by direct collision, or it may create
harmful X-rays, which can also inflict damage. It is useful to have an energy unit related to submicroscopic
effects.

Figure 7.13 shows a situation related to the definition of such an energy unit. An electron is accelerated
between two charged metal plates, as it might be in an old-model television tube or oscilloscope. The electron
gains kinetic energy that is later converted into another form—Ilight in the television tube, for example. (Note
that in terms of energy, “downhill” for the electron is “uphill” for a positive charge.) Since energy is related to
voltage by AU = gAV, we can think of the joule as a coulomb-volt.

AV =V,

- +

- +

F ~ - +|

A >

- = T|U=qVAB
B

- +

i - +

@) (b)

Figure 7.13 A typical electron gun accelerates electrons using a potential difference between two separated metal plates. By

conservation of energy, the kinetic energy has to equal the change in potential energy, so KE = gV'. The energy of the electron in electron-
volts is numerically the same as the voltage between the plates. For example, a 5000-V potential difference produces 5000-eV electrons.

The conceptual construct, namely two parallel plates with a hole in one, is shown in (a), while a real electron gun is shown in (b).

Electron-Volt

On the submicroscopic scale, it is more convenient to define an energy unit called the electron-volt (eV),
which is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In
equation form,

leV = (160 x 1072 C)(1 V) = (1.60 x 10712 C)(1J/C) = 1.60 x 107 J.

Access for free at openstax.org.



An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an
electron accelerated through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron an
energy of 100,000 eV (100 keV), and so on. Similarly, an ion with a double positive charge accelerated through
100 V gains 200 eV of energy. These simple relationships between accelerating voltage and particle charges
make the electron-volt a simple and convenient energy unit in such circumstances.

The electron-volt is commonly employed in submicroscopic processes—chemical valence energies and
molecular and nuclear binding energies are among the quantities often expressed in electron-volts. For
example, about 5 eV of energy is required to break up certain organic molecules. If a proton is accelerated from
rest through a potential difference of 30 kV, it acquires an energy of 30 keV (30,000 eV) and can break up as
many as 6000 of these molecules (30,000 eV + 5 eV per molecule = 6000 molecules). Nuclear decay energies
are on the order of 1 MeV (1,000,000 €V) per event and can thus produce significant biological damage.

Conservation of Energy

The total energy of a system is conserved if there is no net addition (or subtraction) due to work or heat
transfer. For conservative forces, such as the electrostatic force, conservation of energy states that mechanical
energy is a constant.

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is, K + U = constant.
Aloss of Ufor a charged particle becomes an increase in its K. Conservation of energy is stated in equation
form as

K + U = constant
or
K; +U; = Kf +Ug

where i and f stand for initial and final conditions. As we have found many times before, considering energy
can give us insights and facilitate problem solving.

@ EXAMPLE 7.6

Electrical Potential Energy Converted into Kinetic Energy

Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V.
(Assume that this numerical value is accurate to three significant figures.)

Strategy

We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and
neglecting the gravitational force (we will check on this assumption later), all of the electrical potential energy
is converted into kinetic energy. We can identify the initial and final forms of energy to be

Ki =0, K¢ = mv*, U; = qV, U = 0.

Solution
Conservation of energy states that
K; +U; = K¢ + Us.

Entering the forms identified above, we obtain

V= muv?
=7
We solve this for v:
2qV
V=14/—
m

Entering values for g, V, and m gives



=5.93 x 10° mys.

o [H=160 X 10712 C)(—100J/C)
9.11 x 10731 kg

Significance

Note that both the charge and the initial voltage are negative, as in Figure 7.13. From the discussion of electric
charge and electric field, we know that electrostatic forces on small particles are generally very large
compared with the gravitational force. The large final speed confirms that the gravitational force is indeed
negligible here. The large speed also indicates how easy it is to accelerate electrons with small voltages
because of their very small mass. Voltages much higher than the 100 V in this problem are typically used in
electron guns. These higher voltages produce electron speeds so great that effects from special relativity must
be taken into account and hence are reserved for a later chapter (Relativity). That is why we consider a low
voltage (accurately) in this example.

CHECK YOUR UNDERSTANDING 7.6

How would this example change with a positron? A positron is identical to an electron except the charge is
positive.

Voltage and Electric Field

So far, we have explored the relationship between voltage and energy. Now we want to explore the relationship

g
between voltage and electric field. We will start with the general case for a non-uniform E field. Recall that our
general formula for the potential energy of a test charge g at point P relative to reference point R is

P,
Up=—/ F -dl.
R

When we substitute in the definition of electric field (ﬁ = if‘/q), this becomes
P,
Up=—¢q / E -dl.
R

Applying our definition of potential (V' = U/q) to this potential energy, we find that, in general,
P, 4
Vp =— / E - dl. 7.6
R

From our previous discussion of the potential energy of a charge in an electric field, the result is independent
of the path chosen, and hence we can pick the integral path that is most convenient.

Consider the special case of a positive point charge g at the origin. To calculate the potential caused by g at a
distance rfrom the origin relative to a reference of 0 at infinity (recall that we did the same for potential
kq

_)
energy), let P = rand R = o0, with dl = dt = ®drand use E = — F. When we evaluate the integral
r

for this system, we have

which simplifies to



This result,

is the standard form of the potential of a point charge. This will be explored further in the next section.

To examine another interesting special case, suppose a uniform electric field E) is produced by placing a
potential difference (or voltage) AV across two parallel metal plates, labeled A and B (Figure 7.14). Examining
this situation will tell us what voltage is needed to produce a certain electric field strength. It will also reveal a
more fundamental relationship between electric potential and electric field.

AV:VAB

+/—E\_

+ - -

+ - =

+ > =

AlQg—> B W=qVy

+ = i

+ S =
mEZVAE

+ & = d

+ = -

+ > =

+\»/_

Figure 7.14 The relationship between Vand E for parallel conducting plates is E = V/d. (Note that AV = V4 g in magnitude. For a
charge that is moved from plate A at higher potential to plate B at lower potential, a minus sign needs to be included as follows:
—AV =V4 — Vg =VypB.)

—
From a physicist’s point of view, either AV or E can be used to describe any interaction between charges.

_)
However, AV is a scalar quantity and has no direction, whereas E is a vector quantity, having both magnitude
and direction. (Note that the magnitude of the electric field, a scalar quantity, is represented by E.) The

—
relationship between AV and E is revealed by calculating the work done by the electric force in moving a
charge from point A to point B. But, as noted earlier, arbitrary charge distributions require calculus. We
therefore look at a uniform electric field as an interesting special case.

The work done by the electric field in Figure 7.14 to move a positive charge g from A, the positive plate, higher
potential, to B, the negative plate, lower potential, is

W = —-AU = —qAV.
The potential difference between points A and B is
—AV ==V —Vya)=V4 —Vp =Vyp.

Entering this into the expression for work yields



W =qVys.
Workis W = i‘) . ('i = Fd cos 0; here cos 8 = 1, since the path is parallel to the field. Thus, W = Fd. Since
F = qE, we see that W = gEd.
Substituting this expression for work into the previous equation gives
qEd = qV4p.
The charge cancels, so we obtain for the voltage between points A and B
Vap = Ed

VAB
E=—

(uniform E-field only)

where dis the distance from A to B, or the distance between the plates in Figure 7.14. Note that this equation
implies that the units for electric field are volts per meter. We already know the units for electric field are
newtons per coulomb; thus, the following relation among units is valid:

IN/C=1V/m.

Furthermore, we may extend this to the integral form. Substituting Equation 7.5 into our definition for the
potential difference between points A and B, we obtain

B_, A,
Vm=%—m=—413ﬂ+4 E -dl

which simplifies to

B
Vg-Vi=—-[ E-dl.
A

As a demonstration, from this we may calculate the potential difference between two points (A and B)
equidistant from a point charge g at the origin, as shown in Figure 7.15.

A

Figure 7.15 The arc for calculating the potential difference between two points that are equidistant from a point charge at the origin.
To do this, we integrate around an arc of the circle of constant radius r between A and B, which means we let

37 P . 1 kq ~
dl = rgde, while using E = ST Thus,
r

B, ,
AVpa=Vp —Vy =— B E -dl 7.7

for this system becomes

B
kq. _.
VB—VAz—/ 23 rgde.
A r

However, T - @ = 0 and therefore
Vg — Vs = 0.

This result, that there is no difference in potential along a constant radius from a point charge, will come in



handy when we map potentials.

@ EXAMPLE 7.7

What Is the Highest Voltage Possible between Two Plates?

Dry air can support a maximum electric field strength of about 3.0 x 10° V/m. Above that value, the field
creates enough ionization in the air to make the air a conductor. This allows a discharge or spark that reduces
the field. What, then, is the maximum voltage between two parallel conducting plates separated by 2.5 cm of
dry air?

Strategy

We are given the maximum electric field E between the plates and the distance d between them. We can use
the equation V4 g = Ed to calculate the maximum voltage.

Solution
The potential difference or voltage between the plates is

Vap = Ed.
Entering the given values for F and d gives

Vag = (3.0 x 10° V/m)(0.025m)=7.5 x 10* V
or
Vap =75kV.

(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Significance

One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5-cm (1-in.)
gap, or 150 kV for a 5-cm spark. This limits the voltages that can exist between conductors, perhaps on a
power transmission line. A smaller voltage can cause a spark if there are spines on the surface, since sharp
points have larger field strengths than smooth surfaces. Humid air breaks down at a lower field strength,
meaning that a smaller voltage will make a spark jump through humid air. The largest voltages can be built up
with static electricity on dry days (Figure 7.16).

Figure 7.16 A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as they pass through
the gas between the plates allows a spark to jump. The sparks are perpendicular to the plates, following electric field lines between them.
The potential difference between adjacent plates is not high enough to cause sparks without the ionization produced by particles from
accelerator experiments (or cosmic rays). This form of detector is now archaic and no longer in use except for demonstration purposes.

(credit b: modification of work by Jack Collins)




@ EXAMPLE 7.8

Field and Force inside an Electron Gun

An electron gun (Figure 7.13) has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy.
(a) What is the electric field strength between the plates? (b) What force would this field exert on a piece of
plastic with a 0.500-uC charge that gets between the plates?

Strategy

Since the voltage and plate separation are given, the electric field strength can be calculated directly from the
14

expression £ = %. Once we know the electric field strength, we can find the force on a charge by using

= -
F = gE. Since the electric field is in only one direction, we can write this equation in terms of the magnitudes,
F =¢qFE.

Solution

a. The expression for the magnitude of the electric field between two uniform metal plates is
V,
E=-48
d
Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0

kV. Entering this value for V4 g and the plate separation of 0.0400 m, we obtain

25.0kV 5
=——— =625 % 10° V/m.
0.0400 m m
b. The magnitude of the force on a charge in an electric field is obtained from the equation
F =gqE.

Substituting known values gives
F =(0.500 x 1076 C)(6.25 x 10° V/m) =0.313N.
Significance
Note that the units are newtons, since 1 V/m = 1 N/C. Because the electric field is uniform between the plates,
the force on the charge is the same no matter where the charge is located between the plates.

@ EXAMPLE 7.9

Calculating Potential of a Point Charge

Given a point charge ¢ = +2.0 nC at the origin, calculate the potential difference between point P; a distance
a =4.0cm from g, and P, a distance b = 12.0 cm from g, where the two points have an angle of ¢ = 24°
between them (Figure 7.17).

Figure 7.17 Find the difference in potential between Py and P;.

Strategy
B

_)
Do this in two steps. The first stepistouse Vg — V4 = — / E -dlandlet A = a = 4.0 cmand
A



g
B = b =12.0cm, with dl = dt = fdrand E = k—gi‘. Then perform the integral. The second step is to
r
B

— - -
integrate Vg — V4 = — / E - dl around an arc of constant radius r, which means we let d1 = r @ dg with
A

_)
limits 0 < @ < 24°, stillusing E = k—g?. Then add the two results together.
r

Solution
B_, b kq. .
For the first part, Vg — V4 = —/ E - dl for this system becomes V, — V, = —/ — T rdr which
A a T
computes to
b
kq 11
a
= (8.99 x 10° Nm*/C?) (2.0 x 107 C) [goaom — 575 = 300V.

B

For the second step, Vg — V4 = —/
A

therefore AV = 0. Adding the two parts together, we get 300 V.

2 kg P
E - dl becomes AV = — —zr-r(pd(p,butr-q)=Oand
o r

Significance
We have demonstrated the use of the integral form of the potential difference to obtain a numerical result.

Notice that, in this particular system, we could have also used the formula for the potential due to a point
charge at the two points and simply taken the difference.

CHECK YOUR UNDERSTANDING 7.7

From the examples, how does the energy of a lightning strike vary with the height of the clouds from the
ground? Consider the cloud-ground system to be two parallel plates.

Before presenting problems involving electrostatics, we suggest a problem-solving strategy to follow for this
topic.

@ PROBLEM-SOLVING STRATEGY

Electrostatics

1. Examine the situation to determine if static electricity is involved; this may concern separated stationary
charges, the forces among them, and the electric fields they create.

2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.

3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is
useful. Determine whether the Coulomb force is to be considered directly—if so, it may be useful to draw a
free-body diagram, using electric field lines.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is
important to distinguish the Coulomb force F from the electric field E, for example.

5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as
requested.

6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers
involved reasonable?




7.3 Calculations of Electric Potential

Learning Objectives
By the end of this section, you will be able to:
e Calculate the potential due to a point charge
e Calculate the potential of a system of multiple point charges
e Describe an electric dipole
e Define dipole moment
e Calculate the potential of a continuous charge distribution

Point charges, such as electrons, are among the fundamental building blocks of matter. Furthermore, spherical
charge distributions (such as charge on a metal sphere) create external electric fields exactly like a point
charge. The electric potential due to a point charge is, thus, a case we need to consider.

We can use calculus to find the work needed to move a test charge g from a large distance away to a distance of
rfrom a point charge g. Noting the connection between work and potential W = —gAV’, as in the last section,
we can obtain the following result.

Electric Potential V of a Point Charge

The electric potential Vof a point charge is given by
k .
V= —q(pomt charge) 7.8
r

where kis a constant equal to 8.99 x 10° N - m?/C2.

_)
The potential at infinity is chosen to be zero. Thus, Vfor a point charge decreases with distance, whereas E for
a point charge decreases with distance squared:

E =

N
Recall that the electric potential Vis a scalar and has no direction, whereas the electric field E is a vector. To

find the voltage due to a combination of point charges, you add the individual voltages as numbers. To find the
total electric field, you must add the individual fields as vectors, taking magnitude and direction into account.

N
This is consistent with the fact that Vis closely associated with energy, a scalar, whereas E is closely
associated with force, a vector.

@ EXAMPLE 7.10

What Voltage Is Produced by a Small Charge on a Metal Sphere?
Charges in static electricity are typically in the nanocoulomb (nC) to microcoulomb (#C) range. What is the
voltage 5.00 cm away from the center of a 1-cm-diameter solid metal sphere that has a —3.00-nC static charge?

Strategy

As we discussed in Electric Charges and Fields, charge on a metal sphere spreads out uniformly and produces
kq

T

a field like that of a point charge located at its center. Thus, we can find the voltage using the equation V =

Solution

Entering known values into the expression for the potential of a point charge, we obtain

-3.00 x 1072 C
500 x 102 m

v =kd = (899 x 10°N-m?/C?) ( ) =-539V.
r



Significance

The negative value for voltage means a positive charge would be attracted from a larger distance, since the
potential is lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as
expected.

@ EXAMPLE 7.11

What Is the Excess Charge on a Van de Graaff Generator?

A demonstration Van de Graaff generator has a 25.0-cm-diameter metal sphere that produces a voltage of 100
kV near its surface (Figure 7.18). What excess charge resides on the sphere? (Assume that each numerical
value here is shown with three significant figures.)

Aluminum
sphere

Inside of shiny
metal sphere

—— Conductor
1 i
Covered Flat belt
ulle
pulley A /
Covered
pulley

0=
Figure 7.18 The voltage of this demonstration Van de Graaff generator is measured between the charged sphere and ground. Earth’s
potential is taken to be zero as a reference. The potential of the charged conducting sphere is the same as that of an equal point charge at

its center.

Strategy

The potential on the surface is the same as that of a point charge at the center of the sphere, 12.5 cm away.
(The radius of the sphere is 12.5 cm.) We can thus determine the excess charge using the equation
k
V=—.
r

Solution
Solving for g and entering known values gives
7V (0.125m) (100 x 10° V)

k 8.99 x 10° N - m2/C?

=139 x 10°°C =139 4C.

Significance
This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it
is difficult to store isolated charges.




CHECK YOUR UNDERSTANDING 7.8

What is the potential inside the metal sphere in Example 7.10?

The voltages in both of these examples could be measured with a meter that compares the measured potential
with ground potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to
be zero). It is the potential difference between two points that is of importance, and very often there is a tacit
assumption that some reference point, such as Earth or a very distant point, is at zero potential. As noted
earlier, this is analogous to taking sea level as & = 0 when considering gravitational potential energy

Uy = mgh.

Systems of Multiple Point Charges

Just as the electric field obeys a superposition principle, so does the electric potential. Consider a system
consisting of Ncharges q;, q2, ..., gn. What is the net electric potential Vat a space point P from these
charges? Each of these charges is a source charge that produces its own electric potential at point P,
independent of whatever other changes may be doing. Let V;, V>, ..., VN be the electric potentials at P
produced by the charges q1, q2, ..., N, respectively. Then, the net electric potential Vp at that point is equal to
the sum of these individual electric potentials. You can easily show this by calculating the potential energy of a
test charge when you bring the test charge from the reference point at infinity to point P:

N
Vp=V1+V2+---+VN=ZV,-.
1

Note that electric potential follows the same principle of superposition as electric field and electric potential
energy. To show this more explicitly, note that a test charge g; at the point Pin space has distances of
ri,ry,...,rnN from the N charges fixed in space above, as shown in Figure 7.19. Using our formula for the
potential of a point charge for each of these (assumed to be point) charges, we find that

N N
1 l

VP‘Z"T"‘Z?' 7.9
1 ! 1!

Therefore, the electric potential energy of the test charge is

N gi
]
Up=aqVp=qk ) —,
Fi
1
which is the same as the work to bring the test charge into the system, as found in the first section of the
chapter.

Figure 7.19 Notation for direct distances from charges to a space point P.

The Electric Dipole

An electric dipole is a system of two equal but opposite charges a fixed distance apart. This system is used to
model many real-world systems, including atomic and molecular interactions. One of these systems is the
water molecule, under certain circumstances. These circumstances are met inside a microwave oven, where



electric fields with alternating directions make the water molecules change orientation. This vibration is the
same as heat at the molecular level.

@ EXAMPLE 7.12

Electric Potential of a Dipole

Consider the dipole in Figure 7.20 with the charge magnitude of ¢ = 3.0 nC and separation distance

d = 4.0 cm. What is the potential at the following locations in space? (a) (0, 0, 1.0 cm); (b) (0, 0, —=5.0 cm); (c)
(3.0cm, 0, 2.0 cm).

T g=3.0nC ® (3.0cm,0,2.0cm)

¢ (0,0,1.0cm)

d=40cm 0 X

X @g-=--30nC

¢ (0,0,-5.0cm)

Figure 7.20 A general diagram of an electric dipole, and the notation for the distances from the individual charges to a point Pin space.

Strategy

N
Apply Vp =k Z % to each of these three points.
1 1

Solution
N

o Vp =k Y200 x 107N mC) (FUC — J09C) = 18 x 107V
T
N

b Vp=k D, T =90 x 10°N-m/C?) (S — 880 — —5.1 x 102 V
1 1
N

c. Vp=k f—’ = (9.0 X 10° N-m?/C?) (228E — 200C.) =36 x 10>V
1 1

Significance
Note that evaluating potential is significantly simpler than electric field, due to potential being a scalar instead
of a vector.

CHECK YOUR UNDERSTANDING 7.9



What is the potential on the x-axis? The z-axis?

Now let us consider the special case when the distance of the point P from the dipole is much greater than the
distance between the charges in the dipole, r > d; for example, when we are interested in the electric potential
due to a polarized molecule such as a water molecule. This is not so far (infinity) that we can simply treat the
potential as zero, but the distance is great enough that we can simplify our calculations relative to the previous
example.

We start by noting that in Figure 7.21 the potential is given by

VP:V++V_:k<i—i>
r4+ r—

where
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Figure 7.21 A general diagram of an electric dipole, and the notation for the distances from the individual charges to a point Pin space.

This is still the exact formula. To take advantage of the fact that r > d, we rewrite the radii in terms of polar
coordinates, with x = r sin @ and z = r cos 6. This gives us

d\2
Fy = rzsin29+<rcos¢915>.

We can simplify this expression by pulling r out of the root,

d 2
re=r sin29+<0059$—>
- 2r

and then multiplying out the parentheses

2 2

d d d d
rye =r sin29+0032«9100s9—+ — =rqf/lFcosf0—+|—) .
r 2r r 2r

The last term in the root is small enough to be negligible (remember r > d, and hence (aV/r)2 is extremely
small, effectively zero to the level we will probably be measuring), leaving us with



/ d
ry =ry/1Fcosf—.
r

Using the binomial approximation (a standard result from the mathematics of series, when « is small)
1 a
~ 1

and substituting this into our formula for Vp , we get

Vo = k q 1+d0059 _q 1_dcosO =kqdcose‘
r 2r r 2r r2

This may be written more conveniently if we define a new quantity, the electric dipole moment,

P=qd 7.10

where these vectors point from the negative to the positive charge. Note that this has magnitude gd. This
quantity allows us to write the potential at point P due to a dipole at the origin as

7.11

=2 A
p-r

Vp =k
P 2

A diagram of the application of this formula is shown in Figure 7.22.

Figure 7.22 The geometry for the application of the potential of a dipole.

There are also higher-order moments, for quadrupoles, octupoles, and so on. You will see these in future
classes.

Potential of Continuous Charge Distributions

We have been working with point charges a great deal, but what about continuous charge distributions? Recall
from Equation 7.9 that

gi

ri ’

Ve =k

We may treat a continuous charge distribution as a collection of infinitesimally separated individual points.
This yields the integral

dq

Vp =k 7.12

for the potential at a point P. Note that ris the distance from each individual point in the charge distribution to
the point P. As we saw in Electric Charges and Fields, the infinitesimal charges are given by




Adl (one dimension)
dgq=40cdA (two dimensions)
pdV  (three dimensions)

where A is linear charge density, ¢ is the charge per unit area, and p is the charge per unit volume.

@ EXAMPLE 7.13

Potential of a Line of Charge

Find the electric potential of a uniformly charged, nonconducting wire with linear density A (coulomb/meter)
and length L at a point that lies on a line that divides the wire into two equal parts.

Strategy

To set up the problem, we choose Cartesian coordinates in such a way as to exploit the symmetry in the
problem as much as possible. We place the origin at the center of the wire and orient the y-axis along the wire
so that the ends of the wire are at y = +L/2. The field point Pis in the xy-plane and since the choice of axes is
up to us, we choose the x-axis to pass through the field point P, as shown in Figure 7.23.

y

Figure 7.23 We want to calculate the electric potential due to a line of charge.

Solution

Consider a small element of the charge distribution between y and y + dy. The charge in thiscellisdq = 1 dy
and the distance from the cell to the field point Pis \/x2 + y2. Therefore, the potential becomes

L?2
d(] ﬁdy [ < 2 2
Vp =k| —=k ————==kA|ln(y+4/y +x
r J—L/Z Vx? +y? —-L2

—ta i (5) 4 /(5 +27) =i ((-5) + /5 7))

= kaln [ L+V L2 +4x2
—L+VL2+4x2

L2

Significance

Note that this was simpler than the equivalent problem for electric field, due to the use of scalar quantities.
Recall that we expect the zero level of the potential to be at infinity, when we have a finite charge. To examine
this, we take the limit of the above potential as x approaches infinity; in this case, the terms inside the natural
log approach one, and hence the potential approaches zero in this limit. Note that we could have done this
problem equivalently in cylindrical coordinates; the only effect would be to substitute rfor x and z for y.




@ EXAMPLE 7.14

Potential Due to a Ring of Charge

Aring has a uniform charge density 4, with units of coulomb per unit meter of arc. Find the electric potential at
a point on the axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a
circle. We divide the circle into infinitesimal elements shaped as arcs on the circle and use cylindrical
coordinates shown in Figure 7.24.

\RZ +22

dg = AR df

X

Figure 7.24 We want to calculate the electric potential due to a ring of charge.

Solution
A general element of the arc between 0 and 8 + d6 is of length Rd6 and therefore contains a charge equal to
ARd6. The element is at a distance of 1/z2 + RZ from P, and therefore the potential is

d 27 )RdO kAR 2m 27kAR
Vp:k/—qzk/ do 42 —k dtot
r 0

Vz2 + R? B VzZ+R2 Jo B VzZ + R? - \/22+R2.

Significance
This result is expected because every element of the ring is at the same distance from point P. The net
potential at Pis that of the total charge placed at the common distance, V/z2 + R2.

@ EXAMPLE 7.15

Potential Due to a Uniform Disk of Charge

A disk of radius R has a uniform charge density o, with units of coulomb meter squared. Find the electric
potential at any point on the axis passing through the center of the disk.

Strategy

We divide the disk into ring-shaped cells, and make use of the result for a ring worked out in the previous
example, then integrate over rin addition to 6. This is shown in Figure 7.25.
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Figure 7.25 We want to calculate the electric potential due to a disk of charge.

Solution

An infinitesimal width cell between cylindrical coordinates rand r + dr shown in Figure 7.25 will be a ring of
charges whose electric potential dVp at the field point has the following expression
d
dVp = k—d__
Vz2 +r?
where

dq = o2rrdr.

The superposition of potential of all the infinitesimal rings that make up the disk gives the net potential at
point P. This is accomplished by integrating fromr =0tor = R:

R rdr
Vz? 2
=k277:0'(\/22 +R? - \/27>

Vp =/de = k2ro
0

Significance
The basic procedure for a disk is to first integrate around 6 and then over r. This has been demonstrated for

uniform (constant) charge density. Often, the charge density will vary with r, and then the last integral will give
different results.

@ EXAMPLE 7.16

Potential Due to an Infinite Charged Wire
Find the electric potential due to an infinitely long uniformly charged wire.

Strategy
Since we have already worked out the potential of a finite wire of length L in Example 7.7, we might wonder if
taking L — o in our previous result will work:

, L+ L? +4x?
Vp = lim kAln .
Lo —L+ VL% +4x2



However, this limit does not exist because the argument of the logarithm becomes [2/0] as L. — %, so this way

of finding Vof an infinite wire does not work. The reason for this problem may be traced to the fact that the
charges are not localized in some space but continue to infinity in the direction of the wire. Hence, our
(unspoken) assumption that zero potential must be an infinite distance from the wire is no longer valid.

To avoid this difficulty in calculating limits, let us use the definition of potential by integrating over the electric
field from the previous section, and the value of the electric field from this charge configuration from the
previous chapter.

Solution
We use the integral

P,
Vp=— [ E-dl
R

where Ris a finite distance from the line of charge, as shown in Figure 7.26.
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Figure 7.26 Points of interest for calculating the potential of an infinite line of charge.

. . = 1~ g .
With this setup, we use E p = 2kA;Sand dl = ds to obtain

P 1 sp
Vp—Vg =— 2kA—ds = =2kAln—.
R s SR

Now, if we define the reference potential Vg = 0 at sg = 1 m, this simplifies to
Vp =—-2kAlnsp.
Note that this form of the potential is quite usable; it is 0 at 1 m and is undefined at infinity, which is why we
could not use the latter as a reference.
Significance
Although calculating potential directly can be quite convenient, we just found a system for which this strategy

does not work well. In such cases, going back to the definition of potential in terms of the electric field may
offer a way forward.

CHECK YOUR UNDERSTANDING 7.10

What is the potential on the axis of a nonuniform ring of charge, where the charge density is A(f) = Acos 6 ?



7.4 Determining Field from Potential

Learning Objectives

By the end of this section, you will be able to:
e Explain how to calculate the electric field in a system from the given potential
e Calculate the electric field in a given direction from a given potential
e Calculate the electric field throughout space from a given potential

Recall that we were able, in certain systems, to calculate the potential by integrating over the electric field. As
you may already suspect, this means that we may calculate the electric field by taking derivatives of the
potential, although going from a scalar to a vector quantity introduces some interesting wrinkles. We

_)
frequently need E to calculate the force in a system; since it is often simpler to calculate the potential directly,

>
there are systems in which it is useful to calculate Vand then derive E from it.

In general, regardless of whether the electric field is uniform, it points in the direction of decreasing potential,
_)
because the force on a positive charge is in the direction of E and also in the direction of lower potential V.

_)
Furthermore, the magnitude of E equals the rate of decrease of Vwith distance. The faster V decreases over
distance, the greater the electric field. This gives us the following result.

Relationship between Voltage and Uniform Electric Field

In equation form, the relationship between voltage and uniform electric field is

AV
As
where As is the distance over which the change in potential AV takes place. The minus sign tells us that E

points in the direction of decreasing potential. The electric field is said to be the gradient (as in grade or
slope) of the electric potential.

For continually changing potentials, AV and As become infinitesimals, and we need differential calculus to
determine the electric field. As shown in Figure 7.27, if we treat the distance As as very small so that the
electric field is essentially constant over it, we find that

_av
ds’

ol

(Vg =V + Av)

(Vo =V) F1

Figure 7.27 The electric field component along the displacement As is given by E = —%. Note that A and B are assumed to be so close

together that the field is constant along As.

Therefore, the electric field components in the Cartesian directions are given by

aV % aV
Ex=—,E,=——, E;, = ——. .
x ox’ 7Y dy z 0z 713

This allows us to define the “grad” or “del” vector operator, which allows us to compute the gradient in one
step. In Cartesian coordinates, it takes the form



_ .0 Ad 0
V=i—+j— +k—.
ior tigy Tk 7.14

With this notation, we can calculate the electric field from the potential with

=)
I

-VV, 7.15

a process we call calculating the gradient of the potential.

If we have a system with either cylindrical or spherical symmetry, we only need to use the del operator in the
appropriate coordinates:

- a 1 o d
Cylindrica: V=T —+ 9 — — +Z— 7.16
or r 0p 0z

o7

= ~1 0 1 0
herical: V = T — ——+Q —
Spherical: V rar+9r 09+(prsin9 o0

7.17

@ EXAMPLE 7.17

Electric Field of a Point Charge
Calculate the electric field of a point charge from the potential.

Strategy

The potential is known tobe V' = k%, which has a spherical symmetry. Therefore, we use the spherical del
- -

operator in the formula E = —-VV.

Solution

Performing this calculation gives us

as expected.

Significance
We not only obtained the equation for the electric field of a point particle that we’ve seen before, we also have a

—
demonstration that E points in the direction of decreasing potential, as shown in Figure 7.28.



Figure 7.28 Electric field vectors inside and outside a uniformly charged sphere.

@ EXAMPLE 7.18

Electric Field of a Ring of Charge

Use the potential found in Example 7.8 to calculate the electric field along the axis of a ring of charge (Figure
7.29).

Figure 7.29 We want to calculate the electric field from the electric potential due to a ring charge.
Strategy

In this case, we are only interested in one dimension, the z-axis. Therefore, we use E; = 4

with the potential V' = k—20__ found previously.

Vz2+R2



Solution
Taking the derivative of the potential yields

0 kqot K ot 2

Tz 2R (2+Rr)7

E; =

Significance
Again, this matches the equation for the electric field found previously. It also demonstrates a system in which
using the full del operator is not necessary.

) CHECK YOUR UNDERSTANDING 7.11

Which coordinate system would you use to calculate the electric field of a dipole?

7.5 Equipotential Surfaces and Conductors

Learning Objectives
By the end of this section, you will be able to:
e Define equipotential surfaces and equipotential lines
e Explain the relationship between equipotential lines and electric field lines
e Map equipotential lines for one or two point charges
e Describe the potential of a conductor
e Compare and contrast equipotential lines and elevation lines on topographic maps

We can represent electric potentials (voltages) pictorially, just as we drew pictures to illustrate electric fields.
This is not surprising, since the two concepts are related. Consider Figure 7.30, which shows an isolated
positive point charge and its electric field lines, which radiate out from a positive charge and terminate on
negative charges. We use red arrows to represent the magnitude and direction of the electric field, and we use
black lines to represent places where the electric potential is constant. These are called equipotential
surfaces in three dimensions, or equipotential lines in two dimensions. The term equipotential is also used
as a noun, referring to an equipotential line or surface. The potential for a point charge is the same anywhere
on an imaginary sphere of radius r surrounding the charge. This is true because the potential for a point
charge is given by V' = kq/r and thus has the same value at any point that is a given distance rfrom the charge.
An equipotential sphere is a circle in the two-dimensional view of Figure 7.30. Because the electric field lines
point radially away from the charge, they are perpendicular to the equipotential lines.

Figure 7.30 Anisolated point charge Q with its electric field lines in red and equipotential lines in black. The potential is the same along
each equipotential line, meaning that no work is required to move a charge anywhere along one of those lines. Work is needed to move a

charge from one equipotential line to another. Equipotential lines are perpendicular to electric field lines in every case. For a three-



dimensional version, explore the first media link.

It is important to note that equipotential lines are always perpendicular to electric field lines. No work is
required to move a charge along an equipotential, since AV = 0. Thus, the work is

W =—AU = —gAV = 0.

Work is zero if the direction of the force is perpendicular to the displacement. Force is in the same direction as
E, so motion along an equipotential must be perpendicular to E. More precisely, work is related to the electric
field by

- — - —
W=F-d=qgE -d =qgEdcosfd=0.

Note that in this equation, E and F symbolize the magnitudes of the electric field and force, respectively.
Neither g nor Eis zero; d is also not zero. So cos 8 must be 0, meaning # must be 90°. In other words, motion
along an equipotential is perpendicular to E.

One of the rules for static electric fields and conductors is that the electric field must be perpendicular to the
surface of any conductor. This implies that a conductor is an equipotential surface in static situations. There
can be no voltage difference across the surface of a conductor, or charges will flow. One of the uses of this fact
is that a conductor can be fixed at what we consider zero volts by connecting it to the earth with a good
conductor—a process called grounding. Grounding can be a useful safety tool. For example, grounding the
metal case of an electrical appliance ensures that it is at zero volts relative to Earth.

Because a conductor is an equipotential, it can replace any equipotential surface. For example, in Figure 7.30,
a charged spherical conductor can replace the point charge, and the electric field and potential surfaces
outside of it will be unchanged, confirming the contention that a spherical charge distribution is equivalent to
a point charge at its center.

Figure 7.31 shows the electric field and equipotential lines for two equal and opposite charges. Given the
electric field lines, the equipotential lines can be drawn simply by making them perpendicular to the electric
field lines. Conversely, given the equipotential lines, as in Figure 7.32(a), the electric field lines can be drawn
by making them perpendicular to the equipotentials, as in Figure 7.32(b).

Figure 7.31 The electric field lines and equipotential lines for two equal but opposite charges. The equipotential lines can be drawn by
making them perpendicular to the electric field lines, if those are known. Note that the potential is greatest (most positive) near the positive

charge and least (most negative) near the negative charge. For a three-dimensional version, explore the first media link.
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Figure 7.32 (a) These equipotential lines might be measured with a voltmeter in a laboratory experiment. (b) The corresponding electric
field lines are found by drawing them perpendicular to the equipotentials. Note that these fields are consistent with two equal negative

charges. For a three-dimensional version, play with the first media link.

To improve your intuition, we show a three-dimensional variant of the potential in a system with two opposing
charges. Figure 7.33 displays a three-dimensional map of electric potential, where lines on the map are for
equipotential surfaces. The hill is at the positive charge, and the trough is at the negative charge. The potential
is zero far away from the charges. Note that the cut off at a particular potential implies that the charges are on
conducting spheres with a finite radius.

Figure 7.33 Electric potential map of two opposite charges of equal magnitude on conducting spheres. The potential is negative near the

negative charge and positive near the positive charge.

A two-dimensional map of the cross-sectional plane that contains both charges is shown in Figure 7.34. The
line that is equidistant from the two opposite charges corresponds to zero potential, since at the points on the
line, the positive potential from the positive charge cancels the negative potential from the negative charge.
Equipotential lines in the cross-sectional plane are closed loops, which are not necessarily circles, since at
each point, the net potential is the sum of the potentials from each charge.
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Figure 7.34 A cross-section of the electric potential map of two opposite charges of equal magnitude. The potential is negative near the
negative charge and positive near the positive charge.

@ INTERACTIVE

View this simulation (https://openstax.org/l/21equipsurelec) to observe and modify the equipotential surfaces
and electric fields for many standard charge configurations. There’s a lot to explore.

One of the most important cases is that of the familiar parallel conducting plates shown in Figure 7.35.
Between the plates, the equipotentials are evenly spaced and parallel. The same field could be maintained by
placing conducting plates at the equipotential lines at the potentials shown.
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Figure 7.35 The electric field and equipotential lines between two metal plates. Note that the electric field is perpendicular to the

ZL

equipotentials and hence normal to the plates at their surface as well as in the center of the region between them.

Consider the parallel plates in Figure 7.2. These have equipotential lines that are parallel to the plates in the
space between and evenly spaced. An example of this (with sample values) is given in Figure 7.35. We could
draw a similar set of equipotential isolines for gravity on the hill shown in Figure 7.2. If the hill has any extent
at the same slope, the isolines along that extent would be parallel to each other. Furthermore, in regions of

Access for free at openstax.org.



7.5 ¢ Equipotential Surfaces and Conductors

constant slope, the isolines would be evenly spaced. An example of real topographic lines is shown in Figure
7.36.

(b)

Figure 7.36 A topographical map along a ridge has roughly parallel elevation lines, similar to the equipotential lines in Figure 7.35. (a) A

topographical map of Devil’s Tower, Wyoming. Lines that are close together indicate very steep terrain. (b) A perspective photo of Devil’'s

Tower shows just how steep its sides are. Notice the top of the tower has the same shape as the center of the topographical map.

@ EXAMPLE 7.19

Calculating Equipotential Lines
You have seen the equipotential lines of a point charge in Figure 7.30. How do we calculate them? For example,

if we have a +10-nC charge at the origin, what are the equipotential surfaces at which the potential is (a) 100V,
(b) 50V, (c) 20V, and (d) 10 V?

Strategy

Set the equation for the potential of a point charge equal to a constant and solve for the remaining variable(s).
Then calculate values as needed.

Solution

InV = k%, let Vbe a constant. The only remaining variable is r; hence, r = k% = constant. Thus, the
equipotential surfaces are spheres about the origin. Their locations are:

-9

a. r=k4 =(8.99 x 10° Nm?/C?) (lojolsv ) = 0.90 m;
. o oo (10><10—9 c)

b. r=kq = (899 x 10° Nm*/C?) ~—5—= = 1.8 m;
. o oo (10x10—9 c)

c. r=k#=(899 x 10°Nm*/C*) ~—55—= =4.5m;
ikl 9 Nm2/C2 (10><1o—9 c)

d. r=ks =(8.99 x 10° Nm*/C?) ~—w—==9.0m.

Significance

This means that equipotential surfaces around a point charge are spheres of constant radius, as shown earlier,

315



with well-defined locations.

@ EXAMPLE 7.20

Potential Difference between Oppositely Charged Parallel Plates

Two large conducting plates carry equal and opposite charges, with a surface charge density o of magnitude
6.81 x 1077 C/mz, as shown in Figure 7.37. The separation between the plates is / = 6.50 mm. (a) What is the
electric field between the plates? (b) What is the potential difference between the plates? (c) What is the
distance between equipotential planes which differ by 100 V?

—1—]

-+

Figure 7.37 The electric field between oppositely charged parallel plates. A portion is released at the positive plate.

Strategy

(a) Since the plates are described as “large” and the distance between them is not, we will approximate each of
them as an infinite plane, and apply the result from Gauss’s law in the previous chapter.
B_,
(b) Use AV p = — E -dl.
A
(c) Since the electric field is constant, find the ratio of 100 V to the total potential difference; then calculate this
fraction of the distance.

Solution

a. The electric field is directed from the positive to the negative plate as shown in the figure, and its
magnitude is given by

-7 2
po O - O8I X1077CmM 0 10% vim.
€0 8.85 x 10712 C2/N - m?

b. To find the potential difference AV between the plates, we use a path from the negative to the positive

plate that is directed against the field. The displacement vector df and the electric field l_i are antiparallel
- -
so E - dl = —E dl. The potential difference between the positive plate and the negative plate is then

AV = —/E- dl = E/dl = El = (7.69 x 10* V/m)(6.50 x 107> m) = 500 V.



c. The total potential difference is 500 V, so 1/5 of the distance between the plates will be the distance
between 100-V potential differences. The distance between the plates is 6.5 mm, so there will be 1.3 mm
between 100-V potential differences.

Significance
You have now seen a numerical calculation of the locations of equipotentials between two charged parallel
plates.

CHECK YOUR UNDERSTANDING 7.12

What are the equipotential surfaces for an infinite line charge?

Distribution of Charges on Conductors

In Example 7.19 with a point charge, we found that the equipotential surfaces were in the form of spheres, with
the point charge at the center. Given that a conducting sphere in electrostatic equilibrium is a spherical
equipotential surface, we should expect that we could replace one of the surfaces in Example 7.19 with a
conducting sphere and have an identical solution outside the sphere. Inside will be rather different, however.
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Figure 7.38 Anisolated conducting sphere.

To investigate this, consider the isolated conducting sphere of Figure 7.38 that has a radius R and an excess
charge g. To find the electric field both inside and outside the sphere, note that the sphere is isolated, so its
surface change distribution and the electric field of that distribution are spherically symmetric. We can
therefore represent the field as E = E(r)F. To calculate E(r), we apply Gauss’s law over a closed spherical
surface S of radius rthat is concentric with the conducting sphere. Since ris constant and fi = T on the sphere,

7{175 fida= E(r)j{ da = E(r) 4nr?.
S
Forr < R, Siswithin the conductor, so recall from our previous study of Gauss’s law that gepe = 0 and Gauss’s

law gives E (r) = 0, as expected inside a conductor at equilibrium. If » > R, Sencloses the conductor so
Genc = g. From Gauss’s law,

E(r) Adnr? = i
€0
The electric field of the sphere may therefore be written as
E =0 (r< R),
E = 47350 r%f (r > R).



As expected, in the region r > R, the electric field due to a charge g placed on an isolated conducting sphere of
radius Ris identical to the electric field of a point charge g located at the center of the sphere.

To find the electric potential inside and outside the sphere, note that for » > R, the potential must be the same
as that of an isolated point charge g located at r = 0,

1
viy=— L@ >R
dreq r

simply due to the similarity of the electric field.

Forr < R, E = 0, so V(1) is constant in this region. Since V/(R) = g/4neg R,

I gq
V)= — L R).
") 47[80 R (r <R

We will use this result to show that
o1 Ry =02 Ry,

for two conducting spheres of radii R and R;, with surface charge densities o| and o, respectively, that are
connected by a thin wire, as shown in Figure 7.39. The spheres are sufficiently separated so that each can be
treated as if it were isolated (aside from the wire). Note that the connection by the wire means that this entire
system must be an equipotential.

+
1 ¥
+ +
Rl
+ +
+ +
+ +
"' I

R
+ \2+
+

We have just seen that the electrical potential at the surface of an isolated, charged conducting sphere of
radius Ris

Figure 7.39 Two conducting spheres are connected by a thin conducting wire.

__ 1 q
N 47[80 R.
Now, the spheres are connected by a conductor and are therefore at the same potential; hence
a1 @
47[60 R] 471'80 Rz ’
and
q_l = q_2
Ry Ry

The net charge on a conducting sphere and its surface charge density are related by g = a(47rR2). Substituting
this equation into the previous one, we find

O']R] = 0'2R2.

Obviously, two spheres connected by a thin wire do not constitute a typical conductor with a variable radius of
curvature. Nevertheless, this result does at least provide a qualitative idea of how charge density varies over
the surface of a conductor. The equation indicates that where the radius of curvature is large (points Band Din



Figure 7.40), o and E are small.

Similarly, the charges tend to be denser where the curvature of the surface is greater, as demonstrated by the
charge distribution on oddly shaped metal (Figure 7.40). The surface charge density is higher at locations with
a small radius of curvature than at locations with a large radius of curvature.
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Figure 7.40 The surface charge density and the electric field of a conductor are greater at regions with smaller radii of curvature.

A practical application of this phenomenon is the lightning rod, which is simply a grounded metal rod with a
sharp end pointing upward. As positive charge accumulates in the ground due to a negatively charged cloud
overhead, the electric field around the sharp point gets very large. When the field reaches a value of
approximately 3.0 X 10° N/C (the dielectric strength of the air), the free ions in the air are accelerated to such
high energies that their collisions with air molecules actually ionize the molecules. The resulting free electrons
in the air then flow through the rod to Earth, thereby neutralizing some of the positive charge. This keeps the
electric field between the cloud and the ground from getting large enough to produce a lightning bolt in the
region around the rod.

An important application of electric fields and equipotential lines involves the heart. The heart relies on
electrical signals to maintain its rhythm. The movement of electrical signals causes the chambers of the heart
to contract and relax. When a person has a heart attack, the movement of these electrical signals may be
disturbed. An artificial pacemaker and a defibrillator can be used to initiate the rhythm of electrical signals.
The equipotential lines around the heart, the thoracic region, and the axis of the heart are useful ways of
monitoring the structure and functions of the heart. An electrocardiogram (ECG) measures the small electric
signals being generated during the activity of the heart.

INTERACTIVE

Play around with this simulation (https://openstax.org/l/21pointcharsim) to move point charges around on the
playing field and then view the electric field, voltages, equipotential lines, and more.

7.6 Applications of Electrostatics

Learning Objectives

By the end of this section, you will be able to:
e Describe some of the many practical applications of electrostatics, including several printing technologies
e Relate these applications to Newton’s second law and the electric force



The study of electrostatics has proven useful in many areas. This module covers just a few of the many
applications of electrostatics.

The Van de Graaff Generator

Van de Graaff generators (or Van de Graaffs) are not only spectacular devices used to demonstrate high
voltage due to static electricity—they are also used for serious research. The first was built by Robert Van de
Graaffin 1931 (based on original suggestions by Lord Kelvin) for use in nuclear physics research. Figure 7.41
shows a schematic of a large research version. Van de Graaffs use both smooth and pointed surfaces, and
conductors and insulators to generate large static charges and, hence, large voltages.

A very large excess charge can be deposited on the sphere because it moves quickly to the outer surface.
Practical limits arise because the large electric fields polarize and eventually ionize surrounding materials,
creating free charges that neutralize excess charge or allow it to escape. Nevertheless, voltages of 15 million
volts are well within practical limits.

Conductor

experimental
area

Flexible
nonconductive

Insulator

/Ground \

Figure 7.41 Schematic of Van de Graaff generator. A battery (A) supplies excess positive charge to a pointed conductor, the points of
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which spray the charge onto a moving insulating belt near the bottom. The pointed conductor (B) on top in the large sphere picks up the
charge. (The induced electric field at the points is so large that it removes the charge from the belt.) This can be done because the charge
does not remain inside the conducting sphere but moves to its outside surface. An ion source inside the sphere produces positive ions,

which are accelerated away from the positive sphere to high velocities.
Xerography

Most copy machines use an electrostatic process called xerography—a word coined from the Greek words
xeros for dry and graphos for writing. The heart of the process is shown in simplified form in Figure 7.42.
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Figure 7.42 Xerography is a dry copying process based on electrostatics. The major steps in the process are the charging of the
photoconducting drum, transfer of an image, creating a positive charge duplicate, attraction of toner to the charged parts of the drum, and

transfer of toner to the paper. Not shown are heat treatment of the paper and cleansing of the drum for the next copy.

A selenium-coated aluminum drum is sprayed with positive charge from points on a device called a corotron.
Selenium is a substance with an interesting property—it is a photoconductor. That is, selenium is an insulator
when in the dark and a conductor when exposed to light.

In the first stage of the xerography process, the conducting aluminum drum is grounded so that a negative
charge is induced under the thin layer of uniformly positively charged selenium. In the second stage, the
surface of the drum is exposed to the image of whatever is to be copied. In locations where the image is light,
the selenium becomes conducting, and the positive charge is neutralized. In dark areas, the positive charge
remains, so the image has been transferred to the drum.

The third stage takes a dry black powder, called toner, and sprays it with a negative charge so that it is attracted
to the positive regions of the drum. Next, a blank piece of paper is given a greater positive charge than on the
drum so that it will pull the toner from the drum. Finally, the paper and electrostatically held toner are passed
through heated pressure rollers, which melt and permanently adhere the toner to the fibers of the paper.

Laser Printers

Laser printers use the xerographic process to make high-quality images on paper, employing a laser to
produce an image on the photoconducting drum as shown in Figure 7.43. In its most common application, the
laser printer receives output from a computer, and it can achieve high-quality output because of the precision
with which laser light can be controlled. Many laser printers do significant information processing, such as
making sophisticated letters or fonts, and in the past may have contained a computer more powerful than the
one giving them the raw data to be printed.
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Figure 7.43 1Inalaser printer, a laser beam is scanned across a photoconducting drum, leaving a positively charged image. The other
steps for charging the drum and transferring the image to paper are the same as in xerography. Laser light can be very precisely controlled,

enabling laser printers to produce high-quality images.

Ink Jet Printers and Electrostatic Painting

The ink jet printer, commonly used to print computer-generated text and graphics, also employs
electrostatics. A nozzle makes a fine spray of tiny ink droplets, which are then given an electrostatic charge

(Figure 7.44).

Once charged, the droplets can be directed, using pairs of charged plates, with great precision to form letters
and images on paper. Ink jet printers can produce color images by using a black jet and three other jets with
primary colors, usually cyan, magenta, and yellow, much as a color television produces color. (This is more
difficult with xerography, requiring multiple drums and toners.)
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Figure 7.44 The nozzle of an ink-jet printer produces small ink droplets, which are sprayed with electrostatic charge. Various computer-

driven devices are then used to direct the droplets to the correct positions on a page.

Electrostatic painting employs electrostatic charge to spray paint onto oddly shaped surfaces. Mutual
repulsion of like charges causes the paint to fly away from its source. Surface tension forms drops, which are
then attracted by unlike charges to the surface to be painted. Electrostatic painting can reach hard-to-get-to
places, applying an even coat in a controlled manner. If the object is a conductor, the electric field is
perpendicular to the surface, tending to bring the drops in perpendicularly. Corners and points on conductors
will receive extra paint. Felt can similarly be applied.

Smoke Precipitators and Electrostatic Air Cleaning

Another important application of electrostatics is found in air cleaners, both large and small. The electrostatic
part of the process places excess (usually positive) charge on smoke, dust, pollen, and other particles in the air
and then passes the air through an oppositely charged grid that attracts and retains the charged particles

(Figure 7.45)
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Large electrostatic precipitators are used industrially to remove over 99% of the particles from stack gas
emissions associated with the burning of coal and oil. Home precipitators, often in conjunction with the home
heating and air conditioning system, are very effective in removing polluting particles, irritants, and allergens.
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Figure 7.45 (a) Schematic of an electrostatic precipitator. Air is passed through grids of opposite charge. The first grid charges airborne

particles, while the second attracts and collects them. (b) The dramatic effect of electrostatic precipitators is seen by the absence of smoke

from this power plant. (credit b: modification of work by “Cmdalgleish”/Wikimedia Commons)



CHAPTER REVIEW
Key Terms

electric dipole system of two equal but opposite
charges a fixed distance apart

electric dipole moment quantity defined as
1_5 = qu for all dipoles, where the vector points
from the negative to positive charge

electric potential potential energy per unit charge

electric potential difference the change in
potential energy of a charge g moved between two
points, divided by the charge.

electric potential energy potential energy stored
in a system of charged objects due to the charges

electron-volt energy given to a fundamental
charge accelerated through a potential difference
of one volt

electrostatic precipitators filters that apply
charges to particles in the air, then attract those
charges to a filter, removing them from the
airstream

equipotential line two-dimensional
representation of an equipotential surface

equipotential surface surface (usually in three

Key Equations

Potential energy of a two-charge system
Work done to assemble a system of charges
Potential difference

Electric potential

Potential difference between two points
Electric potential of a point charge

Electric potential of a system of point charges

Electric dipole moment

Electric potential due to a dipole

dimensions) on which all points are at the same
potential

grounding process of attaching a conductor to the
earth to ensure that there is no potential
difference between it and Earth

ink jet printer small ink droplets sprayed with an
electric charge are controlled by electrostatic
plates to create images on paper

photoconductor substance that is an insulator
until it is exposed to light, when it becomes a
conductor

Van de Graaff generator machine that produces a
large amount of excess charge, used for
experiments with high voltage

voltage change in potential energy of a charge
moved from one point to another, divided by the
charge; units of potential difference are joules per
coulomb, known as volt

xerography dry copying process based on
electrostatics
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N
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Electric potential of a continuous charge distribution

Electric field components

Del operator in Cartesian coordinates
Electric field as gradient of potential
Del operator in cylindrical coordinates

Del operator in spherical coordinates

Summary

7.1 Electric Potential Energy

+ The work done to move a charge from point A to
Bin an electric field is path independent, and
the work around a closed path is zero.
Therefore, the electric field and electric force
are conservative.

« We can define an electric potential energy,
which between point charges is U(r) = k@,
with the zero reference taken to be at infinity.

« The superposition principle holds for electric
potential energy; the potential energy of a
system of multiple charges is the sum of the
potential energies of the individual pairs.

7.2 Electric Potential and Potential
Difference

« Electric potential is potential energy per unit
charge.

» The potential difference between points A and
B, Vg — V4, that is, the change in potential of a
charge g moved from A to B, is equal to the
change in potential energy divided by the
charge.

» Potential difference is commonly called voltage,
represented by the symbol AV
AV = ATU or AU = gAV.

« An electron-volt is the energy given to a
fundamental charge accelerated through a
potential difference of 1 V. In equation form,
levV = (160 x 1071? C)1V)
= (1.60 x 1071 C) (13/C) = 1.60 x 10719 7.

7.3 Calculations of Electric Potential

« Electric potential is a scalar whereas electric
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field is a vector.

« Addition of voltages as numbers gives the
voltage due to a combination of point charges,
allowing us to use the principle of

N
superposition: Vp = k Z ﬂ.
T i
« An electric dipole consists of two equal and
opposite charges a fixed distance apart, with a
. - 2
dipole moment p = gd.
« Continuous charge distributions may be

d
calculated with Vp = k | 4.

7.4 Determining Field from Potential

« Just as we may integrate over the electric field to
calculate the potential, we may take the
derivative of the potential to calculate the
electric field.

« This may be done for individual components of
the electric field, or we may calculate the entire
electric field vector with the gradient operator.

7.5 Equipotential Surfaces and Conductors

« An equipotential surface is the collection of
points in space that are all at the same potential.
Equipotential lines are the two-dimensional
representation of equipotential surfaces.

« Equipotential surfaces are always perpendicular
to electric field lines.

» Conductors in static equilibrium are
equipotential surfaces.

« Topographic maps may be thought of as
showing gravitational equipotential lines.




7.6 Applications of Electrostatics

« Electrostatics is the study of electric fields in
static equilibrium.
« In addition to research using equipment such as

Conceptual Questions
7.1 Electric Potential Energy

1. Would electric potential energy be meaningful if
the electric field were not conservative?

2. Why do we need to be careful about work done on
the system versus work done by the system in
calculations?

3. Does the order in which we assemble a system of
point charges affect the total work done?

7.2 Electric Potential and Potential
Difference

4. Discuss how potential difference and electric
field strength are related. Give an example.

5. What is the strength of the electric field in a
region where the electric potential is constant?

6. If a proton is released from rest in an electric
field, will it move in the direction of increasing or
decreasing potential? Also answer this question
for an electron and a neutron. Explain why.

7. Voltage is the common word for potential
difference. Which term is more descriptive,
voltage or potential difference?

8. If the voltage between two points is zero, can a
test charge be moved between them with zero net
work being done? Can this necessarily be done
without exerting a force? Explain.

9. What is the relationship between voltage and
energy? More precisely, what is the relationship
between potential difference and electric
potential energy?

10. Voltages are always measured between two

points. Why?

11. How are units of volts and electron-volts

related? How do they differ?

12. Can a particle move in a direction of increasing

electric potential, yet have its electric potential
energy decrease? Explain

7.3 Calculations of Electric Potential

13. Compare the electric dipole moments of
charges +Q separated by a distance d and
charges +Q/2 separated by a distance d/2.

14. Would Gauss’s law be helpful for determining
the electric field of a dipole? Why?

a Van de Graaff generator, many practical
applications of electrostatics exist, including
photocopiers, laser printers, ink jet printers,
and electrostatic air filters.

15. In what region of space is the potential due to a
uniformly charged sphere the same as that of a
point charge? In what region does it differ from
that of a point charge?

16. Can the potential of a nonuniformly charged
sphere be the same as that of a point charge?
Explain.

7.4 Determining Field from Potential

17. If the electric field is zero throughout a region,
must the electric potential also be zero in that
region?

18. Explain why knowledge of I_f(x, ¥, Z) is not
sufficient to determine V(x,y,z). What about the
other way around?

7.5 Equipotential Surfaces and Conductors

19. If two points are at the same potential, are there
any electric field lines connecting them?

20. Suppose you have a map of equipotential
surfaces spaced 1.0 V apart. What do the
distances between the surfaces in a particular

region tell you about the strength of the I_*i in
that region?

21. Isthe electric potential necessarily constant
over the surface of a conductor?

22. Under electrostatic conditions, the excess
charge on a conductor resides on its surface.
Does this mean that all of the conduction
electrons in a conductor are on the surface?

23. Can a positively charged conductor be at a
negative potential? Explain.

24. Can equipotential surfaces intersect?

7.6 Applications of Electrostatics

25. Why are the metal support rods for satellite
network dishes generally grounded?

26. (a) Why are fish reasonably safe in an electrical
storm? (b) Why are swimmers nonetheless
ordered to get out of the water in the same
circumstance?

27. What are the similarities and differences
between the processes in a photocopier and an
electrostatic precipitator?



28. About what magnitude of potential is used to
charge the drum of a photocopy machine? A

Problems
7.1 Electric Potential Energy

29. Consider a charge Q(+5.0 uC) fixed at a site
with another charge Q; (charge +3.0 uC, mass
6.0 ug) moving in the neighboring space. (a)
Evaluate the potential energy of O, when it is
4.0 cm from Qg . (b) If O, starts from rest from a
point 4.0 cm from Q1, what will be its speed
when it is 8.0 cm from Q1 ? (Note: QO is held
fixed in its place.)

30. Two charges Q1(+2.00 uC) and Q> (+2.00 uC)
are placed symmetrically along the x-axis at
x = +3.00 cm. Consider a charge Q3 of charge
+4.00 4C and mass 10.0 mg moving along the
y-axis. If Q3 starts from rest at y = 2.00 cm,
what is its speed when it reaches y = 4.00 cm?

31. Toform a hydrogen atom, a proton is fixed at a
point and an electron is brought from far away
to a distance of 0.529 x 1010 m, the average
distance between proton and electron in a
hydrogen atom. How much work is done?

32. (a) What is the average power output of a heart
defibrillator that dissipates 400 J of energy in
10.0 ms? (b) Considering the high-power
output, why doesn’t the defibrillator produce
serious burns?

7.2 Electric Potential and Potential
Difference

33. Find the ratio of speeds of an electron and a
negative hydrogen ion (one having an extra
electron) accelerated through the same voltage,
assuming non-relativistic final speeds. Take the
mass of the hydrogen ion to be
1.67 x 107%7 kg.

34. Anevacuated tube uses an accelerating voltage
of 40 kV to accelerate electrons to hit a copper
plate and produce X-rays. Non-relativistically,
what would be the maximum speed of these
electrons?

35. Show that units of V/m and N/C for electric field
strength are indeed equivalent.

36. What is the strength of the electric field between
two parallel conducting plates separated by
1.00 cm and having a potential difference
(voltage) between them of 1.50 X 104 v?

37. The electric field strength between two parallel
conducting plates separated by 4.00 cm is

38.

39.

40.

41.

42.

43.

web search for “xerography” may be of use.

7.50 x 10* V/m. (a) What is the potential
difference between the plates? (b) The plate
with the lowest potential is taken to be zero
volts. What is the potential 1.00 cm from that
plate and 3.00 cm from the other?

The voltage across a membrane forming a cell
wall is 80.0 mV and the membrane is 9.00 nm
thick. What is the electric field strength? (The
value is surprisingly large, but correct.) You may
assume a uniform electric field.

Two parallel conducting plates are separated by
10.0 cm, and one of them is taken to be at zero
volts. (a) What is the electric field strength
between them, if the potential 8.00 cm from the
zero volt plate (and 2.00 cm from the other) is
450 V? (b) What is the voltage between the
plates?

Find the maximum potential difference
between two parallel conducting plates
separated by 0.500 cm of air, given the
maximum sustainable electric field strength in
airtobe 3.0 x 10° V/m.

An electron is to be accelerated in a uniform
electric field having a strength of

2.00 x 10° V/m. (a) What energy in keV is
given to the electron if it is accelerated through
0.400 m? (b) Over what distance would it have to
be accelerated to increase its energy by 50.0
GeV?

Use the definition of potential difference in
terms of electric field to deduce the formula for
potential difference betweenr = r, and r = ry,
for a point charge located at the origin. Here ris
the spherical radial coordinate.

The electric field in a region is pointed away
from the z-axis and the magnitude depends
upon the distance s from the axis. The
magnitude of the electric field is given as £ =%
where a is a constant. Find the potential
difference between points P; and P,, explicitly
stating the path over which you conduct the
integration for the line integral.




44.

Singly charged gas ions are accelerated from
rest through a voltage of 13.0 V. At what
temperature will the average kinetic energy of
gas molecules be the same as that given these
ions?

7.3 Calculations of Electric Potential

45.

46.

47.

48.

49.

50.

51.

A 0.500-cm-diameter plastic sphere, used in a
static electricity demonstration, has a uniformly
distributed 40.0-pC charge on its surface. What
is the potential near its surface?

How far from a 1.00-uC point charge is the
potential 100 V? At what distance is it

2.00 x 102 V?

If the potential due to a point charge is

5.00 x 10% V at a distance of 15.0 m, what are
the sign and magnitude of the charge?

In nuclear fission, a nucleus splits roughly in
half. (a) What is the potential 2.00 X 1074 m
from a fragment that has 46 protons in it? (b)
What is the potential energy in MeV of a
similarly charged fragment at this distance?

A research Van de Graaff generator has a
2.00-m-diameter metal sphere with a charge of
5.00 mC on it. Assume the potential energy is
zero at a reference point infinitely far away from
the Van de Graaff. (a) What is the potential near
its surface? (b) At what distance from its center
is the potential 1.00 MV? (c) An oxygen atom
with three missing electrons is released near
the Van de Graaff generator. What is its kinetic
energy in MeV when the atom is at the distance
found in part b?

An electrostatic paint sprayer has a 0.200-m-
diameter metal sphere at a potential of 25.0 kV
that repels paint droplets onto a grounded
object.

(a) What charge is on the sphere? (b) What
charge must a 0.100-mg drop of paint have to
arrive at the object with a speed of 10.0 m/s?
(a) What is the potential between two points
situated 10 cm and 20 cm from a 3.0-uC point
charge? (b) To what location should the point at
20 cm be moved to increase this potential
difference by a factor of two?

52. Find the potential at points Py, P>, P53, and P4 in
the diagram due to the two given charges.

T *P,
|<—4 cm - 4cm——|

-2 cm-—|
c & &

- -
+5mC Py T P, _10mcC
|-2 M 3 om

P,e

53. Two charges —2.0 uC and +2.0 uC are separated
by 4.0 cm on the z-axis symmetrically about
origin, with the positive one uppermost. Two
space points of interest P; and P, are located
3.0 cm and 30 cm from origin at an angle 30°
with respect to the z-axis. Evaluate electric
potentials at P; and P in two ways: (a) Using
the exact formula for point charges, and (b)
using the approximate dipole potential formula.

54. (a) Plot the potential of a uniformly charged 1-m
rod with 1 C/m charge as a function of the
perpendicular distance from the center. Draw
your graph froms = 0.1 mtos = 1.0 m. (b) On
the same graph, plot the potential of a point
charge with a 1-C charge at the origin. (c) Which
potential is stronger near the rod? (d) What
happens to the difference as the distance
increases? Interpret your result.

7.4 Determining Field from Potential

55. Throughout a region, equipotential surfaces are
given by z = constant. The surfaces are equally
spaced with V' = 100 V for
z=0.00m,V =200V for
z=0.50m, ¥V =300V for z=1.00 m. What is
the electric field in this region?

56. In a particular region, the electric potential is
given by V = —xyzz + 4xy. What is the electric
field in this region?

57. Calculate the electric field of an infinite line
charge, throughout space.

7.5 Equipotential Surfaces and Conductors

58. Two very large metal plates are placed 2.0 cm
apart, with a potential difference of 12 V
between them. Consider one plate tobe at 12V,
and the other at 0 V. (a) Sketch the equipotential
surfaces for 0, 4, 8, and 12 V. (b) Next sketch in
some electric field lines, and confirm that they



are perpendicular to the equipotential lines.

59. Avery large sheet of insulating material has had
an excess of electrons placed on it to a surface
charge density of =3.00 nC/m?. (a) As the
distance from the sheet increases, does the
potential increase or decrease? Can you explain
why without any calculations? Does the location
of your reference point matter? (b) What is the
shape of the equipotential surfaces? (c) What is
the spacing between surfaces that differ by 1.00
v?

60. A metallic sphere of radius 2.0 cm is charged
with +5.0-uC charge, which spreads on the
surface of the sphere uniformly. The metallic
sphere stands on an insulated stand and is
surrounded by a larger metallic spherical shell,
of inner radius 5.0 cm and outer radius 6.0 cm.
Now, a charge of —5.0-uC is placed on the
inside of the spherical shell, which spreads out
uniformly on the inside surface of the shell. If
potential is zero at infinity, what is the potential
of (a) the spherical shell, (b) the sphere, (c) the
space between the two, (d) inside the sphere,
and (e) outside the shell?

-5.0 uC

61. Two large charged plates of charge density
+30 ,uC/m2 face each other at a separation of
5.0 mm. (a) Find the electric potential
everywhere. (b) An electron is released from
rest at the negative plate; with what speed will it
strike the positive plate?

62. Along cylinder of aluminum of radius R meters
is charged so that it has a uniform charge per
unit length on its surface of A.

(a) Find the electric field inside and outside the
cylinder. (b) Find the electric potential inside
and outside the cylinder. (c) Plot electric field
and electric potential as a function of distance

63.

64.

65.

66.

from the center of the rod.

Two parallel plates 10 cm on a side are given
equal and opposite charges of magnitude

5.0 x 107 C. The plates are 1.5 mm apart.
What is the potential difference between the
plates?

The surface charge density on a long straight
metallic pipe is 6. What is the electric potential
outside and inside the pipe? Assume the pipe
has a diameter of 2a.

aN
N
+ +
+ +
+ +
+ +
+ +
+ +
\_[/
o0

Concentric conducting spherical shells carry
charges Q and —Q, respectively. The inner shell
has negligible thickness. What is the potential
difference between the shells?

Shown below are two concentric spherical
shells of negligible thicknesses and radii R;
and R,. The inner and outer shell carry net
charges q; and ¢q,, respectively, where both g




67.

and g, are positive. What is the electric
potential in the regions (a) r < Ry, (b)
Ry <r<Ry,and(©)r > Ry?

A solid cylindrical conductor of radius a is
surrounded by a concentric cylindrical shell of
inner radius b. The solid cylinder and the shell
carry charges Q and —Q, respectively. Assuming
that the length L of both conductors is much
greater than a or b, what is the potential
difference between the two conductors?

7.6 Applications of Electrostatics

68.

69.

70.

(a) What is the electric field 5.00 m from the
center of the terminal of a Van de Graaff with a
3.00-mC charge, noting that the field is
equivalent to that of a point charge at the center
of the terminal? (b) At this distance, what force
does the field exert on a 2.00-uC charge on the
Van de Graaff’s belt?

(a) What is the direction and magnitude of an
electric field that supports the weight of a free
electron near the surface of Earth? (b) Discuss
what the small value for this field implies
regarding the relative strength of the
gravitational and electrostatic forces.

A simple and common technique for
accelerating electrons is shown in Figure 7.46,
where there is a uniform electric field between
two plates. Electrons are released, usually from
a hot filament, near the negative plate, and
there is a small hole in the positive plate that
allows the electrons to continue moving. (a)
Calculate the acceleration of the electron if the
field strength is 2.50 X 10% N/C. (b) Explain
why the electron will not be pulled back to the
positive plate once it moves through the hole.

71.
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Figure 7.46 Parallel conducting plates with opposite

charges on them create a relatively uniform electric field
used to accelerate electrons to the right. Those that go
through the hole can be used to make a TV or computer

screen glow or to produce X- rays.

In a Geiger counter, a thin metallic wire at the
center of a metallic tube is kept at a high voltage
with respect to the metal tube. lonizing
radiation entering the tube knocks electrons off
gas molecules or sides of the tube that then
accelerate towards the center wire, knocking off
even more electrons. This process eventually
leads to an avalanche that is detectable as a
current. A particular Geiger counter has a tube
of radius R and the inner wire of radius a is at a
potential of V{y volts with respect to the outer
metal tube. Consider a point P at a distance s
from the center wire and far away from the
ends. (a) Find a formula for the electric field at a
point Pinside using the infinite wire
approximation. (b) Find a formula for the
electric potential at a point Pinside. (c) Use

Vo =900V, a =3.00mm, R =2.00 cm, and
find the value of the electric field at a point 1.00
cm from the center.



72.

73.

74.

75.

Initial Wire

radiation

Electron
avalanche —

The practical limit to an electric field in air is
about 3.00 x 10° N/C. Above this strength,
sparking takes place because air begins to
ionize. (a) At this electric field strength, how far
would a proton travel before hitting the speed of
light (ignore relativistic effects)? (b) Is it
practical to leave air in particle accelerators?

To form a helium atom, an alpha particle that
contains two protons and two neutrons is fixed
at one location, and two electrons are brought in
from far away, one at a time. The first electron is
placed at 0.600 x 10~!0 m from the alpha
particle and held there while the second
electron is brought to 0.600 X 10710 m from
the alpha particle on the other side from the
first electron. See the final configuration below.
(a) How much work is done in each step? (b)
What is the electrostatic energy of the alpha
particle and two electrons in the final
configuration?

Alpha particle
Electron Electron
9 @ 9
[+—0.6 x 10710 m—+}«—0.6 x 10710 m—|

Find the electrostatic energy of eight equal
charges (43 uC) each fixed at the corners of a
cube of side 2 cm.

The probability of fusion occurring is greatly
enhanced when appropriate nuclei are brought
close together, but mutual Coulomb repulsion
must be overcome. This can be done using the
kinetic energy of high-temperature gas ions or
by accelerating the nuclei toward one another.
(a) Calculate the potential energy of two singly
charged nuclei separated by 1.00 X 1072 m
(b) At what temperature will atoms of a gas have
an average kinetic energy equal to this needed
electrical potential energy?

76.

77.
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79.

80.

81.

A bare helium nucleus has two positive charges
and a mass of 6.64 x 10727 kg. (a) Calculate its
kinetic energy in joules at 2.00% of the speed of
light. (b) What is this in electron-volts? (c) What
voltage would be needed to obtain this energy?
An electron enters a region between two large
parallel plates made of aluminum separated by
a distance of 2.0 cm and kept at a potential
difference of 200 V. The electron enters through
a small hole in the negative plate and moves
toward the positive plate. At the time the
electron is near the negative plate, its speed is
4.0 x 10° m/s. Assume the electric field
between the plates to be uniform, and find the
speed of electron at (a) 0.10 cm, (b) 0.50 cm, (c)
1.0 cm, and (d) 1.5 cm from the negative plate,
and (e) immediately before it hits the positive

plate.
d=2cm, V=200V

- +

How far apart are two conducting plates that
have an electric field strength of

4.50 x 10% V/m between them, if their
potential difference is 15.0 kV?

(a) Will the electric field strength between two
parallel conducting plates exceed the
breakdown strength of dry air, which is

3.00 x 10° V/m, if the plates are separated by
2.00 mm and a potential difference of

5.0 x 103 Vis applied? (b) How close together
can the plates be with this applied voltage?
Membrane walls of living cells have surprisingly
large electric fields across them due to
separation of ions. What is the voltage across an
8.00-nm-thick membrane if the electric field
strength across it is 5.50 MV/m? You may
assume a uniform electric field.

A double charged ion is accelerated to an
energy of 32.0 keV by the electric field between
two parallel conducting plates separated by
2.00 cm. What is the electric field strength




82.

83.

84.

between the plates?

The temperature near the center of the Sun is
thought to be 15 million degrees Celsius

(1.5 x 107 °C) (or kelvin). Through what

voltage must a singly charged ion be accelerated

to have the same energy as the average kinetic
energy of ions at this temperature?

Alightning bolt strikes a tree, moving 20.0 C of
charge through a potential difference of

1.00 x 102 MV. (a) What energy was
dissipated? (b) What mass of water could be
raised from 15 °C to the boiling point and then
boiled by this energy? (c) Discuss the damage
that could be caused to the tree by the
expansion of the boiling steam.

What is the potential 0.530 X 10719 m from a
proton (the average distance between the
proton and electron in a hydrogen atom)?

Additional Problems

88.

89.

90.

91.

92.

A 12.0-V battery-operated bottle warmer heats
50.0 g of glass, 2.50 x 102 g of baby formula,
and 2.00 x 10? g of aluminum from 20.0 °C to
90.0 °C. (a) How much charge is moved by the
battery? (b) How many electrons per second
flow if it takes 5.00 min to warm the formula?
(Hint: Assume that the specific heat of baby
formula is about the same as the specific heat of
water.)

A battery-operated car uses a 12.0-V system.
Find the charge the batteries must be able to
move in order to accelerate the 750 kg car from
rest to 25.0 m/s, make it climb a 2.00 X 102-m
high hill, and finally cause it to travel at a
constant 25.0 m/s while climbing with

5.00 x 10%-N force for an hour.

(a) Find the voltage near a 10.0 cm diameter
metal sphere that has 8.00 C of excess positive
charge on it. (b) What is unreasonable about
this result? (¢) Which assumptions are
responsible?

A uniformly charged half-ring of radius 10 cm is
placed on a nonconducting table. It is found that
3.0 cm above the center of the half-ring the
potential is —3.0 V with respect to zero potential
at infinity. How much charge is in the half-ring?
A glass ring of radius 5.0 cm is painted with a
charged paint such that the charge density
around the ring varies continuously given by
the following function of the polar angle

0,4 = (3.0 x 107° C/m) cos20. Find the

potential at a point 15 cm above the center.

85.

86.

87.

93.

94,

96.

97.

(a) A sphere has a surface uniformly charged
with 1.00 C. At what distance from its center is
the potential 5.00 MV? (b) What does your
answer imply about the practical aspect of
isolating such a large charge?

What are the sign and magnitude of a point
charge that produces a potential of —2.00 V at a
distance of 1.00 mm?

In one of the classic nuclear physics
experiments at the beginning of the twentieth
century, an alpha particle was accelerated
toward a gold nucleus, and its path was
substantially deflected by the Coulomb
interaction. If the energy of the doubly charged
alpha nucleus was 5.00 MeV, how close to the
gold nucleus (79 protons) could it come before
being deflected?

A CD disk of radius (R = 3.0 cm) is sprayed with
a charged paint so that the charge varies
continually with radial distance r from the
center in the following manner:

o =—(6.0C/m)r/R.

Find the potential at a point 4 cm above the
center.

(a) What is the final speed of an electron
accelerated from rest through a voltage of 25.0
MV by a negatively charged Van de Graff
terminal? (b) What is unreasonable about this
result? (c) Which assumptions are responsible?

. Alarge metal plate is charged uniformly to a

density of o = 2.0 x 10~ C/m?. How far apart
are the equipotential surfaces that represent a
potential difference of 25 V?

Your friend gets really excited by the idea of
making a lightning rod or maybe just a sparking
toy by connecting two spheres as shown in
Figure 7.39, and making R; so small that the
electric field is greater than the dielectric
strength of air, just from the usual 150 V/m
electric field near the surface of the Earth. If Ry
is 10 cm, how small does Rj need to be, and
does this seem practical? (Hint: recall the
calculation for electric field at the surface of a
conductor from Gauss’s Law.)

(a) Find x >> L limit of the potential of a finite
uniformly charged rod and show that it
coincides with that of a point charge formula.
(b) Why would you expect this result?
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A small spherical pith ball of radius 0.50 cm is
painted with a silver paint and then —10 uC of
charge is placed on it. The charged pith ball is
put at the center of a gold spherical shell of
inner radius 2.0 cm and outer radius 2.2 cm. (a)
Find the electric potential of the gold shell with
respect to zero potential at infinity. (b) How
much charge should you put on the gold shell if
you want to make its potential 100 V?
Two parallel conducting plates, each of cross-
sectional area 400 cmz, are 2.0 cm apart and
uncharged. If 1.0 X 10!2 electrons are
transferred from one plate to the other, (a) what
is the potential difference between the plates?
(b) What is the potential difference between the
positive plate and a point 1.25 cm from it that is
between the plates?
A point charge of g = 5.0 X 108 Cis placed
at the center of an uncharged spherical
conducting shell of inner radius 6.0 cm and
outer radius 9.0 cm. Find the electric potential
at(@r=4.0cm, (b)r =8.0cm, (c)
r=12.0cm.
Earth has a net charge that produces an
electric field of approximately 150 N/C
downward at its surface. (a) What is the
magnitude and sign of the excess charge,
noting the electric field of a conducting sphere
is equivalent to a point charge at its center? (b)
What acceleration will the field produce on a
free electron near Earth’s surface? (c) What
mass object with a single extra electron will
have its weight supported by this field?

Challenge Problems

106.

107.

Three Na™t and three C1™ ions are placed
alternately and equally spaced around a circle
of radius 50 nm. Find the electrostatic energy
stored.

Look up (presumably online, or by dismantling
an old device and making measurements) the
magnitude of the potential deflection plates
(and the space between them) in an ink jet
printer. Then look up the speed with which the
ink comes out the nozzle. Can you calculate the
typical mass of an ink drop?

102.

103.

104.

105.

108.

109.

Point charges of 25.0 4C and 45.0 uC are
placed 0.500 m apart.

(a) At what point along the line between them
is the electric field zero?

(b) What is the electric field halfway between
them?

What can you say about two charges ¢g; and g,
if the electric field one-fourth of the way from
q1 to qo is zero?

Calculate the angular velocity w of an electron
orbiting a proton in the hydrogen atom, given
the radius of the orbit is 0.530 x 10719 m. You
may assume that the proton is stationary and
the centripetal force is supplied by Coulomb
attraction.

An electron has an initial velocity of

5.00 x 10® m/s in a uniform 2.00 x 10° -N/C
electric field. The field accelerates the electron
in the direction opposite to its initial velocity.
(a) What is the direction of the electric field?
(b) How far does the electron travel before
coming to rest? (c) How long does it take the
electron to come to rest? (d) What is the
electron’s velocity when it returns to its
starting point?

Use the electric field of a finite sphere with
constant volume charge density to calculate
the electric potential, throughout space. Then
check your results by calculating the electric
field from the potential.

Calculate the electric field of a dipole
throughout space from the potential.




CHAPTER 8
Capacitance

Figure 8.1 The tree-like branch patterns in this clear Plexiglas® block are known as a Lichtenberg figure, named for
the German physicist Georg Christof Lichtenberg (1742-1799), who was the first to study these patterns. The
“branches” are created by the dielectric breakdown produced by a strong electric field. (credit: modification of work
by Bert Hickman)

Chapter Outline

8.1 Capacitors and Capacitance

8.2 Capacitors in Series and in Parallel

8.3 Energy Stored in a Capacitor

8.4 Capacitor with a Dielectric

8.5 Molecular Model of a Dielectric

INTRODUCTION Capacitors are important components of electrical circuits in many electronic devices,
including pacemakers, cell phones, and computers. In this chapter, we study their properties, and, over the
next few chapters, we examine their function in combination with other circuit elements. By themselves,
capacitors are often used to store electrical energy and release it when needed; with other circuit components,
capacitors often act as part of a filter that allows some electrical signals to pass while blocking others. You can
see why capacitors are considered one of the fundamental components of electrical circuits.



8.1 Capacitors and Capacitance

Learning Objectives
By the end of this section, you will be able to:
e Explain the concepts of a capacitor and its capacitance
e Describe how to evaluate the capacitance of a system of conductors

A capacitor is a device used to store electrical charge and electrical energy. Capacitors are generally with two
electrical conductors separated by a distance. (Note that such electrical conductors are sometimes referred to
as “electrodes,” but more correctly, they are “capacitor plates.”) The space between capacitors may simply be a
vacuum, and, in that case, a capacitor is then known as a “vacuum capacitor.” However, the space is usually
filled with an insulating material known as a dielectric. (You will learn more about dielectrics in the sections
on dielectrics later in this chapter.) The amount of storage in a capacitor is determined by a property called
capacitance, which you will learn more about a bit later in this section.

Capacitors have applications ranging from filtering static from radio reception to energy storage in heart
defibrillators. Typically, commercial capacitors have two conducting parts close to one another but not
touching, such as those in Figure 8.2. Most of the time, a dielectric is used between the two plates. When
battery terminals are connected to an initially uncharged capacitor, the battery potential moves a small
amount of charge of magnitude Q from the positive plate to the negative plate. The capacitor remains neutral
overall, but with charges +Q and —Q residing on opposite plates.

] 2

+Q -Q

Insulator

(a) (b)
Figure 8.2 Both capacitors shown here were initially uncharged before being connected to a battery. They now have charges of +Q and
—Q (respectively) on their plates. (a) A parallel-plate capacitor consists of two plates of opposite charge with area A separated by distance

d. (b) A rolled capacitor has a dielectric material between its two conducting sheets (plates).

A system composed of two identical parallel-conducting plates separated by a distance is called a parallel-
plate capacitor (Figure 8.3). The magnitude of the electrical field in the space between the parallel plates is

E = o/e(, where o denotes the surface charge density on one plate (recall that ¢ is the charge Q per the surface
area A). Thus, the magnitude of the field is directly proportional to Q.



8.1 ¢ Capacitors and Capacitance
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Figure 8.3 The charge separation in a capacitor shows that the charges remain on the surfaces of the capacitor plates. Electrical field
lines in a parallel-plate capacitor begin with positive charges and end with negative charges. The magnitude of the electrical field in the

space between the plates is in direct proportion to the amount of charge on the capacitor.

Capacitors with different physical characteristics (such as shape and size of their plates) store different
amounts of charge for the same applied voltage Vacross their plates. The capacitance C of a capacitor is
defined as the ratio of the maximum charge Q that can be stored in a capacitor to the applied voltage V across
its plates. In other words, capacitance is the largest amount of charge per volt that can be stored on the device:

C'= = 8.1

The ST unit of capacitance is the farad (F), named after Michael Faraday (1791-1867). Since capacitance is the
charge per unit voltage, one farad is one coulomb per one volt, or

_1IC

=1V

By definition, a 1.0-F capacitor is able to store 1.0 C of charge (a very large amount of charge) when the
potential difference between its plates is only 1.0 V. One farad is therefore a very large capacitance. Typical
capacitance values range from picofarads (1 pF = 1012 F) to millifarads (1 mF = 1073 F), which also
includes microfarads (1 uF = 107° F). Capacitors can be produced in various shapes and sizes (Figure 8.4).

1F
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Figure 8.4 These are some typical capacitors used in electronic devices. A capacitor’s size is not necessarily related to its capacitance
value. (credit: Windell Oskay)

Calculation of Capacitance

We can calculate the capacitance of a pair of conductors with the standard approach that follows.

@ PROBLEM-SOLVING STRATEGY

Calculating Capacitance
1. Assume that the capacitor has a charge Q.
=
2. Determine the electrical field E between the conductors. If symmetry is present in the arrangement of
conductors, you may be able to use Gauss’s law for this calculation.

3. Find the potential difference between the conductors from

B

= -
Vg—-V4=— [ E-dl, 8.2
A

where the path of integration leads from one conductor to the other. The magnitude of the potential
difference isthen V = |Vg — V4|.
4. With Vknown, obtain the capacitance directly from Equation 8.1.

To show how this procedure works, we now calculate the capacitances of parallel-plate, spherical, and
cylindrical capacitors. In all cases, we assume vacuum capacitors (empty capacitors) with no dielectric
substance in the space between conductors.

Parallel-Plate Capacitor

The parallel-plate capacitor (Figure 8.5) has two identical conducting plates, each having a surface area A,
separated by a distance d. When a voltage Vis applied to the capacitor, it stores a charge Q, as shown. We can
see how its capacitance may depend on A and d by considering characteristics of the Coulomb force. We know
that force between the charges increases with charge values and decreases with the distance between them.
We should expect that the bigger the plates are, the more charge they can store. Thus, C should be greater for a
larger value of A. Similarly, the closer the plates are together, the greater the attraction of the opposite charges
on them. Therefore, C should be greater for a smaller d.
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Figure 8.5 1Ina parallel-plate capacitor with plates separated by a distance d, each plate has the same surface area A.

We define the surface charge density ¢ on the plates as

o=2
7T
We know from previous chapters that when d is small, the electrical field between the plates is fairly uniform
(ignoring edge effects) and that its magnitude is given by
E=2,
€0
where the constant g is the permittivity of free space, gg = 8.85 X 10~!2 F/m. The SI unit of F/m is

equivalent to C2/N - m?. Since the electrical field i:l between the plates is uniform, the potential difference
between the plates is

d d
vopa=29_29%
£0 g A

Therefore Equation 8.1 gives the capacitance of a parallel-plate capacitor as

o o A

=—==—=¢)—. 8.3
V  QdlegA d

Notice from this equation that capacitance is a function only of the geometry and what material fills the space
between the plates (in this case, vacuum) of this capacitor. In fact, this is true not only for a parallel-plate
capacitor, but for all capacitors: The capacitance is independent of Q or V. If the charge changes, the potential
changes correspondingly so that Q/ Vremains constant.

@ EXAMPLE 8.1

Capacitance and Charge Stored in a Parallel-Plate Capacitor
(a) What is the capacitance of an empty parallel-plate capacitor with metal plates that each have an area of
1.00 m?2, separated by 1.00 mm? (b) How much charge is stored in this capacitor if a voltage of 3.00 X 103 Vis




applied to it?

Strategy

Finding the capacitance Cis a straightforward application of Equation 8.3. Once we find C, we can find the
charge stored by using Equation 8.1.

Solution

a. Entering the given values into Equation 8.3 yields

A F 1.00 m?
C=eo = <8.85 x 10712 —> o

TSR 8.85 x 10~ F = 8.85nF.
. X m

m
This small capacitance value indicates how difficult it is to make a device with a large capacitance.
b. Inverting Equation 8.1 and entering the known values into this equation gives
0 =CV =(8.85 x 107 F)(3.00 x 10> V) = 26.6 uC.
Significance
This charge is only slightly greater than those found in typical static electricity applications. Since air breaks

down (becomes conductive) at an electrical field strength of about 3.0 MV/m, no more charge can be stored on
this capacitor by increasing the voltage.

@ EXAMPLE 8.2

A 1-F Parallel-Plate Capacitor

Suppose you wish to construct a parallel-plate capacitor with a capacitance of 1.0 F. What area must you use
for each plate if the plates are separated by 1.0 mm?

Solution

Rearranging Equation 8.3, we obtain

Cd _ (1L.OF)(1.0 x 1073 m)
€0 8.85 x 10712 F/m

A= =1.1 x 108 m?.

Each square plate would have to be 10 km across. It used to be a common prank to ask a student to go to the
laboratory stockroom and request a 1-F parallel-plate capacitor, until stockroom attendants got tired of the
joke.

CHECK YOUR UNDERSTANDING 8.1

The capacitance of a parallel-plate capacitor is 2.0 pF. If the area of each plate is 2.4 cm?, what is the plate
separation?

CHECK YOUR UNDERSTANDING 8.2

Verify that 6/V and g(/d have the same physical units.

Spherical Capacitor

A spherical capacitor is another set of conductors whose capacitance can be easily determined (Figure 8.6). It
consists of two concentric conducting spherical shells of radii R; (inner shell) and R, (outer shell). The shells
are given equal and opposite charges +Q and —(Q, respectively. From symmetry, the electrical field between
the shells is directed radially outward. We can obtain the magnitude of the field by applying Gauss’s law over a
spherical Gaussian surface of radius r concentric with the shells. The enclosed charge is +Q); therefore we
have



7{17: fidA = E@dm?y = 2.
&0
S

Thus, the electrical field between the conductors is

I ¢

T.
47T£0 r2

E=

-
We substitute this E into Equation 8.2 and integrate along a radial path between the shells:

Ry > > Ry 1 Ry d 1 1
V:/ E~dl=/ < %?)-(? dr) = -2 &_ £ (___>
Ry Ry 471'6() r 47[60 Ry r 471'80 R Ry

In this equation, the potential difference between the platesis V = —(V, — V|) = V| — V,. We substitute this
result into Equation 8.1 to find the capacitance of a spherical capacitor:

R R,

C=g=47[g 8.4

% °R, - R,

f/ |

surface =

Figure 8.6 A spherical capacitor consists of two concentric conducting spheres. Note that the charges on a conductor reside on its

surface.

@ EXAMPLE 8.3

Capacitance of an Isolated Sphere
Calculate the capacitance of a single isolated conducting sphere of radius R; and compare it with Equation 8.4

in the limit as Ry — .

Strategy
We assume that the charge on the sphere is Q, and so we follow the four steps outlined earlier. We also assume

the other conductor to be a concentric hollow sphere of infinite radius.

Solution

On the outside of an isolated conducting sphere, the electrical field is given by Equation 8.2. The magnitude of
the potential difference between the surface of an isolated sphere and infinity is

+e o SaP PR
V=/ Bl = 2 Li Gan=-2 i 9
R, dreg Jr, r? 4reg Jr, r? 4meg R




The capacitance of an isolated sphere is therefore

C= g =Q47L’£0R1

% 0 =4regR;.

Significance

The same result can be obtained by taking the limit of Equation 8.4 as R, — . A single isolated sphere is

therefore equivalent to a spherical capacitor whose outer shell has an infinitely large radius.

CHECK YOUR UNDERSTANDING 8.3

The radius of the outer sphere of a spherical capacitor is five times the radius of its inner shell. What are the
dimensions of this capacitor if its capacitance is 5.00 pF?

Cylindrical Capacitor

A cylindrical capacitor consists of two concentric, conducting cylinders (Figure 8.7). The inner cylinder, of
radius R|, may either be a shell or be completely solid. The outer cylinder is a shell of inner radius R,. We

assume that the length of each cylinder is / and that the excess charges +Q and —Q reside on the inner and
outer cylinders, respectively.

Gaussian surface

Figure 8.7 A cylindrical capacitor consists of two concentric, conducting cylinders. Here, the charge on the outer surface of the inner

cylinder is positive (indicated by +) and the charge on the inner surface of the outer cylinder is negative (indicated by —).

With edge effects ignored, the electrical field between the conductors is directed radially outward from the
common axis of the cylinders. Using the Gaussian surface shown in Figure 8.7, we have

= P Q
E-ndA = EQnrl)=—.
€0
S
Therefore, the electrical field between the cylinders is
1

27[80

E=

95 85
rl

Here T is the unit radial vector along the radius of the cylinder. We can substitute into Equation 8.2 and find
the potential difference between the cylinders:

R Ry 1 Ry d R
V=/ E.dl, = 0 L Gan=-2 ar__©Q Inr| g2 = 0 R
R, 2req | R, T 2rmeg | R, T 2req ! 1 2z7egl Ry

=

Thus, the capacitance of a cylindrical capacitor is



C= g _ 2megl
"V In(Ry/Ry)’

8.6
As in other cases, this capacitance depends only on the geometry of the conductor arrangement. An important
application of Equation 8.6 is the determination of the capacitance per unit length of a coaxial cable, which is
commonly used to transmit time-varying electrical signals. A coaxial cable consists of two concentric,
cylindrical conductors separated by an insulating material. (Here, we assume a vacuum between the
conductors, but the physics is qualitatively almost the same when the space between the conductors is filled by
a dielectric.) This configuration shields the electrical signal propagating down the inner conductor from stray
electrical fields external to the cable. Current flows in opposite directions in the inner and the outer
conductors, with the outer conductor usually grounded. Now, from Equation 8.6, the capacitance per unit
length of the coaxial cable is given by

C _ 2reg
I~ In(Ra/Ry)’

In practical applications, it is important to select specific values of C/1 This can be accomplished with
appropriate choices of radii of the conductors and of the insulating material between them.

CHECK YOUR UNDERSTANDING 8.4

When a cylindrical capacitor is given a charge of 0.500 nC, a potential difference of 20.0 V is measured
between the cylinders. (a) What is the capacitance of this system? (b) If the cylinders are 1.0 m long, what is the
ratio of their radii?

Several types of practical capacitors are shown in Figure 8.4. Common capacitors are often made of two small
pieces of metal foil separated by two small pieces of insulation (see Figure 8.2(b)). The metal foil and insulation
are encased in a protective coating, and two metal leads are used for connecting the foils to an external circuit.
Some common insulating materials are mica, ceramic, paper, and Teflon™ non-stick coating.

Another popular type of capacitor is an electrolytic capacitor. It consists of an oxidized metal in a conducting
paste. The main advantage of an electrolytic capacitor is its high capacitance relative to other common types of
capacitors. For example, capacitance of one type of aluminum electrolytic capacitor can be as high as 1.0 F.
However, you must be careful when using an electrolytic capacitor in a circuit, because it only functions
correctly when the metal foil is at a higher potential than the conducting paste. When reverse polarization
occurs, electrolytic action destroys the oxide film. This type of capacitor cannot be connected across an
alternating current source, because half of the time, ac voltage would have the wrong polarity, as an alternating
current reverses its polarity (see Alternating-Current Circuts on alternating-current circuits).

Avariable air capacitor (Figure 8.8) has two sets of parallel plates. One set of plates is fixed (indicated as
“stator”), and the other set of plates is attached to a shaft that can be rotated (indicated as “rotor”). By turning
the shaft, the cross-sectional area in the overlap of the plates can be changed; therefore, the capacitance of this
system can be tuned to a desired value. Capacitor tuning has applications in any type of radio transmission
and in receiving radio signals from electronic devices. Any time you tune your car radio to your favorite
station, think of capacitance.
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Figure 8.8 Inavariable air capacitor, capacitance can be tuned by changing the effective area of the plates. (credit: modification of work

by Robbie Sproule)

The symbols shown in Figure 8.9 are circuit representations of various types of capacitors. We generally use
the symbol shown in Figure 8.9(a). The symbol in Figure 8.9(c) represents a variable-capacitance capacitor.
Notice the similarity of these symbols to the symmetry of a parallel-plate capacitor. An electrolytic capacitor is
represented by the symbol in part Figure 8.9(b), where the curved plate indicates the negative terminal.

e e

(@ (b) (©)
Figure 8.9 This shows three different circuit representations of capacitors. The symbol in (a) is the most commonly used one. The symbol

in (b) represents an electrolytic capacitor. The symbol in (c) represents a variable-capacitance capacitor.

An interesting applied example of a capacitor model comes from cell biology and deals with the electrical
potential in the plasma membrane of a living cell (Figure 8.10). Cell membranes separate cells from their
surroundings but allow some selected ions to pass in or out of the cell. The potential difference across a
membrane is about 70 mV. The cell membrane may be 7 to 10 nm thick. Treating the cell membrane as a
nano-sized capacitor, the estimate of the smallest electrical field strength across its ‘plates’ yields the value

-3
E=Y =70x100-V _ 7 3 10 V/m >3 MV/m.
d 10x 10~9m

This magnitude of electrical field is great enough to create an electrical spark in the air.

Access for free at openstax.org.
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Figure 8.10 The semipermeable membrane of a biological cell has different concentrations of ions on its interior surface than on its
exterior. Diffusion moves the K* (potassium) and CI~ (chloride) ions in the directions shown, until the Coulomb force halts further transfer.
In this way, the exterior of the membrane acquires a positive charge and its interior surface acquires a negative charge, creating a potential

difference across the membrane. The membrane is normally impermeable to Na+ (sodium ions).

@ INTERACTIVE

Visit the PhET Explorations: Capacitor Lab (https://openstax.org/l/21phetcapacitor) to explore how a capacitor
works. Change the size of the plates and add a dielectric to see the effect on capacitance. Change the voltage
and see charges built up on the plates. Observe the electrical field in the capacitor. Measure the voltage and the
electrical field.

8.2 Capacitors in Series and in Parallel

Learning Objectives
By the end of this section, you will be able to:
e Explain how to determine the equivalent capacitance of capacitors in series and in parallel combinations
e Compute the potential difference across the plates and the charge on the plates for a capacitor in a network
and determine the net capacitance of a network of capacitors

Several capacitors can be connected together to be used in a variety of applications. Multiple connections of
capacitors behave as a single equivalent capacitor. The total capacitance of this equivalent single capacitor
depends both on the individual capacitors and how they are connected. Capacitors can be arranged in two
simple and common types of connections, known as series and parallel, for which we can easily calculate the
total capacitance. These two basic combinations, series and parallel, can also be used as part of more complex
connections.

The Series Combination of Capacitors

Figure 8.11 illustrates a series combination of three capacitors, arranged in a row within the circuit. As for any
capacitor, the capacitance of the combination is related to the charge and voltage by using Equation 8.1. When
this series combination is connected to a battery with voltage V, each of the capacitors acquires an identical
charge Q. To explain, first note that the charge on the plate connected to the positive terminal of the battery is
+0 and the charge on the plate connected to the negative terminal is —Q. Charges are then induced on the
other plates so that the sum of the charges on all plates, and the sum of charges on any pair of capacitor plates,
is zero. However, the potential drop V] = Q/C; on one capacitor may be different from the potential drop

V> = Q/C, on another capacitor, because, generally, the capacitors may have different capacitances. The
series combination of two or three capacitors resembles a single capacitor with a smaller capacitance.



Generally, any number of capacitors connected in series is equivalent to one capacitor whose capacitance
(called the equivalent capacitance) is smaller than the smallest of the capacitances in the series combination.
Charge on this equivalent capacitor is the same as the charge on any capacitor in a series combination: That is,
all capacitors of a series combination have the same charge. This occurs due to the conservation of charge in
the circuit. When a charge Qin a series circuit is removed from a plate of the first capacitor (which we denote
as —Q), it must be placed on a plate of the second capacitor (which we denote as +Q), and so on.

4 I 4 )
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Figure 8.11 (a) Three capacitors are connected in series. The magnitude of the charge on each plate is Q. (b) The network of capacitors in
(a) is equivalent to one capacitor that has a smaller capacitance than any of the individual capacitances in (a), and the charge on its plates is
0.

We can find an expression for the total (equivalent) capacitance by considering the voltages across the
individual capacitors. The potentials across capacitors 1, 2, and 3 are, respectively, V| = Q/Cy, Vo = Q/C;,
and V3 = Q/C3. These potentials must sum up to the voltage of the battery, giving the following potential
balance:

V=V+V+.

Potential Vis measured across an equivalent capacitor that holds charge Q and has an equivalent capacitance
Cs. Entering the expressions for V1, V5, and V3, we get

0_0,0 0
G ¢ G G
Canceling the charge Q, we obtain an expression containing the equivalent capacitance, Cg, of three capacitors
connected in series:
1 + 1 + 1
Cs C G G

This expression can be generalized to any number of capacitors in a series network.

Series Combination

For capacitors connected in a series combination, the reciprocal of the equivalent capacitance is the sum
of reciprocals of individual capacitances:

— =t + 8.7




@ EXAMPLE 8.4

Equivalent Capacitance of a Series Network

Find the total capacitance for three capacitors connected in series, given their individual capacitances are
1.000 uF, 5.000 uF, and 8.000 uF.

Strategy

Because there are only three capacitors in this network, we can find the equivalent capacitance by using
Equation 8.7 with three terms.

Solution

We enter the given capacitances into Equation 8.7:

R U |

Cs TG TG
— 1 + 1 + 1
~ 1.000 uF 5.000 uF 8.000 uF
1 _ 1325
Cg uF
Now we invert this result and obtain Cg = 1I§T = 0.755 uF.

Significance
Note that in a series network of capacitors, the equivalent capacitance is always less than the smallest
individual capacitance in the network.

The Parallel Combination of Capacitors

A parallel combination of three capacitors, with one plate of each capacitor connected to one side of the circuit
and the other plate connected to the other side, is illustrated in Figure 8.12(a). Since the capacitors are
connected in parallel, they all have the same voltage V across their plates. However, each capacitor in the
parallel network may store a different charge. To find the equivalent capacitance Cp of the parallel network,
we note that the total charge Q stored by the network is the sum of all the individual charges:

0=01+02+0s.

On the left-hand side of this equation, we use the relation Q = CpV/, which holds for the entire network. On the
right-hand side of the equation, we use the relations Q1 = C{V, 0y = GV, and Q3 = C3V for the three
capacitors in the network. In this way we obtain

CpV =CiV+GCV+CV.

This equation, when simplified, is the expression for the equivalent capacitance of the parallel network of
three capacitors:

Cp=C1 +C +Cs.

This expression is easily generalized to any number of capacitors connected in parallel in the network.

Parallel Combination

For capacitors connected in a parallel combination, the equivalent (net) capacitance is the sum of all
individual capacitances in the network,

Cp=C;+C +C3 + ---. 8.8
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Figure 8.12 (a) Three capacitors are connected in parallel. Each capacitor is connected directly to the battery. (b) The charge on the

equivalent capacitor is the sum of the charges on the individual capacitors.

@ EXAMPLE 8.5

Equivalent Capacitance of a Parallel Network

Find the net capacitance for three capacitors connected in parallel, given their individual capacitances are
1.0 uF, 5.0 uF, and 8.0 uF.

Strategy

Because there are only three capacitors in this network, we can find the equivalent capacitance by using
Equation 8.8 with three terms.

Solution

Entering the given capacitances into Equation 8.8 yields
Cp = C1+C+C3 =1.0uF+5.0uF+8.0uF
Cp = 14.0uF.

Significance

Note that in a parallel network of capacitors, the equivalent capacitance is always larger than any of the
individual capacitances in the network.

Capacitor networks are usually some combination of series and parallel connections, as shown in Figure 8.13.
To find the net capacitance of such combinations, we identify parts that contain only series or only parallel
connections, and find their equivalent capacitances. We repeat this process until we can determine the
equivalent capacitance of the entire network. The following example illustrates this process.



C; =— 8 uF [ Of— C; =— 8 uF = C,
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Figure 8.13 (a) This circuit contains both series and parallel connections of capacitors. (b) C; and C, are in series; their equivalent
capacitance is Cg. (c) The equivalent capacitance Cg is connected in parallel with C3. Thus, the equivalent capacitance of the entire

network is the sum of Cg and Cj3.

@ EXAMPLE 8.6

Equivalent Capacitance of a Network

Find the total capacitance of the combination of capacitors shown in Figure 8.13. Assume the capacitances are
known to three decimal places (C; = 1.000 uF, C; = 5.000 uF,C3 = 8.000 uF). Round your answer to three
decimal places.

Strategy

We first identify which capacitors are in series and which are in parallel. Capacitors C; and C, are in series.
Their combination, labeled Cg, is in parallel with C;3.

Solution

Since C; and C; are in series, their equivalent capacitance Cg is obtained with Equation 8.7:

1_1+1_ 1 N 1 ~1.200
Cs C;  Cp 1.000uF  5.000uF  uF

= Cg = 0.833 4F.

Capacitance Cg is connected in parallel with the third capacitance C3, so we use Equation 8.8 to find the
equivalent capacitance C of the entire network:

C = Cs + C3 = 0.833 uF + 8.000 uF = 8.833 4F.

@ EXAMPLE 8.7

Network of Capacitors

Determine the net capacitance C of the capacitor combination shown in Figure 8.14 when the capacitances are
C, =12.0 uF,Cy = 2.0 yF, and C3 = 4.0 uF. When a 12.0-V potential difference is maintained across the
combination, find the charge and the voltage across each capacitor.
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Figure 8.14 (a) A capacitor combination. (b) An equivalent two-capacitor combination.

Strategy

We first compute the net capacitance Cy3 of the parallel connection C; and C3. Then Cis the net capacitance
of the series connection C and Cy3. We use the relation C = Q/V to find the charges Q1,03, and Q3, and the
voltages V7, V;, and V3, across capacitors 1, 2, and 3, respectively.

Solution

The equivalent capacitance for C; and Cj is

Cy3=Cy+C3 =20uF+4.0uF =6.0uF.
The entire three-capacitor combination is equivalent to two capacitors in series,

11 N 11
C 120uF  60uF 4.0uF

= C =4.0uF.

Consider the equivalent two-capacitor combination in Figure 8.14(b). Since the capacitors are in series, they
have the same charge, Q; = 0»3. Also, the capacitors share the 12.0-V potential difference, so

Q1 0 O 0
C

120V=V) + Va3 = =~ + = +
L = e T Cs  1204F 6.0 uF

= Q) =48.0 uC.

Now the potential difference across capacitor 1 is

_ 01 _ 48.0uC

Vi = =
Y= ¢ ~ 1204F

=40V.

Because capacitors 2 and 3 are connected in parallel, they are at the same potential difference:
Vo =V3=120V-40V =8.0V.
Hence, the charges on these two capacitors are, respectively,
0, =GV =2.0uF)(B.0V)=16.0 uC,
03 =C3V3 = (4.0 uF)(8.0 V) = 32.0 uC.
Significance
As expected, the net charge on the parallel combination of C, and C3 is Q23 = Q5 + Q3 = 48.0 uC.

CHECK YOUR UNDERSTANDING 8.5

Determine the net capacitance C of each network of capacitors shown below. Assume that C; = 1.0 pF,
C, =2.0pF, C3 =4.0pF, and C4 = 5.0 pF. Find the charge on each capacitor, assuming there is a potential
difference of 12.0 V across each network.
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8.3 Energy Stored in a Capacitor

Learning Objectives
By the end of this section, you will be able to:
e Explain how energy is stored in a capacitor
e Use energy relations to determine the energy stored in a capacitor network

Most of us have seen dramatizations of medical personnel using a defibrillator to pass an electrical current
through a patient’s heart to get it to beat normally. Often realistic in detail, the person applying the shock
directs another person to “make it 400 joules this time.” The energy delivered by the defibrillator is stored in a
capacitor and can be adjusted to fit the situation. SI units of joules are often employed. Less dramatic is the use
of capacitors in microelectronics to supply energy when batteries are charged (Figure 8.15). Capacitors are
also used to supply energy for flash lamps on cameras.
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Figure 8.15 The capacitors on the circuit board for an electronic device follow a labeling convention that identifies each one with a code
that begins with the letter “C.” (credit: Windell Oskay)

The energy U stored in a capacitor is electrostatic potential energy and is thus related to the charge Q and
voltage Vbetween the capacitor plates. A charged capacitor stores energy in the electrical field between its
plates. As the capacitor is being charged, the electrical field builds up. When a charged capacitor is
disconnected from a battery, its energy remains in the field in the space between its plates.

To gain insight into how this energy may be expressed (in terms of Q and V), consider a charged, empty,
parallel-plate capacitor; that is, a capacitor without a dielectric but with a vacuum between its plates. The
space between its plates has a volume Ad, and it is filled with a uniform electrostatic field E. The total energy
Uc of the capacitor is contained within this space. The energy density ur in this space is simply U¢ divided
by the volume Ad. If we know the energy density, the energy can be found as Uc = ug(Ad). We will learn in
Electromagnetic Waves (after completing the study of Maxwell’s equations) that the energy density ug in a
region of free space occupied by an electrical field E depends only on the magnitude of the field and is

u _ L E? 8.9
E—260 o n

If we multiply the energy density by the volume between the plates, we obtain the amount of energy stored
between the plates of a parallel-plate

. 2
capacitor:Uc = ug(Ad) = %eoEzAd = %60 Z—zAd = %Vzeo % = %VZC.
In this derivation, we used the fact that the electrical field between the plates is uniform so that £ = V/d and
C = g9 Ald. Because C = Q/V, we can express this result in other equivalent forms:

Uc==V>’C== = =-QV. 8.10

The expression in Equation 8.10 for the energy stored in a parallel-plate capacitor is generally valid for all
types of capacitors. To see this, consider any uncharged capacitor (not necessarily a parallel-plate type). At
some instant, we connect it across a battery, giving it a potential difference V' = ¢/C between its plates.
Initially, the charge on the plates is Q = 0. As the capacitor is being charged, the charge gradually builds up on
its plates, and after some time, it reaches the value Q. To move an infinitesimal charge dq from the negative
plate to the positive plate (from a lower to a higher potential), the amount of work dW that must be done on dg
is dW = Vdq = £dgq.

This work becomes the energy stored in the electrical field of the capacitor. In order to charge the capacitor to
a charge Q, the total work required is

W(Q) 0 2

q 10

W = dw = Zdg=— —.
/o /o c“T27c

Since the geometry of the capacitor has not been specified, this equation holds for any type of capacitor. The



total work Wneeded to charge a capacitor is the electrical potential energy U stored in it, or Uc = W.When
the charge is expressed in coulombs, potential is expressed in volts, and the capacitance is expressed in
farads, this relation gives the energy in joules.

Knowing that the energy stored in a capacitor is Uc = 0%/ (2C), we can now find the energy density ug stored
in a vacuum between the plates of a charged parallel-plate capacitor. We just have to divide U¢ by the volume
Ad of space between its plates and take into account that for a parallel-plate capacitor, we have E = o/¢( and
C = gy Ald. Therefore, we obtain

Uc 1021 1 @ 1_11<Q>2 o _ (Eeo)’ _ €0 o

T Ad 2 C Ad 2 egAld Ad 2 &

A

“E - E 260 2

We see that this expression for the density of energy stored in a parallel-plate capacitor is in accordance with
the general relation expressed in Equation 8.9. We could repeat this calculation for either a spherical capacitor
or a cylindrical capacitor—or other capacitors—and in all cases, we would end up with the general relation
given by Equation 8.9.

@ EXAMPLE 8.8

Energy Stored in a Capacitor

Calculate the energy stored in the capacitor network in Figure 8.14(a) when the capacitors are fully charged
and when the capacitances are C; = 12.0 uF, C, = 2.0 yF, and C3 = 4.0 uF, respectively.

Strategy

We use Equation 8.10 to find the energy Uy, U;, and Uj3 stored in capacitors 1, 2, and 3, respectively. The total
energy is the sum of all these energies.

Solution

We identify C; = 12.0 yFand V; =4.0V,Cy, =2.0uFand V, =80V, C3; =4.0 uFand V3 = 8.0 V. The
energies stored in these capacitors are

U = tovE = 1120 up@0vy? =96 w,
U2 = %CZ Vi = %(2-0 uF)(8.0V)? = 64 uJ,
Uy = 3GV =3@0upBOV) = 130 .
The total energy stored in this network is
Uc =U) +Us + Uz =96 uJ + 64 uJ + 130 puJ = 0.29 mJ.

Significance

We can verify this result by calculating the energy stored in the single 4.0-pF capacitor, which is found to be
equivalent to the entire network. The voltage across the network is 12.0 V. The total energy obtained in this
way agrees with our previously obtained result,U¢c = %CV2 = %(4.0 uF)(12.0 V)2 =0.29mJ.

CHECK YOUR UNDERSTANDING 8.6

The potential difference across a 5.0-pF capacitor is 0.40 V. (a) What is the energy stored in this capacitor? (b)
The potential difference is now increased to 1.20 V. By what factor is the stored energy increased?

In a cardiac emergency, a portable electronic device known as an automated external defibrillator (AED) can be
a lifesaver. A defibrillator (Figure 8.16) delivers a large charge in a short burst, or a shock, to a person’s heart
to correct abnormal heart rhythm (an arrhythmia). A heart attack can arise from the onset of fast, irregular
beating of the heart—called cardiac or ventricular fibrillation. Applying a large shock of electrical energy can
terminate the arrhythmia and allow the body’s natural pacemaker to resume its normal rhythm. Today, it is



common for ambulances to carry AEDs. AEDs are also found in many public places. These are designed to be
used by lay persons. The device automatically diagnoses the patient’s heart rhythm and then applies the shock
with appropriate energy and waveform. CPR (cardiopulmonary resuscitation) is recommended in many cases
before using a defibrillator.

Figure 8.16 Automated external defibrillators are found in many public places. These portable units provide verbal instructions for use in

the important first few minutes for a person suffering a cardiac attack. (credit: Owain Davies)

@ EXAMPLE 8.9

Capacitance of a Heart Defibrillator
A heart defibrillator delivers 4.00 x 10%J of energy by discharging a capacitor initially at 1.00 X 10* V. What
is its capacitance?

Strategy

We are given Uc and V, and we are asked to find the capacitance C. We solve Equation 8.10 for Cand
substitute.

Solution

U, 2
Solving this expression for C and entering the given values yields C = 2—% = 2% = 8.00 uF.
(1.00 x 104 V)

8.4 Capacitor with a Dielectric

Learning Objectives

By the end of this section, you will be able to:
e Describe the effects a dielectric in a capacitor has on capacitance and other properties
e Calculate the capacitance of a capacitor containing a dielectric

As we discussed earlier, an insulating material placed between the plates of a capacitor is called a dielectric.
Inserting a dielectric between the plates of a capacitor affects its capacitance. To see why, let’s consider an
experiment described in Figure 8.17. Initially, a capacitor with capacitance Cy when there is air between its



plates is charged by a battery to voltage V. When the capacitor is fully charged, the battery is disconnected. A
charge Qg then resides on the plates, and the potential difference between the plates is measured to be Vj.
Now, suppose we insert a dielectric that totally fills the gap between the plates. If we monitor the voltage, we
find that the voltmeter reading has dropped to a smaller value V. We write this new voltage value as a fraction
of the original voltage V{), with a positive number «, ¥ > 1:

1
V=—Y,.
K

The constant x in this equation is called the dielectric constant of the material between the plates, and its
value is characteristic for the material. A detailed explanation for why the dielectric reduces the voltage is
given in the next section. Different materials have different dielectric constants (a table of values for typical
materials is provided in the next section). Once the battery becomes disconnected, there is no path for a
charge to flow to the battery from the capacitor plates. Hence, the insertion of the dielectric has no effect on the
charge on the plate, which remains at a value of Q. Therefore, we find that the capacitance of the capacitor
with a dielectric is

= k=2 = xCy. 8.11

This equation tells us that the capacitance Cy of an empty (vacuum) capacitor can be increased by a factor of ¥
when we insert a dielectric material to completely fill the space between its plates. Note that Equation 8.11 can
also be used for an empty capacitor by setting k¥ = 1. In other words, we can say that the dielectric constant of
the vacuum is 1, which is a reference value.

+ 4+ H+++
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Figure 8.17 (a) When fully charged, a vacuum capacitor has a voltage V{y and charge Q( (the charges remain on plate’s inner surfaces; the
schematic indicates the sign of charge on each plate). (b) In step 1, the battery is disconnected. Then, in step 2, a dielectric (that is
electrically neutral) is inserted into the charged capacitor. When the voltage across the capacitor is now measured, it is found that the
voltage value has decreased to V' = Vj/k. The schematic indicates the sign of the induced charge that is now present on the surfaces of the

dielectric material between the plates.

The principle expressed by Equation 8.11 is widely used in the construction industry (Figure 8.18). Metal
plates in an electronic stud finder act effectively as a capacitor. You place a stud finder with its flat side on the
wall and move it continually in the horizontal direction. When the finder moves over a wooden stud, the
capacitance of its plates changes, because wood has a different dielectric constant than a gypsum wall. This
change triggers a signal in a circuit, and thus the stud is detected.
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Figure 8.18 An electronic stud finder is used to detect wooden studs behind drywall. (credit top: modification of work by Jane Whitney)

The electrical energy stored by a capacitor is also affected by the presence of a dielectric. When the energy
stored in an empty capacitor is Uy, the energy U stored in a capacitor with a dielectric is smaller by a factor of
K,
2
10> 105 1
U==-—==-——=-U. 8.12
C 2xCy «x°

(S]]

As a dielectric material sample is brought near an empty charged capacitor, the sample reacts to the electrical
field of the charges on the capacitor plates. Just as we learned in Electric Charges and Fields on electrostatics,
there will be the induced charges on the surface of the sample; however, they are not free charges like in a
conductor, because a perfect insulator does not have freely moving charges. These induced charges on the
dielectric surface are of an opposite sign to the free charges on the plates of the capacitor, and so they are
attracted by the free charges on the plates. Consequently, the dielectric is “pulled” into the gap, and the work to
polarize the dielectric material between the plates is done at the expense of the stored electrical energy, which
is reduced, in accordance with Equation 8.12.

@ EXAMPLE 8.10

Inserting a Dielectric into an Isolated Capacitor

An empty 20.0-pF capacitor is charged to a potential difference of 40.0 V. The charging battery is then
disconnected, and a piece of Teflon™ with a dielectric constant of 2.1 is inserted to completely fill the space
between the capacitor plates (see Figure 8.17). What are the values of (a) the capacitance, (b) the charge of the
plate, (c) the potential difference between the plates, and (d) the energy stored in the capacitor with and
without dielectric?

Access for free at openstax.org.



Strategy

We identify the original capacitance Cy = 20.0 pF and the original potential difference ¥y = 40.0 V between
the plates. We combine Equation 8.11 with other relations involving capacitance and substitute.

Solution

a. The capacitance increases to
C = kCy = 2.1(20.0 pF) = 42.0 pF.

b. Without dielectric, the charge on the plates is
Oy = CyVpy = (20.0 pF)(40.0 V) = 0.8 nC.

Since the battery is disconnected before the dielectric is inserted, the plate charge is unaffected by the
dielectric and remains at 0.8 nC.
c. With the dielectric, the potential difference becomes

1 1

V=—-Vy=-—40.0V=190V.
K 2.1

d. The stored energy without the dielectric is
1 1
Uy = ECO VO2 = 5(20.0 pF)(40.0 V)2 = 16.0nJ.
With the dielectric inserted, we use Equation 8.12 to find that the stored energy decreases to

1 1

U=-Uy=—-—160n] =7.6nl.
K 2.1

Significance
Notice that the effect of a dielectric on the capacitance of a capacitor is a drastic increase of its capacitance.
This effect is far more profound than a mere change in the geometry of a capacitor.

CHECK YOUR UNDERSTANDING 8.7

When a dielectric is inserted into an isolated and charged capacitor, the stored energy decreases to 33% of its
original value. (a) What is the dielectric constant? (b) How does the capacitance change?

8.5 Molecular Model of a Dielectric

Learning Objectives

By the end of this section, you will be able to:
e Explain the polarization of a dielectric in a uniform electrical field
e Describe the effect of a polarized dielectric on the electrical field between capacitor plates
e Explain dielectric breakdown

We can understand the effect of a dielectric on capacitance by looking at its behavior at the molecular level. As
we have seen in earlier chapters, in general, all molecules can be classified as either polar or nonpolar. There
is a net separation of positive and negative charges in an isolated polar molecule, whereas there is no charge
separation in an isolated nonpolar molecule (Figure 8.19). In other words, polar molecules have permanent
electric-dipole moments and nonpolar molecules do not. For example, a molecule of water is polar, and a
molecule of oxygen is nonpolar. Nonpolar molecules can become polar in the presence of an external electrical
field, which is called induced polarization.
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Figure 8.19 The concept of polarization: In an unpolarized atom or molecule, a negatively charged electron cloud is evenly distributed
around positively charged centers, whereas a polarized atom or molecule has an excess of negative charge at one side so that the other
side has an excess of positive charge. However, the entire system remains electrically neutral. The charge polarization may be caused by an
external electrical field. Some molecules and atoms are permanently polarized (electric dipoles) even in the absence of an external

electrical field (polar molecules and atoms).

Let’s first consider a dielectric composed of polar molecules. In the absence of any external electrical field, the
electric dipoles are oriented randomly, as illustrated in Figure 8.20(a). However, if the dielectric is placed in an
external electrical field l_io, the polar molecules align with the external field, as shown in part (b) of the figure.
Opposite charges on adjacent dipoles within the volume of dielectric neutralize each other, so there is no net
charge within the dielectric (see the dashed circles in part (b)). However, this is not the case very close to the
upper and lower surfaces that border the dielectric (the region enclosed by the dashed rectangles in part (b)),
where the alignment does produce a net charge. Since the external electrical field merely aligns the dipoles,
the dielectric as a whole is neutral, and the surface charges induced on its opposite faces are equal and

opposite. These induced surface charges +Q; and —Q; produce an additional electrical field ﬁi (an induced
-
electrical field), which opposes the external field E, as illustrated in part (c).
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Figure 8.20 A dielectric with polar molecules: (a) In the absence of an external electrical field; (b) in the presence of an external electrical



field I_fo. The dashed lines indicate the regions immediately adjacent to the capacitor plates. (c) The induced electrical field Ei inside the
dielectric produced by the induced surface charge Q; of the dielectric. Note that, in reality, the individual molecules are not perfectly

aligned with an external field because of thermal fluctuations; however, the average alignment is along the field lines as shown.

The same effect is produced when the molecules of a dielectric are nonpolar. In this case, a nonpolar molecule
-
acquires an induced electric-dipole moment because the external field Eq causes a separation between its

positive and negative charges. The induced dipoles of the nonpolar molecules align with ]_*fo in the same way as
the permanent dipoles of the polar molecules are aligned (shown in part (b)). Hence, the electrical field within
the dielectric is weakened regardless of whether its molecules are polar or nonpolar.

Therefore, when the region between the parallel plates of a charged capacitor, such as that shown in Figure
-
8.21(a), is filled with a dielectric, within the dielectric there is an electrical field Eq due to the free charge Qg
>
on the capacitor plates and an electrical field E; due to the induced charge Q; on the surfaces of the dielectric.

Their vector sum gives the net electrical field l__{l within the dielectric between the capacitor plates (shown in
part (b) of the figure):

5 o >
E =E0 +Ei. 8.13

This net field can be considered to be the field produced by an effective charge Qg — Q; on the capacitor.
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Figure 8.21 Electrical field: (a) In an empty capacitor, electrical field ]_fo. (b) In a dielectric-filled capacitor, electrical field I_i

In most dielectrics, the net electrical field l_?: is proportional to the field ﬁo produced by the free charge. In
terms of these two electrical fields, the dielectric constant x of the material is defined as

K=—. 8.14

> >
Since E( and E; point in opposite directions, the magnitude E is smaller than the magnitude E and therefore
k > 1. Combining Equation 8.14 with Equation 8.13, and rearranging the terms, yields the following
expression for the induced electrical field in a dielectric:

> 1 >
i - <__1> i, 8.15

K

When the magnitude of an external electrical field becomes too large, the molecules of dielectric material start



to become ionized. A molecule or an atom is ionized when one or more electrons are removed from it and
become free electrons, no longer bound to the molecular or atomic structure. When this happens, the material
can conduct, thereby allowing charge to move through the dielectric from one capacitor plate to the other. This
phenomenon is called dielectric breakdown. (Figure 8.1 shows typical random-path patterns of electrical
discharge during dielectric breakdown.) The critical value, E, of the electrical field at which the molecules of
an insulator become ionized is called the dielectric strength of the material. The dielectric strength imposes a
limit on the voltage that can be applied for a given plate separation in a capacitor. For example, the dielectric
strength of airis E; = 3.0 MV/m, so for an air-filled capacitor with a plate separation of d = 1.00 mm, the limit
on the potential difference that can be safely applied across its plates without causing dielectric breakdown is

V=E, d=3.0x 10° V/m)(1.00 x 1073 m) = 3.0kV.

However, this limit becomes 60.0 kV when the same capacitor is filled with Teflon™, whose dielectric strength
is about 60.0 MV/m. Because of this limit imposed by the dielectric strength, the amount of charge that an air-
filled capacitor can store is only Qg = k,i;Co(3.0 kV) and the charge stored on the same Teflon™-filled
capacitor can be as much as

2.1
QD 60.0kv) = 205eflon 5 — 5

= Co(60.0kV) = — = ___ 700059
Q = Kieflon Co( ) = Kieflon Kair(3.0kV) Kair 1.00059

Op =420y,
which is about 42 times greater than a charge stored on an air-filled capacitor. Typical values of dielectric
constants and dielectric strengths for various materials are given in Table 8.1. Notice that the dielectric
constant x is exactly 1.0 for a vacuum (the empty space serves as a reference condition) and very close to 1.0
for air under normal conditions (normal pressure at room temperature). These two values are so close that, in
fact, the properties of an air-filled capacitor are essentially the same as those of an empty capacitor.

Material Dielectric constant ¥ Dielectric strength E.[ X 100 V/m]
Vacuum 1 oo
Dry air (1 atm) 1.00059 3.0
Teflon™ 2.1 60to173
Paraffin 2.3 11
Silicon oil 2.5 10to 15
Polystyrene 2.56 19.7
Nylon 3.4 14
Paper 3.7 16
Fused quartz 3.78 8
Glass 4t06 9.8t013.8
Concrete 4.5 -
Bakelite 4.9 24
Diamond 5.5 2,000




Material Dielectric constant ¥ Dielectric strength E.[ X 106V/m]

Pyrex glass 5.6 14

Mica 6.0 118
Neoprene rubber 6.7 15.7t0 26.7
Water 80 -

Sulfuric acid 84 t0 100 -

Titanium dioxide 86t0173 -
Strontium titanate 310 8

Barium titanate 1,200 to 10,000 -

Calcium copper titanate | > 250,000 -

Table 8.1 Representative Values of Dielectric Constants and Dielectric Strengths of Various Materials at Room
Temperature

Not all substances listed in the table are good insulators, despite their high dielectric constants. Water, for
example, consists of polar molecules and has a large dielectric constant of about 80. In a water molecule,
electrons are more likely found around the oxygen nucleus than around the hydrogen nuclei. This makes the
oxygen end of the molecule slightly negative and leaves the hydrogens end slightly positive, which makes the
molecule easy to align along an external electrical field, and thus water has a large dielectric constant.
However, the polar nature of water molecules also makes water a good solvent for many substances, which
produces undesirable effects, because any concentration of free ions in water conducts electricity.

@ EXAMPLE 8.11

Electrical Field and Induced Surface Charge

Suppose that the distance between the plates of the capacitor in Example 8.10 is 2.0 mm and the area of each
plateis4.5 x 1073 m2. Determine: (a) the electrical field between the plates before and after the Teflon™ is
inserted, and (b) the surface charge induced on the Teflon™ surfaces.

Strategy

In part (a), we know that the voltage across the empty capacitor is ¥y = 40V, so to find the electrical fields we
use the relation V' = Ed and Equation 8.14. In part (b), knowing the magnitude of the electrical field, we use
the expression for the magnitude of electrical field near a charged plate E = o/¢(), where ¢ is a uniform surface
charge density caused by the surface charge. We use the value of free charge Qg = 8.0 X 10710 C obtained in
Example 8.10.

Solution

a. The electrical field Ey between the plates of an empty capacitor is

Yo _ 4V _ 2.0 x 10* V/m.
d 20x1073m

The electrical field E with the Teflon™ in place is

Ey =



1 1
E=—FEy=—20 % 10* V/m=9.5 x 10 V/m.
K 2.1
b. The effective charge on the capacitor is the difference between the free charge Qg and the induced charge

Q. The electrical field in the Teflon™ is caused by this effective charge. Thus
E 1 1 Qo -0
= 0= ——
&0 [0) A
We invert this equation to obtain Qj, which yields
Oi =0Qp—¢AE
2
=80 x 10710C - (885 x 10712 C) (45 x 1072 m?) (9.5 x 10° ¥)
N-m

=42 x 10710C = 0.42nC.

@ EXAMPLE 8.12

Inserting a Dielectric into a Capacitor Connected to a Battery

When a battery of voltage 1/ is connected across an empty capacitor of capacitance Cy, the charge on its
plates is Qg, and the electrical field between its plates is E(. A dielectric of dielectric constant « is inserted
between the plates while the battery remains in place, as shown in Figure 8.22. (a) Find the capacitance C, the
voltage Vacross the capacitor, and the electrical field E between the plates after the dielectric is inserted. (b)
Obtain an expression for the free charge Q on the plates of the filled capacitor and the induced charge Q; on
the dielectric surface in terms of the original plate charge Qy.
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Figure 8.22 Adielectric is inserted into the charged capacitor while the capacitor remains connected to the battery.

Strategy

We identify the known values: V|, Cy, Eyp, k, and Q. Our task is to express the unknown values in terms of
these known values.

Solution

(a) The capacitance of the filled capacitor is C = kCjy. Since the battery is always connected to the capacitor
plates, the potential difference between them does not change; hence, V' = V. Because of that, the electrical
field in the filled capacitor is the same as the field in the empty capacitor, so we can obtain directly that

Ezzzﬁz 0-
d d



(b) For the filled capacitor, the free charge on the plates is
0 =CV = (xCy)Vy = k(CoVy) = xQp.

The electrical field E in the filled capacitor is due to the effective charge O — Q; (Figure 8.22(b)). Since E = Ej,
we have

0-0i _ Qo
6()A _E()A'

Solving this equation for Q;, we obtain for the induced charge
O; =0 —-0Q¢ =«Qp—Qp = (k— DQo.
Significance
Notice that for materials with dielectric constants larger than 2 (see Table 8.1), the induced charge on the

surface of dielectric is larger than the charge on the plates of a vacuum capacitor. The opposite is true for
gasses like air whose dielectric constant is smaller than 2.

CHECK YOUR UNDERSTANDING 8.8

Continuing with Example 8.12, show that when the battery is connected across the plates the energy stored in
dielectric-filled capacitor is U = kU (larger than the energy U of an empty capacitor kept at the same
voltage). Compare this result with the result U = U/ found previously for an isolated, charged capacitor.

CHECK YOUR UNDERSTANDING 8.9

Repeat the calculations of Example 8.10 for the case in which the battery remains connected while the
dielectric is placed in the capacitor.



CHAPTER REVIEW

Key Terms

capacitance amount of charge stored per unit volt
capacitor device that stores electrical charge and

electrical energy

dielectric insulating material used to fill the space

between two plates

dielectric breakdown phenomenon that occurs

when an insulator becomes a conductor in a
strong electrical field

dielectric constant factor by which capacitance
increases when a dielectric is inserted between

the plates of a capacitor

dielectric strength critical electrical field strength

above which molecules in insulator begin to

break down and the insulator starts to conduct

energy density energy stored in a capacitor
divided by the volume between the plates

Key Equations
Capacitance

Capacitance of a parallel-plate capacitor

Capacitance of a vacuum spherical capacitor
Capacitance of a vacuum cylindrical capacitor

Capacitance of a series combination
Capacitance of a parallel combination
Energy density

Energy stored in a capacitor

Capacitance of a capacitor with dielectric

Energy stored in an isolated capacitor with
dielectric

Dielectric constant

Induced electrical field in a dielectric

induced electric-dipole moment dipole moment
that a nonpolar molecule may acquire when it is
placed in an electrical field

induced electrical field electrical field in the
dielectric due to the presence of induced charges

induced surface charges charges that occurona
dielectric surface due to its polarization

parallel combination components in a circuit
arranged with one side of each component
connected to one side of the circuit and the other
sides of the components connected to the other
side of the circuit

parallel-plate capacitor system of two identical
parallel conducting plates separated by a distance

series combination components in a circuit
arranged in a row one after the other in a circuit

c-¢
C=£0%
C=47r£0151_1221

Cp=C1+C2+C3+"'

uE=%£0E2
1,2 102 _ 1
Uc=3VC=77 =20V
C=KCO
U=?UO
E
k=72



Summary

8.1 Capacitors and Capacitance

A capacitor is a device that stores an electrical
charge and electrical energy. The amount of
charge a vacuum capacitor can store depends
on two major factors: the voltage applied and
the capacitor’s physical characteristics, such as
its size and geometry.

The capacitance of a capacitor is a parameter
that tells us how much charge can be stored in
the capacitor per unit potential difference
between its plates. Capacitance of a system of
conductors depends only on the geometry of
their arrangement and physical properties of
the insulating material that fills the space
between the conductors. The unit of capacitance
is the farad, where I F=1C/1 V.

8.2 Capacitors in Series and in Parallel

When several capacitors are connected in a
series combination, the reciprocal of the
equivalent capacitance is the sum of the
reciprocals of the individual capacitances.
When several capacitors are connected in a
parallel combination, the equivalent
capacitance is the sum of the individual
capacitances.

When a network of capacitors contains a
combination of series and parallel connections,
we identify the series and parallel networks, and
compute their equivalent capacitances step by
step until the entire network becomes reduced
to one equivalent capacitance.

8.3 Energy Stored in a Capacitor

Capacitors are used to supply energy to a variety
of devices, including defibrillators,
microelectronics such as calculators, and flash
lamps.

The energy stored in a capacitor is the work
required to charge the capacitor, beginning with
no charge on its plates. The energy is stored in
the electrical field in the space between the

Conceptual Questions

8.1 Capacitors and Capacitance

1.

Does the capacitance of a device depend on the
applied voltage? Does the capacitance of a device
depend on the charge residing on it?

Would you place the plates of a parallel-plate
capacitor closer together or farther apart to

capacitor plates. It depends on the amount of
electrical charge on the plates and on the
potential difference between the plates.

The energy stored in a capacitor network is the
sum of the energies stored on individual
capacitors in the network. It can be computed as
the energy stored in the equivalent capacitor of
the network.

8.4 Capacitor with a Dielectric

The capacitance of an empty capacitor is
increased by a factor of k when the space
between its plates is completely filled by a
dielectric with dielectric constant «.

Each dielectric material has its specific
dielectric constant.

The energy stored in an empty isolated
capacitor is decreased by a factor of k when the
space between its plates is completely filled with
a dielectric with dielectric constant xk while
disconnecting the battery and keeping the
charge on the capacitor constant.

8.5 Molecular Model of a Dielectric

When a dielectric is inserted between the plates
of a capacitor, equal and opposite surface
charge is induced on the two faces of the
dielectric. The induced surface charge produces
an induced electrical field that opposes the field
of the free charge on the capacitor plates.

The dielectric constant of a material is the ratio
of the electrical field in vacuum to the net
electrical field in the material. A capacitor filled
with dielectric has a larger capacitance than an
empty capacitor.

The dielectric strength of an insulator
represents a critical value of electrical field at
which the molecules in an insulating material
start to become ionized. When this happens, the
material can conduct and dielectric breakdown
is observed.

increase their capacitance?

. The value of the capacitance is zero if the plates

are not charged. True or false?

If the plates of a capacitor have different areas,
will they acquire the same charge when the
capacitor is connected across a battery?




5. Does the capacitance of a spherical capacitor
depend on which sphere is charged positively or
negatively?

8.2 Capacitors in Series and in Parallel

6. If you wish to store a large amount of charge in a
capacitor bank, would you connect capacitors in
series or in parallel? Explain.

7. What is the maximum capacitance you can get by
connecting three 1.0-uF capacitors? What is the
minimum capacitance?

8.3 Energy Stored in a Capacitor

8. If you wish to store a large amount of energy in a
capacitor bank, would you connect capacitors in
series or parallel? Explain.

8.4 Capacitor with a Dielectric

9. Discuss what would happen if a conducting slab
rather than a dielectric were inserted into the gap
between the capacitor plates.

10. Discuss how the energy stored in an empty but
charged capacitor changes when a dielectric is
inserted if (a) the capacitor is isolated so that its
charge does not change; (b) the capacitor
remains connected to a battery so that the
potential difference between its plates does not
change.

Problems

8.1 Capacitors and Capacitance

19. What charge is stored in a 180.0-uF capacitor
when 120.0 V is applied to it?

20. Find the charge stored when 5.50 V is applied to
an 8.00-pF capacitor.

21. Calculate the voltage applied to a 2.00-uF
capacitor when it holds 3.10 uC of charge.

22. What voltage must be applied to an 8.00-nF
capacitor to store 0.160 mC of charge?

23. What capacitance is needed to store 3.00 uC of
charge at a voltage of 120 V?

24. What is the capacitance of a large Van de Graaff
generator’s terminal, given that it stores 8.00
mC of charge at a voltage of 12.0 MV?

25. The plates of an empty parallel-plate capacitor
of capacitance 5.0 pF are 2.0 mm apart. What is
the area of each plate?

26. A 60.0-pF vacuum capacitor has a plate area of

8.5 Molecular Model of a Dielectric

11. Distinguish between dielectric strength and
dielectric constant.

12. Water is a good solvent because it has a high
dielectric constant. Explain.

13. Water has a high dielectric constant. Explain
why it is then not used as a dielectric material in
capacitors.

14. Elaborate on why molecules in a dielectric
material experience net forces on them in a
non-uniform electrical field but not in a uniform
field.

15. Explain why the dielectric constant of a
substance containing permanent molecular
electric dipoles decreases with increasing
temperature.

16. Give a reason why a dielectric material
increases capacitance compared with what it
would be with air between the plates of a
capacitor. How does a dielectric material also
allow a greater voltage to be applied to a
capacitor? (The dielectric thus increases C and
permits a greater V.)

17. Elaborate on the way in which the polar
character of water molecules helps to explain
water’s relatively large dielectric constant.

18. Sparks will occur between the plates of an air-
filled capacitor at a lower voltage when the air is
humid than when it is dry. Discuss why,
considering the polar character of water
molecules.

0.010 m?. What is the separation between its
plates?

27. A setof parallel plates has a capacitance of
5.0puF. How much charge must be added to the
plates to increase the potential difference
between them by 100 V?

28. Consider Earth to be a spherical conductor of
radius 6400 km and calculate its capacitance.

29. Ifthe capacitance per unit length of a
cylindrical capacitor is 20 pF/m, what is the
ratio of the radii of the two cylinders?

30. An empty parallel-plate capacitor has a
capacitance of 20 pF. How much charge must
leak off its plates before the voltage across them
is reduced by 100 V?

8.2 Capacitors in Series and in Parallel

31. A 4.00-pF is connected in series with an



32.

33.

34.

35.

36.

37.

38.

8.00-pF capacitor and a 400-V potential
difference is applied across the pair. (a) What is
the charge on each capacitor? (b) What is the
voltage across each capacitor?

Three capacitors, with capacitances of

C| =2.0uF,Cy = 3.0 uF,and C3 = 6.0 uF,
respectively, are connected in parallel. A 500-V
potential difference is applied across the
combination. Determine the voltage across each
capacitor and the charge on each capacitor.
Find the total capacitance of this combination of
series and parallel capacitors shown below.

10 uF == — 25 uF

1
T

Suppose you need a capacitor bank with a total
capacitance of 0.750 F but you have only
1.50-mF capacitors at your disposal. What is the
smallest number of capacitors you could
connect together to achieve your goal, and how
would you connect them?

What total capacitances can you make by
connecting a 5.00-4F and a 8.00-uF capacitor?
Find the equivalent capacitance of the
combination of series and parallel capacitors
shown below.

0.30 uF

F

0.30 uF
— 2.5 uF

—

10 uF

Find the net capacitance of the combination of
series and parallel capacitors shown below.

5.0 uF J—_ —— 15uF
8.0 .uFE'== 0.75 uF
S I

— 15 uF

-

A 40-pF capacitor is charged to a potential
difference of 500 V. Its terminals are then
connected to those of an uncharged 10-pF
capacitor. Calculate: (a) the original charge on
the 40-pF capacitor; (b) the charge on each

)

39.

capacitor after the connection is made; and (c)
the potential difference across the plates of
each capacitor after the connection.

A 2.0-uF capacitor and a 4.0-uF capacitor are
connected in series across a 1.0-kV potential.
The charged capacitors are then disconnected
from the source and connected to each other
with terminals of like sign together. Find the
charge on each capacitor and the voltage across
each capacitor.

8.3 Energy Stored in a Capacitor

40.

41.

42.

43.

44.

45.

46.

47.

48.

How much energy is stored in an 8.00-pF
capacitor whose plates are at a potential
difference of 6.00 V?

A capacitor has a charge of 2.5 pC when
connected to a 6.0-V battery. How much energy
is stored in this capacitor?

How much energy is stored in the electrical field
of a metal sphere of radius 2.0 m that is kept at
a 10.0-V potential?

(a) What is the energy stored in the 10.0-uF
capacitor of a heart defibrillator charged to
9.00 x 103 V? (b) Find the amount of the
stored charge.

In open-heart surgery, a much smaller amount
of energy will defibrillate the heart. (a) What
voltage is applied to the 8.00-uF capacitor of a
heart defibrillator that stores 40.0 J of energy?
(b) Find the amount of the stored charge.

A 165-uF capacitor is used in conjunction with
a dc motor. How much energy is stored in it
when 119 V is applied?

Suppose you have a 9.00-V battery, a 2.00-uF
capacitor, and a 7.40-uF capacitor. (a) Find the
charge and energy stored if the capacitors are
connected to the battery in series. (b) Do the
same for a parallel connection.

An anxious physicist worries that the two metal
shelves of a wood frame bookcase might obtain
a high voltage if charged by static electricity,
perhaps produced by friction. (a) What is the
capacitance of the empty shelves if they have
area 1.00 x 102 m? and are 0.200 m apart? (b)
What is the voltage between them if opposite
charges of magnitude 2.00 nC are placed on
them? (c) To show that this voltage poses a
small hazard, calculate the energy stored. (d)
The actual shelves have an area 100 times
smaller than these hypothetical shelves with a
connection to the same voltage. Are his fears
justified?

A parallel-plate capacitor is made of two square
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plates 25 cm on a side and 1.0 mm apart. The
capacitor is connected to a 50.0-V battery. With
the battery still connected, the plates are pulled
apart to a separation of 2.00 mm. What are the
energies stored in the capacitor before and after
the plates are pulled farther apart? Why does
the energy decrease even though work is done
in separating the plates?

Suppose that the capacitance of a variable
capacitor can be manually changed from 100
pF to 800 pF by turning a dial, connected to one
set of plates by a shaft, from 0° to 180°. With the
dial set at 180° (corresponding to C = 800 pF),
the capacitor is connected to a 500-V source.
After charging, the capacitor is disconnected
from the source, and the dial is turned to 0°. If
friction is negligible, how much work is
required to turn the dial from 180° to 0° ?

8.4 Capacitor with a Dielectric

50.

51.

52.

53.

54.

Show that for a given dielectric material, the
maximum energy a parallel-plate capacitor can
store is directly proportional to the volume of
dielectric.

An air-filled capacitor is made from two flat
parallel plates 1.0 mm apart. The inside area of
each plate is 8.0 cm?. (a) What is the
capacitance of this set of plates? (b) If the region
between the plates is filled with a material
whose dielectric constant is 6.0, what is the new
capacitance?

A capacitor is made from two concentric
spheres, one with radius 5.00 cm, the other with
radius 8.00 cm. (a) What is the capacitance of
this set of conductors? (b) If the region between
the conductors is filled with a material whose
dielectric constant is 6.00, what is the
capacitance of the system?

A parallel-plate capacitor has charge of
magnitude 9.00 uC on each plate and
capacitance 3.00 yF when there is air between
the plates. The plates are separated by 2.00
mm. With the charge on the plates kept
constant, a dielectric with k = 5 is inserted
between the plates, completely filling the
volume between the plates. (a) What is the
potential difference between the plates of the
capacitor, before and after the dielectric has
been inserted? (b) What is the electrical field at
the point midway between the plates before and
after the dielectric is inserted?

Some cell walls in the human body have a layer
of negative charge on the inside surface.

55.

Suppose that the surface charge densities are
+0.50 x 1073C/m?, the cell wall is

5.0 x 10°m thick, and the cell wall material
has a dielectric constant of ¥ = 5.4. (a) Find the
magnitude of the electric field in the wall
between two charge layers. (b) Find the
potential difference between the inside and the
outside of the cell. Which is at higher potential?
(c) A typical cell in the human body has volume
10~'9m?3. Estimate the total electrical field
energy stored in the wall of a cell of this size
when assuming that the cell is spherical. (Hint:
Calculate the volume of the cell wall.)

A parallel-plate capacitor with only air between
its plates is charged by connecting the capacitor
to a battery. The capacitor is then disconnected
from the battery, without any of the charge
leaving the plates. (a) A voltmeter reads 45.0 V
when placed across the capacitor. When a
dielectric is inserted between the plates,
completely filling the space, the voltmeter reads
11.5 V. What is the dielectric constant of the
material? (b) What will the voltmeter read if the
dielectric is now pulled away out so it fills only
one-third of the space between the plates?

8.5 Molecular Model of a Dielectric

56.

57.

58.

59.

60.

Two flat plates containing equal and opposite
charges are separated by material 4.0 mm thick
with a dielectric constant of 5.0. If the electrical
field in the dielectric is 1.5 MV/m, what are (a)
the charge density on the capacitor plates, and
(b) the induced charge density on the surfaces
of the dielectric?

For a Teflon™-filled, parallel-plate capacitor, the
area of the plate is 50.0 cm? and the spacing
between the plates is 0.50 mm. If the capacitor
is connected to a 200-V battery, find (a) the free
charge on the capacitor plates, (b) the electrical
field in the dielectric, and (c¢) the induced charge
on the dielectric surfaces.

Find the capacitance of a parallel-plate
capacitor having plates with a surface area of
5.00 m? and separated by 0.100 mm of Teflon™.
(a) What is the capacitance of a parallel-plate
capacitor with plates of area 1.50 m? that are
separated by 0.0200 mm of neoprene rubber?
(b) What charge does it hold when 9.00 V is
applied to it?

Two parallel plates have equal and opposite
charges. When the space between the plates is
evacuated, the electrical field is



61.

62.

E =3.20 x 10° V/m. When the space is filled
with dielectric, the electrical field is

E =250 x 10° V/m. (a) What is the surface
charge density on each surface of the dielectric?
(b) What is the dielectric constant?

The dielectric to be used in a parallel-plate
capacitor has a dielectric constant of 3.60 and a
dielectric strength of 1.60 x 107 V/m. The
capacitor has to have a capacitance of 1.25 nF
and must be able to withstand a maximum
potential difference 5.5 kV. What is the
minimum area the plates of the capacitor may
have?

When a 360-nF air capacitor is connected to a
power supply, the energy stored in the capacitor
is 18.5 uJ. While the capacitor is connected to

Additional Problems

64.

65.

66.

A capacitor is made from two flat parallel plates
placed 0.40 mm apart. When a charge of

0.020 pC is placed on the plates the potential
difference between them is 250 V. (a) What is
the capacitance of the plates? (b) What is the
area of each plate? (c) What is the charge on the
plates when the potential difference between
them is 500 V? (d) What maximum potential
difference can be applied between the plates so
that the magnitude of electrical fields between
the plates does not exceed 3.0 MV/m?

An air-filled (empty) parallel-plate capacitor is
made from two square plates that are 25 cm on
each side and 1.0 mm apart. The capacitor is
connected to a 50-V battery and fully charged. It
is then disconnected from the battery and its
plates are pulled apart to a separation of 2.00
mm. (a) What is the capacitance of this new
capacitor? (b) What is the charge on each plate?
(c) What is the electrical field between the
plates?

Suppose that the capacitance of a variable
capacitor can be manually changed from 100 to
800 pF by turning a dial connected to one set of
plates by a shaft, from 0° to 180°. With the dial
set at 180° (corresponding to C = 800 pF), the
capacitor is connected to a 500-V source. After
charging, the capacitor is disconnected from
the source, and the dial is turned to 0°. (a) What
is the charge on the capacitor? (b) What is the
voltage across the capacitor when the dial is set
to 0°?

63.

67.

68.

69.

70.

the power supply, a slab of dielectric is inserted
that completely fills the space between the
plates. This increases the stored energy by
23.2 ul. (a) What is the potential difference
between the capacitor plates? (b) What is the
dielectric constant of the slab?

A parallel-plate capacitor has square plates that
are 8.00 cm on each side and 3.80 mm apart.
The space between the plates is completely
filled with two square slabs of dielectric, each
8.00 cm on a side and 1.90 mm thick. One slab
is Pyrex glass and the other slab is polystyrene.
If the potential difference between the plates is
86.0V, find how much electrical energy can be
stored in this capacitor.

Earth can be considered as a spherical
capacitor with two plates, where the negative
plate is the surface of Earth and the positive
plate is the bottom of the ionosphere, which is
located at an altitude of approximately 70 km.
The potential difference between Earth’s
surface and the ionosphere is about 350,000 V.
(a) Calculate the capacitance of this system. (b)
Find the total charge on this capacitor. (c) Find
the energy stored in this system.

A 4.00-uF capacitor and a 6.00-uF capacitor are
connected in parallel across a 600-V supply
line. (a) Find the charge on each capacitor and
voltage across each. (b) The charged capacitors
are disconnected from the line and from each
other. They are then reconnected to each other
with terminals of unlike sign together. Find the
final charge on each capacitor and the voltage
across each.

Three capacitors having capacitances of 8.40,
8.40, and 4.20 pF, respectively, are connected in
series across a 36.0-V potential difference. (a)
What is the charge on the 4.20-pF capacitor? (b)
The capacitors are disconnected from the
potential difference without allowing them to
discharge. They are then reconnected in
parallel with each other with the positively
charged plates connected together. What is the
voltage across each capacitor in the parallel
combination?

A parallel-plate capacitor with capacitance

5.0 pF is charged with a 12.0-V battery, after
which the battery is disconnected. Determine
the minimum work required to increase the
separation between the plates by a factor of 3.




71. (a) How much energy is stored in the electrical

72.

fields in the capacitors (in total) shown below?
(b) Is this energy equal to the work done by the
400-V source in charging the capacitors?

6.0 uF

3.0 uF 6.0 uF

Figure 8.23

Three capacitors having capacitances 8.4, 8.4,
and 4.2 pF are connected in series across a
36.0-V potential difference. (a) What is the total
energy stored in all three capacitors? (b) The
capacitors are disconnected from the potential
difference without allowing them to discharge.
They are then reconnected in parallel with each
other with the positively charged plates
connected together. What is the total energy
now stored in the capacitors?

Challenge Problems

77.

A spherical capacitor is formed from two
concentric spherical conducting spheres
separated by vacuum. The inner sphere has
radius 12.5 cm and the outer sphere has radius
14.8 cm. A potential difference of 120 V is
applied to the capacitor. (a) What is the
capacitance of the capacitor? (b) What is the
magnitude of the electrical field at r = 12.6 cm,
just outside the inner sphere? (c) What is the
magnitude of the electrical field at r = 14.7 cm,
just inside the outer sphere? (d) For a parallel-
plate capacitor the electrical field is uniform in
the region between the plates, except near the
edges of the plates. Is this also true for a
spherical capacitor?

73.

74.

75.

76.

(a) An 8.00-uF capacitor is connected in parallel
to another capacitor, producing a total
capacitance of 5.00 yF. What is the capacitance
of the second capacitor? (b) What is
unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?
(a) On a particular day, it takes 9.60 X 103 Jof
electrical energy to start a truck’s engine.
Calculate the capacitance of a capacitor that
could store that amount of energy at 12.0 V. (b)
What is unreasonable about this result? (c)
Which assumptions are responsible?

(a) A certain parallel-plate capacitor has plates
of area 4.00 m2, separated by 0.0100 mm of
nylon, and stores 0.170 C of charge. What is the
applied voltage? (b) What is unreasonable about
this result? (c) Which assumptions are
responsible or inconsistent?

A prankster applies 450 V to an 80.0-uF
capacitor and then tosses it to an unsuspecting
victim. The victim’s finger is burned by the
discharge of the capacitor through 0.200 g of
flesh. Estimate, what is the temperature
increase of the flesh? Is it reasonable to assume
that no thermodynamic phase change
happened?
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The network of capacitors shown below are all
uncharged when a 300-V potential is applied
between points A and B with the switch S open.
(a) What is the potential difference Vg — Vp ?
(b) What is the potential at point E after the
switch is closed? (c) How much charge flows
through the switch after it is closed?

i

2.0 uF = 4.0 uF ==

4.0 uF == 2.0 uF ==

I

Electronic flash units for cameras contain a
capacitor for storing the energy used to produce
the flash. In one such unit the flash lasts for 1/
675 fraction of a second with an average light
power output of 270 kW. (a) If the conversion of
electrical energy to light is 95% efficient
(because the rest of the energy goes to thermal
energy), how much energy must be stored in the
capacitor for one flash? (b) The capacitor has a
potential difference between its plates of 125 V
when the stored energy equals the value stored
in part (a). What is the capacitance?

A spherical capacitor is formed from two
concentric spherical conducting shells
separated by a vacuum. The inner sphere has
radius 12.5 cm and the outer sphere has radius
14.8 cm. A potential difference of 120 V is
applied to the capacitor. (a) What is the energy
density at » = 12.6 cm, just outside the inner
sphere? (b) What is the energy density at

r = 14.7 cm, just inside the outer sphere? (c)
For the parallel-plate capacitor the energy
density is uniform in the region between the
plates, except near the edges of the plates. Is
this also true for the spherical capacitor?

81.

82.

83.
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A metal plate of thickness tis held in place
between two capacitor plates by plastic pegs, as
shown below. The effect of the pegs on the
capacitance is negligible. The area of each
capacitor plate and the area of the top and
bottom surfaces of the inserted plate are all A.
What is the capacitance of this system?

A parallel-plate capacitor is filled with two
dielectrics, as shown below. When the plate area
is A and separation between plates is d, show

that the capacitance is given by
K1 +K2

A
C=£07 5

A parallel-plate capacitor is filled with two
dielectrics, as shown below. Show that the
capacitance is given by
_ A K1K2
C= 280 7 W
d d
o gt —]

""" Area A
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84. A capacitor has parallel plates of area 12 cm?
separated by 2.0 mm. The space between the
plates is filled with polystyrene. (a) Find the
maximum permissible voltage across the
capacitor to avoid dielectric breakdown. (b)
When the voltage equals the value found in part
(a), find the surface charge density on the
surface of the dielectric.

Access for free at openstax.org.




CHAPTER 9 .
Current and Resistance

10 cm

Figure 9.1 Magnetic resonance imaging (MRI) uses superconducting magnets and produces high-resolution
images without the danger of radiation. The image on the left shows the spacing of vertebrae along a human spinal
column, with the circle indicating where the vertebrae are too close due to a ruptured disc. On the right is a picture
of the MRI instrument, which surrounds the patient on all sides. A large amount of electrical current is required to
operate the electromagnets (credit right: modification of work by “digital cat”/Flickr).

Chapter Outline

9.1 Electrical Current

9.2 Model of Conduction in Metals

9.3 Resistivity and Resistance

9.4 Ohm's Law

9.5 Electrical Energy and Power

9.6 Superconductors

INTRODUCTION In this chapter, we study the electrical current through a material, where the electrical
current is the rate of flow of charge. We also examine a characteristic of materials known as the resistance.
Resistance is a measure of how much a material impedes the flow of charge, and it will be shown that the
resistance depends on temperature. In general, a good conductor, such as copper, gold, or silver, has very low
resistance. Some materials, called superconductors, have zero resistance at very low temperatures.



High currents are required for the operation of electromagnets. Superconductors can be used to make
electromagnets that are 10 times stronger than the strongest conventional electromagnets. These
superconducting magnets are used in the construction of magnetic resonance imaging (MRI) devices that can
be used to make high-resolution images of the human body. The chapter-opening picture shows an MRI image
of the vertebrae of a human subject and the MRI device itself. Superconducting magnets have many other uses.
For example, superconducting magnets are used in the Large Hadron Collider (LHC) to curve the path of
protons in the ring.

9.1 Electrical Current

Learning Objectives

By the end of this section, you will be able to:
e Describe an electrical current
e Define the unit of electrical current
e Explain the direction of current flow

Up to now, we have considered primarily static charges. When charges did move, they were accelerated in
response to an electrical field created by a voltage difference. The charges lost potential energy and gained
kinetic energy as they traveled through a potential difference where the electrical field did work on the charge.

Although charges do not require a material to flow through, the majority of this chapter deals with
understanding the movement of charges through a material. The rate at which the charges flow past a
location—that is, the amount of charge per unit time—is known as the electrical current. When charges flow
through a medium, the current depends on the voltage applied, the material through which the charges flow,
and the state of the material. Of particular interest is the motion of charges in a conducting wire. In previous
chapters, charges were accelerated due to the force provided by an electrical field, losing potential energy and
gaining kinetic energy. In this chapter, we discuss the situation of the force provided by an electrical field in a
conductor, where charges lose kinetic energy to the material reaching a constant velocity, known as the “drift
velocity.” This is analogous to an object falling through the atmosphere and losing kinetic energy to the air,
reaching a constant terminal velocity.

If you have ever taken a course in first aid or safety, you may have heard that in the event of electric shock, it is
the current, not the voltage, which is the important factor on the severity of the shock and the amount of
damage to the human body. Current is measured in units called amperes; you may have noticed that circuit
breakers in your home and fuses in your car are rated in amps (or amperes). But what is the ampere and what
does it measure?

Defining Current and the Ampere

Electrical current is defined to be the rate at which charge flows. When there is a large current present, such as
that used to run a refrigerator, a large amount of charge moves through the wire in a small amount of time. If
the current is small, such as that used to operate a handheld calculator, a small amount of charge moves
through the circuit over a long period of time.

Electrical Current

The average electrical current I is the rate at which charge flows,

AQ
Tave = A_’ 9.1

t

where AQ is the amount of net charge passing through a given cross-sectional area in time A¢ (Figure 9.2).

The SI unit for current is the ampere (A), named for the French physicist André-Marie Ampére
(1775-1836). Since I = AA—?, we see that an ampere is defined as one coulomb of charge passing through a

given area per second:




1A = lg. 9.2
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The instantaneous electrical current, or simply the electrical current, is the time derivative of the charge
that flows and is found by taking the limit of the average electrical current as At — O:
A d
7= im 2Q _ 40

= lim — = . 9.3
Ar—0 At dt

Most electrical appliances are rated in amperes (or amps) required for proper operation, as are fuses and
circuit breakers.

Current = flow of charge

A (area)
/\/
—
g—

Figure 9.2 The rate of flow of charge is current. An ampere is the flow of one coulomb of charge through an area in one second. A current

of one amp would result from 6.25 X 1018 electrons flowing through the area A each second.

@ EXAMPLE 9.1

Calculating the Average Current

The main purpose of a battery in a car or truck is to run the electric starter motor, which starts the engine. The
operation of starting the vehicle requires a large current to be supplied by the battery. Once the engine starts, a
device called an alternator takes over supplying the electric power required for running the vehicle and for
charging the battery.

(a) What is the average current involved when a truck battery sets in motion 720 C of charge in 4.00 s while
starting an engine? (b) How long does it take 1.00 C of charge to flow from the battery?

Strategy
We can use the definition of the average current in the equation I = % to find the average current in part (a),
since charge and time are given. For part (b), once we know the average current, we can its definition I = AA—?

to find the time required for 1.00 C of charge to flow from the battery.

Solution
a. Entering the given values for charge and time into the definition of current gives

AQ T720C

b. Solving the relationship I = AA—? for time At and entering the known values for charge and current gives

AQ  1.00C

—_— = =15, 1_3= . .
7 130 Cls 5.56 x 107°s = 5.56 ms

At =
Significance
a. This large value for current illustrates the fact that a large charge is moved in a small amount of time. The
currents in these “starter motors” are fairly large to overcome the inertia of the engine. b. A high current
requires a short time to supply a large amount of charge. This large current is needed to supply the large
amount of energy needed to start the engine.




@ EXAMPLE 9.2

Calculating Instantaneous Currents
Consider a charge moving through a cross-section of a wire where the charge is modeled as
O =0pm (1 — e_t/f). Here, Q) is the charge after a long period of time, as time approaches infinity, with

units of coulombs, and 7 is a time constant with units of seconds (see Figure 9.3). What is the current through
the wire?

Q(t) vs. t
Q4
QM n
0 T T T ™
0 T 2T 3T

Figure 9.3 A graph of the charge moving through a cross-section of a wire over time.

Strategy
The current through the cross-section can be found from I = % Notice from the figure that the charge
increases to QO ps and the derivative decreases, approaching zero, as time increases (Figure 9.4).

Solution
The derivative can be found using %e“ =et %.
g _ d / Om _y
IT=—=—|0y(1-"")] = =",
i~ dt [om ( ) T
I(t) vs. t
I(t) &
Iy
0 | | 1 ™
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Figure 9.4 A graph of the current flowing through the wire over time.
Significance

The current through the wire in question decreases exponentially, as shown in Figure 9.4. In later chapters, it
will be shown that a time-dependent current appears when a capacitor charges or discharges through a
resistor. Recall that a capacitor is a device that stores charge. You will learn about the resistor in Model of

Conduction in Metals.

CHECK YOUR UNDERSTANDING 9.1



Handheld calculators often use small solar cells to supply the energy required to complete the calculations
needed to complete your next physics exam. The current needed to run your calculator can be as small as 0.30
mA. How long would it take for 1.00 C of charge to flow from the solar cells? Can solar cells be used, instead of
batteries, to start traditional internal combustion engines presently used in most cars and trucks?

) CHECK YOUR UNDERSTANDING 9.2

Circuit breakers in a home are rated in amperes, normally in a range from 10 amps to 30 amps, and are used
to protect the residents from harm and their appliances from damage due to large currents. A single 15-amp
circuit breaker may be used to protect several outlets in the living room, whereas a single 20-amp circuit
breaker may be used to protect the refrigerator in the kitchen. What can you deduce from this about current
used by the various appliances?

Current in a Circuit

In the previous paragraphs, we defined the current as the charge that flows through a cross-sectional area per
unit time. In order for charge to flow through an appliance, such as the headlight shown in Figure 9.5, there
must be a complete path (or circuit) from the positive terminal to the negative terminal. Consider a simple
circuit of a car battery, a switch, a headlight lamp, and wires that provide a current path between the
components. In order for the lamp to light, there must be a complete path for current flow. In other words, a
charge must be able to leave the positive terminal of the battery, travel through the component, and back to the
negative terminal of the battery. The switch is there to control the circuit. Part (a) of the figure shows the
simple circuit of a car battery, a switch, a conducting path, and a headlight lamp. Also shown is the schematic
of the circuit [part (b)]. A schematic is a graphical representation of a circuit and is very useful in visualizing
the main features of a circuit. Schematics use standardized symbols to represent the components in a circuits
and solid lines to represent the wires connecting the components. The battery is shown as a series of long and
short lines, representing the historic voltaic pile. The lamp is shown as a circle with a loop inside, representing
the filament of an incandescent bulb. The switch is shown as two points with a conducting bar to connect the
two points and the wires connecting the components are shown as solid lines. The schematic in part (c) shows
the direction of current flow when the switch is closed.

)
©

V battery
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Figure 9.5 (a) A simple electric circuit of a headlight (lamp), a battery, and a switch. When the switch is closed, an uninterrupted path for

current to flow through is supplied by conducting wires connecting a load to the terminals of a battery. (b) In this schematic, the battery is
represented by parallel lines, which resemble plates in the original design of a battery. The longer lines indicate the positive terminal. The
conducting wires are shown as solid lines. The switch is shown, in the open position, as two terminals with a line representing a conducting
bar that can make contact between the two terminals. The lamp is represented by a circle encompassing a filament, as would be seen in an
incandescent light bulb. (c) When the switch is closed, the circuit is complete and current flows from the positive terminal to the negative

terminal of the battery.



When the switch is closed in Figure 9.5(c), there is a complete path for charges to flow, from the positive
terminal of the battery, through the switch, then through the headlight and back to the negative terminal of the
battery. Note that the direction of current flow is from positive to negative. The direction of conventional
current is always represented in the direction that positive charge would flow, from the positive terminal to
the negative terminal.

The conventional current flows from the positive terminal to the negative terminal, but depending on the
actual situation, positive charges, negative charges, or both may move. In metal wires, for example, current is
carried by electrons—that is, negative charges move. In ionic solutions, such as salt water, both positive and
negative charges move. This is also true in nerve cells. A Van de Graaff generator, used for nuclear research,
can produce a current of pure positive charges, such as protons. In the Tevatron Accelerator at Fermilab,
before it was shut down in 2011, beams of protons and antiprotons traveling in opposite directions were
collided. The protons are positive and therefore their current is in the same direction as they travel. The
antiprotons are negativity charged and thus their current is in the opposite direction that the actual particles
travel.

A closer look at the current flowing through a wire is shown in Figure 9.6. The figure illustrates the movement
of charged particles that compose a current. The fact that conventional current is taken to be in the direction
that positive charge would flow can be traced back to American scientist and statesman Benjamin Franklin in
the 1700s. Having no knowledge of the particles that make up the atom (namely the proton, electron, and
neutron), Franklin believed that electrical current flowed from a material that had more of an “electrical fluid”
and to a material that had less of this “electrical fluid.” He coined the term positive for the material that had
more of this electrical fluid and negative for the material that lacked the electrical fluid. He surmised that
current would flow from the material with more electrical fluid—the positive material—to the negative material,
which has less electrical fluid. Franklin called this direction of current a positive current flow. This was pretty
advanced thinking for a man who knew nothing about the atom.
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Figure 9.6 Current I'is the rate at which charge moves through an area A, such as the cross-section of a wire. Conventional current is

defined to move in the direction of the electrical field. (a) Positive charges move in the direction of the electrical field, which is the same
direction as conventional current. (b) Negative charges move in the direction opposite to the electrical field. Conventional current is in the

direction opposite to the movement of negative charge. The flow of electrons is sometimes referred to as electronic flow.

We now know that a material is positive if it has a greater number of protons than electrons, and it is negative if
it has a greater number of electrons than protons. In a conducting metal, the current flow is due primarily to
electrons flowing from the negative material to the positive material, but for historical reasons, we consider the
positive current flow and the current is shown to flow from the positive terminal of the battery to the negative
terminal.

It is important to realize that an electrical field is present in conductors and is responsible for producing the
current (Figure 9.6). In previous chapters, we considered the static electrical case, where charges in a
conductor quickly redistribute themselves on the surface of the conductor in order to cancel out the external
electrical field and restore equilibrium. In the case of an electrical circuit, the charges are prevented from ever
reaching equilibrium by an external source of electric potential, such as a battery. The energy needed to move
the charge is supplied by the electric potential from the battery.

Although the electrical field is responsible for the motion of the charges in the conductor, the work done on the
charges by the electrical field does not increase the kinetic energy of the charges. We will show that the



electrical field is responsible for keeping the electric charges moving at a “drift velocity.”

9.2 Model of Conduction in Metals

Learning Objectives

By the end of this section, you will be able to:
e Define the drift velocity of charges moving through a metal
e Define the vector current density
e Describe the operation of an incandescent lamp

When electrons move through a conducting wire, they do not move at a constant velocity, that is, the electrons
do not move in a straight line at a constant speed. Rather, they interact with and collide with atoms and other
free electrons in the conductor. Thus, the electrons move in a zig-zag fashion and drift through the wire. We
should also note that even though it is convenient to discuss the direction of current, current is a scalar
quantity. When discussing the velocity of charges in a current, it is more appropriate to discuss the current
density. We will come back to this idea at the end of this section.

Drift Velocity

Electrical signals move very rapidly. Telephone conversations carried by currents in wires cover large
distances without noticeable delays. Lights come on as soon as a light switch is moved to the ‘on’ position. Most
electrical signals carried by currents travel at speeds on the order of 108 m/s, a significant fraction of the speed
of light. Interestingly, the individual charges that make up the current move much slower on average, typically
drifting at speeds on the order of 10~*m/s. How do we reconcile these two speeds, and what does it tell us
about standard conductors?

The high speed of electrical signals results from the fact that the force between charges acts rapidly at a
distance. Thus, when a free charge is forced into a wire, as in Figure 9.7, the incoming charge pushes other
charges ahead of it due to the repulsive force between like charges. These moving charges push on charges
farther down the line. The density of charge in a system cannot easily be increased, so the signal is passed on
rapidly. The resulting electrical shock wave moves through the system at nearly the speed of light. To be
precise, this fast-moving signal, or shock wave, is a rapidly propagating change in the electrical field.
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Figure 9.7 When charged particles are forced into this volume of a conductor, an equal number are quickly forced to leave. The repulsion

between like charges makes it difficult to increase the number of charges in a volume. Thus, as one charge enters, another leaves almost

immediately, carrying the signal rapidly forward.

Good conductors have large numbers of free charges. In metals, the free charges are free electrons. (In fact,
good electrical conductors are often good heat conductors too, because large numbers of free electrons can
transport thermal energy as well as carry electrical current.) Figure 9.8 shows how free electrons move
through an ordinary conductor. The distance that an individual electron can move between collisions with
atoms or other electrons is quite small. The electron paths thus appear nearly random, like the motion of
atoms in a gas. But there is an electrical field in the conductor that causes the electrons to drift in the direction
shown (opposite to the field, since they are negative). The drift velocity V is the average velocity of the free
charges. Drift velocity is quite small, since there are so many free charges. If we have an estimate of the density
of free electrons in a conductor, we can calculate the drift velocity for a given current. The larger the density,
the lower the velocity required for a given current.
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Figure 9.8 Free electrons moving in a conductor make many collisions with other electrons and other particles. A typical path of one
electron is shown. The average velocity of the free charges is called the drift velocity Vd and for electrons, it is in the direction opposite to
the electrical field. The collisions normally transfer energy to the conductor, requiring a constant supply of energy to maintain a steady

current.

Free-electron collisions transfer energy to the atoms of the conductor. The electrical field does work in moving
the electrons through a distance, but that work does not increase the kinetic energy (nor speed) of the
electrons. The work is transferred to the conductor’s atoms, often increasing temperature. Thus, a continuous
power input is required to keep a current flowing. (An exception is superconductors, for reasons we shall
explore in a later chapter. Superconductors can have a steady current without a continual supply of energy—a
great energy savings.) For a conductor that is not a superconductor, the supply of energy can be useful, as in an
incandescent light bulb filament (Figure 9.9). The supply of energy is necessary to increase the temperature of
the tungsten filament, so that the filament glows.

Tungsten
filament
Glass
envelope AW
Partially
evacuated N _~\_"\,
Screw
N\ contact
‘1 Insulator

Contact

Figure 9.9 The incandescent lamp is a simple design. A tungsten filament is placed in a partially evacuated glass envelope. One end of the
filament is attached to the screw base, which is made out of a conducting material. The second end of the filament is attached to a second
contact in the base of the bulb. The two contacts are separated by an insulating material. Current flows through the filament, and the
temperature of the filament becomes large enough to cause the filament to glow and produce light. However, these bulbs are not very
energy efficient, as evident from the heat coming from the bulb. In the year 2012, the United States, along with many other countries,
began to phase out incandescent lamps in favor of more energy-efficient lamps, such as light-emitting diode (LED) lamps and compact

fluorescent lamps (CFL) (credit right: modification of work by Serge Saint).

We can obtain an expression for the relationship between current and drift velocity by considering the number

of free charges in a segment of wire, as illustrated in Figure 9.10. The number of free charges per unit volume,
number of charges
volume
depends on the material. The shaded segment has a volume Avgdt, so that the number of free charges in the
volume is nAvgdt. The charge dQin this segment is thus gnAvg dt, where g is the amount of charge on each

carrier. (The magnitude of the charge of electrons is ¢ = 1.60 X 10719 C)) current is charge moved per unit

or the number density of free charges, is given the symbol n where n = . The value of n



time; thus, if all the original charges move out of this segment in time dt, the current is

dQ
I =— =qnAuy,.
i q d
Rearranging terms gives
! 9.4
Vg = — !
d nqA

where vy is the drift velocity, n is the free charge density, A is the cross-sectional area of the wire, and I is the
current through the wire. The carriers of the current each have charge g and move with a drift velocity of
magnitude vyg.

volume = Av,dt

Figure 9.10 All the charges in the shaded volume of this wire move out in a time dt, having a drift velocity of magnitude vg.

Note that simple drift velocity is not the entire story. The speed of an electron is sometimes much greater than
its drift velocity. In addition, not all of the electrons in a conductor can move freely, and those that do move
might move somewhat faster or slower than the drift velocity. So what do we mean by free electrons?

Atoms in a metallic conductor are packed in the form of a lattice structure. Some electrons are far enough
away from the atomic nuclei that they do not experience the attraction of the nuclei as strongly as the inner
electrons do. These are the free electrons. They are not bound to a single atom but can instead move freely
among the atoms in a “sea” of electrons. When an electrical field is applied, these free electrons respond by
accelerating. As they move, they collide with the atoms in the lattice and with other electrons, generating
thermal energy, and the conductor gets warmer. In an insulator, the organization of the atoms and the
structure do not allow for such free electrons.

As you know, electric power is usually supplied to equipment and appliances through round wires made of a
conducting material (copper, aluminum, silver, or gold) that are stranded or solid. The diameter of the wire
determines the current-carrying capacity—the larger the diameter, the greater the current-carrying capacity.
Even though the current-carrying capacity is determined by the diameter, wire is not normally characterized
by the diameter directly. Instead, wire is commonly sold in a unit known as “gauge.” Wires are manufactured
by passing the material through circular forms called “drawing dies.” In order to make thinner wires,
manufacturers draw the wires through multiple dies of successively thinner diameter. Historically, the gauge
of the wire was related to the number of drawing processes required to manufacture the wire. For this reason,
the larger the gauge, the smaller the diameter. In the United States, the American Wire Gauge (AWG) was
developed to standardize the system. Household wiring commonly consists of 10-gauge (2.588-mm diameter)
to 14-gauge (1.628-mm diameter) wire. A device used to measure the gauge of wire is shown in Figure 9.11.



Figure 9.11 A device for measuring the gauge of electrical wire. As you can see, higher gauge numbers indicate thinner wires. (credit:

Joseph J. Trout)

@ EXAMPLE 9.3

Calculating Drift Velocity in a Common Wire

Calculate the drift velocity of electrons in a copper wire with a diameter of 2.053 mm (12-gauge) carrying a
20.0-A current, given that there is one free electron per copper atom. (Household wiring often contains
12-gauge copper wire, and the maximum current allowed in such wire is usually 20.0 A.) The density of copper
is8.80 x 103 kg/m3 and the atomic mass of copper is 63.54 g/mol.

Strategy

We can calculate the drift velocity using the equation I = nqAvq. The current is I = 20.00 A and

qg=1.60 x 10~19C s the charge of an electron. We can calculate the area of a cross-section of the wire using
the formula A = zrrz, where ris one-half the diameter. The given diameter is 2.053 mm, so ris 1.0265 mm. We
are given the density of copper, 8.80 X 103 kg/m3, and the atomic mass of copper is 63.54 g/mol. We can use
these two quantities along with Avogadro’s number, 6.02 X 1023 atoms/mol, to determine n, the number of
free electrons per cubic meter.

Solution

First, we calculate the density of free electrons in copper. There is one free electron per copper atom.
Therefore, the number of free electrons is the same as the number of copper atoms per m?3. We can now find n
as follows:

p = Lleo o 602x10Baoms o Imol  1000g  880x10%ke

atom mol 63.54 ¢ kg 1 m3

=8.34 x 10%8¢~/m3.

The cross-sectional area of the wire is

_3 2
A= = E(W) =330 x 10°5m?.

Rearranging I = nqAuvy to isolate drift velocity gives
I 20.00 A
ngA (834 x 10%3/m3)(~1.60 x 10719C)(3.30 x 10~°m?)

Vg =

= —4.54 x 10~* m/s.



Significance

The minus sign indicates that the negative charges are moving in the direction opposite to conventional
current. The small value for drift velocity (on the order of 1074 m/s) confirms that the signal moves on the
order of 10!2 times faster (about 108 m/s) than the charges that carry it.

CHECK YOUR UNDERSTANDING 9.3

In Example 9.4, the drift velocity was calculated for a 2.053-mm diameter (12-gauge) copper wire carrying a
20-amp current. Would the drift velocity change for a 1.628-mm diameter (14-gauge) wire carrying the same
20-amp current?

Current Density

Although it is often convenient to attach a negative or positive sign to indicate the overall direction of motion of
o

dr
charge, instead of discussing the overall motion of the charges. In such cases, it is necessary to discuss the

the charges, current is a scalar quantity, I = It is often necessary to discuss the details of the motion of the

current density, ._f , a vector quantity. The current density is the flow of charge through an infinitesimal area,
divided by the area. The current density must take into account the local magnitude and direction of the
charge flow, which varies from point to point. The unit of current density is ampere per meter squared, and the
direction is defined as the direction of net flow of positive charges through the area.

The relationship between the current and the current density can be seen in Figure 9.12. The differential
current flow through the area dK is found as

dI =J-dA = JdAcoso,

N
where 0 is the angle between the area and the current density. The total current passing through area dA can

be found by integrating over the area,
- ->
1= J - dA. 9.5

area

Consider the magnitude of the current density, which is the current divided by the area:

1 A
o L _nlalAvq

1 1 =n|q| vq.

> >
Thus, the current density is J = and. If g is positive, Vd is in the same direction as the electrical field E. If g is
- -
negative, Vd is in the opposite direction of E. Either way, the direction of the current density J is in the
-
direction of the electrical field E.

>
Figure 9.12 The current density J is defined as the current passing through an infinitesimal cross-sectional area divided by the area. The
direction of the current density is the direction of the net flow of positive charges and the magnitude is equal to the current divided by the

infinitesimal area.



@ EXAMPLE 9.4

Calculating the Current Density in a Wire

The current supplied to a lamp with a 100-W light bulb is 0.87 amps. The lamp is wired using a copper wire
with diameter 2.588 mm (10-gauge). Find the magnitude of the current density.

Strategy

The current density is the current moving through an infinitesimal cross-sectional area divided by the area.

We can calculate the magnitude of the current density using J = %. The current is given as 0.87 A. The cross-

sectional area can be calculated to be A = 5.26 mm?.

Solution
Calculate the current density using the given current I = 0.87 A and the area, found to be A = 5.26 mm?.

1 0.87 A A
J=—=—6=1.65x 105—2.
A 526 x 107°m? m
Significance
The current density in a conducting wire depends on the current through the conducting wire and the cross-
sectional area of the wire. For a given current, as the diameter of the wire increases, the charge density
decreases.

CHECK YOUR UNDERSTANDING 9.4

The current density is proportional to the current and inversely proportional to the area. If the current density
in a conducting wire increases, what would happen to the drift velocity of the charges in the wire?

What is the significance of the current density? The current density is proportional to the current, and the
current is the number of charges that pass through a cross-sectional area per second. The charges move
through the conductor, accelerated by the electric force provided by the electrical field. The electrical field is
created when a voltage is applied across the conductor. In Ohm'’s Law, we will use this relationship between the
current density and the electrical field to examine the relationship between the current through a conductor
and the voltage applied.

9.3 Resistivity and Resistance

Learning Objectives
By the end of this section, you will be able to:
o Differentiate between resistance and resistivity
o Define the term conductivity
e Describe the electrical component known as a resistor
e State the relationship between resistance of a resistor and its length, cross-sectional area, and resistivity
e State the relationship between resistivity and temperature

What drives current? We can think of various devices—such as batteries, generators, wall outlets, and so
on—that are necessary to maintain a current. All such devices create a potential difference and are referred to
as voltage sources. When a voltage source is connected to a conductor, it applies a potential difference Vthat
creates an electrical field. The electrical field, in turn, exerts force on free charges, causing current. The
amount of current depends not only on the magnitude of the voltage, but also on the characteristics of the
material that the current is flowing through. The material can resist the flow of the charges, and the measure of
how much a material resists the flow of charges is known as the resistivity. This resistivity is crudely analogous
to the friction between two materials that resists motion.



Resistivity

When a voltage is applied to a conductor, an electrical field E is created, and charges in the conductor feel a
force due to the electrical field. The current densityj that results depends on the electrical field and the
properties of the material. This dependence can be very complex. In some materials, including metals at a
given temperature, the current density is approximately proportional to the electrical field. In these cases, the
current density can be modeled as

J =oE,
where o is the electrical conductivity. The electrical conductivity is analogous to thermal conductivity and is a
measure of a material’s ability to conduct or transmit electricity. Conductors have a higher electrical
conductivity than insulators. Since the electrical conductivity is ¢ = J/E, the units are

1 Am* A

o= = = .
[E] V/m V-m

Here, we define a unit named the ohm with the Greek symbol uppercase omega, Q. The unit is named after
Georg Simon Ohm, whom we will discuss later in this chapter. The Q is used to avoid confusion with the
number 0. One ohm equals one volt per amp: 1 Q = 1 V/A. The units of electrical conductivity are therefore
(Q -m)~!.

Conductivity is an intrinsic property of a material. Another intrinsic property of a material is the resistivity, or
electrical resistivity. The resistivity of a material is a measure of how strongly a material opposes the flow of
electrical current. The symbol for resistivity is the lowercase Greek letter rho, p, and resistivity is the
reciprocal of electrical conductivity:

p=—.
o

The unit of resistivity in SI units is the ohm-meter (Q - m). We can define the resistivity in terms of the
electrical field and the current density,

p= 9.6

E

7

The greater the resistivity, the larger the field needed to produce a given current density. The lower the
resistivity, the larger the current density produced by a given electrical field. Good conductors have a high
conductivity and low resistivity. Good insulators have a low conductivity and a high resistivity. Table 9.1 lists
resistivity and conductivity values for various materials.

Conductivit Resistivit Temperature
Material _)1/’ ¢ esistvity, p Coefficient, a
(2 -m) (Q -m) on—1
°O)
Conductors

Silver 6.29 x 107 1.59 x 1078 0.0038
Copper 5.95 x 107 1.68 x 1078 0.0039
Gold 4.10 x 107 244 x 1078 0.0034
Aluminum 3.77 x 107 2.65 x 1078 0.0039
Tungsten 1.79 x 107 5.60 x 1078 0.0045




Temperature

Material Co(nsc;u.ctnil\;if)l/, ¢ Re(sigsiti'vri;cl);, ’ Coei;ﬁcifrllt, a

°O)

Iron 1.03 x 107 9.71 x 1078 0.0065

Platinum 0.94 x 107 10.60 x 1078 0.0039

Steel 0.50 x 107 20.00 x 1078

Lead 0.45 x 107 22.00 x 1078

Manganin (Cu, Mn, Ni alloy) | 0.21 x 107 48.20 x 1078 0.000002

Constantan (Cu, Ni alloy) 0.20 x 107 49.00 x 1078 0.00003

Mercury 0.10 x 107 98.00 x 1078 0.0009

Nichrome (Ni, Fe, Cr alloy) 0.10 x 107 100.00 x 1078 0.0004

Semiconductors[1]

Carbon (pure) 2.86 x 10* 3.50 x 1072 -0.0005

Carbon (2.86 —1.67) x 107 | (3.5-60) x 107> | -0.0005

Germanium (pure) 600 x 1073 -0.048

Germanium (1-600) x 1073 | -0.050

Silicon (pure) 2300 -0.075

Silicon 0.1 — 2300 -0.07

Insulators

Amber 2.00 x 10715 5% 104

Glass 1079 — 10714 10° — 104

Lucite <10713 >1013

Mica 10-11 — 10715 10t — 100

Quartz (fused) 133 x 10718 75 x 106

Rubber (hard) 10713 — 10716 1013 — 1016

Sulfur 10~15 100




Temperature

Material ConductIVIE)I/, o Resistivity, p Coefficient, «
(Q -m) (Q -m) orn—1
Q)
Teflon™ <1073 >1013
Wood 1078 — 1071 108 — 10!

Table 9.1 Resistivities and Conductivities of Various Materials at 20 °C [1] Values depend strongly on amounts
and types of impurities.

The materials listed in the table are separated into categories of conductors, semiconductors, and insulators,
based on broad groupings of resistivity. Conductors have the smallest resistivity, and insulators have the
largest; semiconductors have intermediate resistivity. Conductors have varying but large, free charge
densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors
are intermediate, having far fewer free charges than conductors, but having properties that make the number
of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique
properties of semiconductors are put to use in modern electronics, as we will explore in later chapters.

CHECK YOUR UNDERSTANDING 9.5

Copper wires use routinely used for extension cords and house wiring for several reasons. Copper has the
highest electrical conductivity rating, and therefore the lowest resistivity rating, of all nonprecious metals. Also
important is the tensile strength, where the tensile strength is a measure of the force required to pull an object
to the point where it breaks. The tensile strength of a material is the maximum amount of tensile stress it can
take before breaking. Copper has a high tensile strength, 2 X 108 % A third important characteristic is

ductility. Ductility is a measure of a material’s ability to be drawn into wires and a measure of the flexibility of
the material, and copper has a high ductility. Summarizing, for a conductor to be a suitable candidate for
making wire, there are at least three important characteristics: low resistivity, high tensile strength, and high
ductility. What other materials are used for wiring and what are the advantages and disadvantages?

INTERACTIVE

View this interactive simulation (https://openstax.org/l/21resistwire) to see what the effects of the cross-
sectional area, the length, and the resistivity of a wire are on the resistance of a conductor. Adjust the variables
using slide bars and see if the resistance becomes smaller or larger.

Temperature Dependence of Resistivity

Looking back at Table 9.1, you will see a column labeled “Temperature Coefficient.” The resistivity of some
materials has a strong temperature dependence. In some materials, such as copper, the resistivity increases
with increasing temperature. In fact, in most conducting metals, the resistivity increases with increasing
temperature. The increasing temperature causes increased vibrations of the atoms in the lattice structure of
the metals, which impede the motion of the electrons. In other materials, such as carbon, the resistivity
decreases with increasing temperature. In many materials, the dependence is approximately linear and can be
modeled using a linear equation:

p=poll+a(T—-Ty]l, 9.7

where p is the resistivity of the material at temperature T, « is the temperature coefficient of the material, and
po is the resistivity at Ty, usually taken as T = 20.00 °C.

Note also that the temperature coefficient « is negative for the semiconductors listed in Table 9.1, meaning



that their resistivity decreases with increasing temperature. They become better conductors at higher
temperature, because increased thermal agitation increases the number of free charges available to carry
current. This property of decreasing p with temperature is also related to the type and amount of impurities
present in the semiconductors.

Resistance

We now consider the resistance of a wire or component. The resistance is a measure of how difficult it is to
pass current through a wire or component. Resistance depends on the resistivity. The resistivity is a
characteristic of the material used to fabricate a wire or other electrical component, whereas the resistance is
a characteristic of the wire or component.

To calculate the resistance, consider a section of conducting wire with cross-sectional area A, length L, and

resistivity p. A battery is connected across the conductor, providing a potential difference AV across it (Figure

9.13). The potential difference produces an electrical field that is proportional to the current density, according
- -

toE = pJ.

- L .

High E Low
potential — potential
—- —-

4 / 3 /
—
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Figure 9.13 A potential provided by a battery is applied to a segment of a conductor with a cross-sectional area A and a length L.

The magnitude of the electrical field across the segment of the conductor is equal to the voltage divided by the
length, E = V/L, and the magnitude of the current density is equal to the current divided by the cross-
sectional area, J = I/A. Using this information and recalling that the electrical field is proportional to the
resistivity and the current density, we can see that the voltage is proportional to the current:

E=pJ
v _ 1
T=P4
V= p%)l

Resistance

The ratio of the voltage to the current is defined as the resistance R:
= —. 9.8

The resistance of a cylindrical segment of a conductor is equal to the resistivity of the material times the
length divided by the area:

=p—. 9.9

The unit of resistance is the ohm, Q. For a given voltage, the higher the resistance, the lower the current.

Resistors
A common component in electronic circuits is the resistor. The resistor can be used to reduce current flow or



provide a voltage drop. Figure 9.14 shows the symbols used for a resistor in schematic diagrams of a circuit.
Two commonly used standards for circuit diagrams are provided by the American National Standard Institute
(ANSI, pronounced “AN-see”) and the International Electrotechnical Commission (IEC). Both systems are
commonly used. We use the ANSI standard in this text for its visual recognition, but we note that for larger,
more complex circuits, the IEC standard may have a cleaner presentation, making it easier to read.

—MA— —_ -

American National International Electrotechnical
Standards Institute (ANSI) Commission (IEC)
@ (b)

Figure 9.14 Symbols for a resistor used in circuit diagrams. (a) The ANSI symbol; (b) the IEC symbol.

Material and shape dependence of resistance
A resistor can be modeled as a cylinder with a cross-sectional area A and a length L, made of a material with a
resistivity p (Figure 9.15). The resistance of the resistor is R = p%.

A = area
I L = length I
p = resistivity = —“MN—
R
_ L
R=p%

Figure 9.15 A model of a resistor as a uniform cylinder of length L and cross-sectional area A. Its resistance to the flow of current is
analogous to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional

area A, the smaller its resistance.

The most common material used to make a resistor is carbon. A carbon track is wrapped around a ceramic
core, and two copper leads are attached. A second type of resistor is the metal film resistor, which also has a
ceramic core. The track is made from a metal oxide material, which has semiconductive properties similar to
carbon. Again, copper leads are inserted into the ends of the resistor. The resistor is then painted and marked
for identification. A resistor has four colored bands, as shown in Figure 9.16.

A Color  Digit Multiplier
Black 0 100
First Brown 1 101!
digit Red 2 102
Tolerance Orange 3 103
Second Yellow 4 104
digit Green 5 105
- Blue 6 106
Multiplier
P Violet 7 107
R =20 X 10° () * 10% Gray 8 108
R=20MQ +02M () White 9 10°
Tolerance
Gold 5%
Silver 10%

Figure 9.16 Many resistors resemble the figure shown above. The four bands are used to identify the resistor. The first two colored bands

represent the first two digits of the resistance of the resistor. The third color is the multiplier. The fourth color represents the tolerance of



the resistor. The resistor shown has a resistance of 20 X 10° Q + 10%.

Resistances range over many orders of magnitude. Some ceramic insulators, such as those used to support
power lines, have resistances of 1012 Q or more. A dry person may have a hand-to-foot resistance of 10° Q,
whereas the resistance of the human heart is about 103 Q. A meter-long piece of large-diameter copper wire
may have a resistance of 1072 Q, and superconductors have no resistance at all at low temperatures. As we
have seen, resistance is related to the shape of an object and the material of which it is composed.

@ EXAMPLE 9.5

Current Density, Resistance, and Electrical field for a Current-Carrying Wire

Calculate the current density, resistance, and electrical field of a 5-m length of copper wire with a diameter of
2.053 mm (12-gauge) carrying a current of I = 10 mA.

Strategy

We can calculate the current density by first finding the cross-sectional area of the wire, which is
A = 3.31 mm?, and the definition of current density J = %. The resistance can be found using the length of

the wire L = 5.00 m, the area, and the resistivity of copper p = 1.68 X 108 Q - m, where R = p%. The
resistivity and current density can be used to find the electrical field.

Solution
First, we calculate the current density:

1 10 x 1073A A
J=—=—" " " =302 x 103—2.
A 331 x 107%m?2 m
The resistance of the wire is
L s 5.00 m
R=p—=(168 x 107°Q -m) ————— =0.025Q.
A ( ) 3.31 x 107%m?

Finally, we can find the electrical field:
A v
E=pJ =168 x 1078Q -m<3.02 X 103—2> =507 x 1075 —.
m m

Significance
From these results, it is not surprising that copper is used for wires for carrying current because the resistance

is quite small. Note that the current density and electrical field are independent of the length of the wire, but
the voltage depends on the length.

The resistance of an object also depends on temperature, since Ry is directly proportional to p. For a cylinder,
we know R = p%, so if L and A do not change greatly with temperature, R has the same temperature
dependence as p. (Examination of the coefficients of linear expansion shows them to be about two orders of
magnitude less than typical temperature coefficients of resistivity, so the effect of temperature on L and A is
about two orders of magnitude less than on p. ) Thus,

R = Ro(1 + aAT) 9.10

is the temperature dependence of the resistance of an object, where Ry is the original resistance (usually
taken to be 20.00 °C) and R is the resistance after a temperature change AT The color code gives the
resistance of the resistor at a temperature of 7' = 20.00 °C.

Numerous thermometers are based on the effect of temperature on resistance (Figure 9.17). One of the most
common thermometers is based on the thermistor, a semiconductor crystal with a strong temperature
dependence, the resistance of which is measured to obtain its temperature. The device is small, so that it



quickly comes into thermal equilibrium with the part of a person it touches.

s sanin ( ASSIC -O ; @

Figure 9.17 These familiar thermometers are based on the automated measurement of a thermistor’s temperature-dependent

resistance.

@ EXAMPLE 9.6

Calculating Resistance

Although caution must be used in applying p = pg(1 + «AT) and R = Ry(1 + aAT) for temperature changes
greater than 100 °C, for tungsten, the equations work reasonably well for very large temperature changes. A
tungsten filament at 20 °C has a resistance of 0.350 Q. What would the resistance be if the temperature is
increased to 2850 °C?

Strategy

This is a straightforward application of R = Rg(1 + aAT), since the original resistance of the filament is given
as Ry = 0.350 Q and the temperature change is AT = 2830 °C.

Solution
The resistance of the hotter filament R is obtained by entering known values into the above equation:

4.5 x 1073
R=Ry(1+aAT) = (0.3509Q) |1+ <X—> (2830 °C)] = 48Q.

C

Significance

Notice that the resistance changes by more than a factor of 10 as the filament warms to the high temperature
and the current through the filament depends on the resistance of the filament and the voltage applied. If the
filament is used in an incandescent light bulb, the initial current through the filament when the bulb is first
energized will be higher than the current after the filament reaches the operating temperature.

CHECK YOUR UNDERSTANDING 9.6

A strain gauge is an electrical device to measure strain, as shown below. It consists of a flexible, insulating
backing that supports a conduction foil pattern. The resistance of the foil changes as the backing is stretched.
How does the strain gauge resistance change? Is the strain gauge affected by temperature changes?
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@ EXAMPLE 9.7

The Resistance of Coaxial Cable

Long cables can sometimes act like antennas, picking up electronic noise, which are signals from other
equipment and appliances. Coaxial cables are used for many applications that require this noise to be
eliminated. For example, they can be found in the home in cable TV connections or other audiovisual
connections. Coaxial cables consist of an inner conductor of radius r; surrounded by a second, outer
concentric conductor with radius r, (Figure 9.18). The space between the two is normally filled with an
insulator such as polyethylene plastic. A small amount of radial leakage current occurs between the two
conductors. Determine the resistance of a coaxial cable of length L.

Plastic jacket

Dielectric insulator

Metallic shield

Center core

Figure 9.18 Coaxial cables consist of two concentric conductors separated by insulation. They are often used in cable TV or other

audiovisual connections.

Strategy
We cannot use the equation R = p% directly. Instead, we look at concentric cylindrical shells, with thickness
dr, and integrate.

Solution
We first find an expression for dR and then integrate from r; to r,

Access for free at openstax.org.



dr = =L2—dr,

dR = 2xrL

)
A
ro ro ro
R = [ drR= P gr=t [ Lo 2o
= = | sr = | =
ri ri

i

Significance

The resistance of a coaxial cable depends on its length, the inner and outer radii, and the resistivity of the
material separating the two conductors. Since this resistance is not infinite, a small leakage current occurs
between the two conductors. This leakage current leads to the attenuation (or weakening) of the signal being
sent through the cable.

) CHECK YOUR UNDERSTANDING 9.7

The resistance between the two conductors of a coaxial cable depends on the resistivity of the material
separating the two conductors, the length of the cable and the inner and outer radius of the two conductor. If
you are designing a coaxial cable, how does the resistance between the two conductors depend on these
variables?

@ INTERACTIVE

View this simulation (https://openstax.org/l/21batteryresist) to see how the voltage applied and the resistance
of the material the current flows through affects the current through the material. You can visualize the
collisions of the electrons and the atoms of the material effect the temperature of the material.

9.4 Ohm's Law

Learning Objectives
By the end of this section, you will be able to:
e Describe Ohm’s law
e Recognize when Ohm’s law applies and when it does not

We have been discussing three electrical properties so far in this chapter: current, voltage, and resistance. It
turns out that many materials exhibit a simple relationship among the values for these properties, known as
Ohm'’s law. Many other materials do not show this relationship, so despite being called Ohm’s law, it is not
considered a law of nature, like Newton’s laws or the laws of thermodynamics. But it is very useful for
calculations involving materials that do obey Ohm’s law.

Description of Ohm’s Law

The current that flows through most substances is directly proportional to the voltage Vapplied to it. The
German physicist Georg Simon Ohm (1787-1854) was the first to demonstrate experimentally that the current
in a metal wire is directly proportional to the voltage applied:

ITxV.

This important relationship is the basis for Ohm’s law. It can be viewed as a cause-and-effect relationship,
with voltage the cause and current the effect. This is an empirical law, which is to say that it is an
experimentally observed phenomenon, like friction. Such a linear relationship doesn’t always occur. Any
material, component, or device that obeys Ohm’s law, where the current through the device is proportional to
the voltage applied, is known as an ohmic material or ohmic component. Any material or component that does
not obey Ohm’s law is known as a nonohmic material or nonohmic component.



Ohm’s Experiment

In a paper published in 1827, Georg Ohm described an experiment in which he measured voltage across and
current through various simple electrical circuits containing various lengths of wire. A similar experiment is
shown in Figure 9.19. This experiment is used to observe the current through a resistor that results from an
applied voltage. In this simple circuit, a resistor is connected in series with a battery. The voltage is measured
with a voltmeter, which must be placed across the resistor (in parallel with the resistor). The current is
measured with an ammeter, which must be in line with the resistor (in series with the resistor).

Voltmeter Voltmeter
+ - - +
R R
MN NN
Ammeter CA) Ammeter CA)
+ —
+ |\l = Nk
{ i
Vv Vv
(@) (b)

Figure 9.19 The experimental set-up used to determine if a resistor is an ohmic or nonohmic device. (a) When the battery is attached, the
current flows in the clockwise direction and the voltmeter and ammeter have positive readings. (b) When the leads of the battery are

switched, the current flows in the counterclockwise direction and the voltmeter and ammeter have negative readings.

In this updated version of Ohm’s original experiment, several measurements of the current were made for
several different voltages. When the battery was hooked up as in Figure 9.19(a), the current flowed in the
clockwise direction and the readings of the voltmeter and ammeter were positive. Does the behavior of the
current change if the current flowed in the opposite direction? To get the current to flow in the opposite
direction, the leads of the battery can be switched. When the leads of the battery were switched, the readings
of the voltmeter and ammeter readings were negative because the current flowed in the opposite direction, in
this case, counterclockwise. Results of a similar experiment are shown in Figure 9.20.

I(A) V(v)
‘3-;‘; ‘18-33 Ohm’s Experiment
560 —hio Voltage vs. Current
-1.75 -7.00 yi
-150  -6.00 i
-1.49 -5.00
-1.00  -4.00 S| P
-051  -300 500 I
074 -200 2= ‘ e
—049 -100 & _ , , ¥ | L
+000  +0.00 £ _300  -200  -1/00s.. 20 1.00 2.00 3.00%
+049  +100 8 30 5001
+0.50  +2.00 e
+0.99 +3.00 ’,.-"‘ —10.00+
+0.76 +4.00
+1.01 +5.00 —-15.00+
+1.74 +6.00
+1.75 +7.00 Current (A)
+2.00 +8.00 V=IR
+2.49 +9.00 R = 3.84()
+2.50 +10.00

Figure 9.20 A resistor is placed in a circuit with a battery. The voltage applied varies from -10.00 V to +10.00 V, increased by 1.00-V



increments. A plot shows values of the voltage versus the current typical of what a casual experimenter might find.

In this experiment, the voltage applied across the resistor varies from -10.00 to +10.00 V, by increments of
1.00 V. The current through the resistor and the voltage across the resistor are measured. A plot is made of the
voltage versus the current, and the result is approximately linear. The slope of the line is the resistance, or the
voltage divided by the current. This result is known as Ohm’s law:

V = IR, 9.11

where Vis the voltage measured in volts across the object in question, Iis the current measured through the
object in amps, and R is the resistance in units of ohms. As stated previously, any device that shows a linear
relationship between the voltage and the current is known as an ohmic device. A resistor is therefore an ohmic
device.

@ EXAMPLE 9.8

Measuring Resistance

A carbon resistor at room temperature (20 °C) is attached to a 9.00-V battery and the current measured
through the resistor is 3.00 mA. (a) What is the resistance of the resistor measured in ohms? (b) If the
temperature of the resistor is increased to 60 °C by heating the resistor, what is the current through the
resistor?

Strategy

(a) The resistance can be found using Ohm’s law. Ohm’s law states that ¥ = I R, so the resistance can be found
using R = V/I.

(b) First, the resistance is temperature dependent so the new resistance after the resistor has been heated can
be found using R = R (1 + @AT). The current can be found using Ohm’s law in the form I = V/R.

Solution

a. Using Ohm’s law and solving for the resistance yields the resistance at room temperature:

rR=V o 90OV S0 x10°Q =3.00kQ.

I 300 % 1073 A
b. The resistance at 60 °C can be found using R = R (1 + aAT) where the temperature coefficient for
carbon is @ = —0.0005. R = Ry (1 + ¢AT) = 3.00 X 103 (1 = 0.0005 (60 °C — 20 °C)) = 2.94k Q.

The current through the heated resistor is

=Y 200V S0 x 1073 A = 3.06 mA.

R 294 x10°Q
Significance
A change in temperature of 40 °C resulted in a 2.00% change in current. This may not seem like a very great
change, but changing electrical characteristics can have a strong effect on the circuits. For this reason, many
electronic appliances, such as computers, contain fans to remove the heat dissipated by components in the
electric circuits.

CHECK YOUR UNDERSTANDING 9.8

The voltage supplied to your house varies as V' () = Vpax sin (2zf1). If a resistor is connected across this
voltage, will Ohm’s law V' = I R still be valid?

INTERACTIVE

See how the equation form of Ohm’s law (https://openstax.org/l/21chmslaw) relates to a simple circuit. Adjust



the voltage and resistance, and see the current change according to Ohm’s law. The sizes of the symbols in the
equation change to match the circuit diagram.

Nonohmic devices do not exhibit a linear relationship between the voltage and the current. One such device is
the semiconducting circuit element known as a diode. A diode is a circuit device that allows current flow in
only one direction. A diagram of a simple circuit consisting of a battery, a diode, and a resistor is shown in
Figure 9.21. Although we do not cover the theory of the diode in this section, the diode can be tested to see if it
is an ohmic or a nonohmic device.

Diode

Anode Cathode

(a) Reverse bias (b) Forward bias
Figure 9.21 A diode is a semiconducting device that allows current flow only if the diode is forward biased, which means that the anode is

positive and the cathode is negative.

A plot of current versus voltage is shown in Figure 9.22. Note that the behavior of the diode is shown as current
versus voltage, whereas the resistor operation was shown as voltage versus current. A diode consists of an
anode and a cathode. When the anode is at a negative potential and the cathode is at a positive potential, as
shown in part (a), the diode is said to have reverse bias. With reverse bias, the diode has an extremely large
resistance and there is very little current flow—essentially zero current—through the diode and the resistor. As
the voltage applied to the circuit increases, the current remains essentially zero, until the voltage reaches the
breakdown voltage and the diode conducts current, as shown in Figure 9.22. When the battery and the
potential across the diode are reversed, making the anode positive and the cathode negative, the diode
conducts and current flows through the diode if the voltage is greater than 0.7 V. The resistance of the diode is
close to zero. (This is the reason for the resistor in the circuit; if it were not there, the current would become
very large.) You can see from the graph in Figure 9.22 that the voltage and the current do not have a linear
relationship. Thus, the diode is an example of a nonohmic device.

]

Reverse Forward
bias bias
Breakdown
voltage

07V v

Figure 9.22 When the voltage across the diode is negative and small, there is very little current flow through the diode. As the voltage
reaches the breakdown voltage, the diode conducts. When the voltage across the diode is positive and greater than 0.7 V (the actual
voltage value depends on the diode), the diode conducts. As the voltage applied increases, the current through the diode increases, but the

voltage across the diode remains approximately 0.7 V.

Ohm’s law is commonly stated as V' = IR, but originally it was stated as a microscopic view, in terms of the



current density, the conductivity, and the electrical field. This microscopic view suggests the proportionality
V « I comes from the drift velocity of the free electrons in the metal that results from an applied electrical
field. As stated earlier, the current density is proportional to the applied electrical field. The reformulation of
Ohm’s law is credited to Gustav Kirchhoff, whose name we will see again in the next chapter.

9.5 Electrical Energy and Power

Learning Objectives
By the end of this section, you will be able to:
e Express electrical power in terms of the voltage and the current
e Describe the power dissipated by a resistor in an electric circuit
e Calculate the energy efficiency and cost effectiveness of appliances and equipment

In an electric circuit, electrical energy is continuously converted into other forms of energy. For example, when
a current flows in a conductor, electrical energy is converted into thermal energy within the conductor. The
electrical field, supplied by the voltage source, accelerates the free electrons, increasing their kinetic energy
for a short time. This increased kinetic energy is converted into thermal energy through collisions with the
ions of the lattice structure of the conductor. In Work and Kinetic Energy, we defined power as the rate at which
work is done by a force measured in watts. Power can also be defined as the rate at which energy is transferred.
In this section, we discuss the time rate of energy transfer, or power, in an electric circuit.

Power in Electric Circuits

Power is associated by many people with electricity. Power transmission lines might come to mind. We also
think of light bulbs in terms of their power ratings in watts. What is the expression for electric power?

Let us compare a 25-W bulb with a 60-W bulb (Figure 9.23(a)). The 60-W bulb glows brighter than the 25-W
bulb. Although it is not shown, a 60-W light bulb is also warmer than the 25-W bulb. The heat and light is
produced by from the conversion of electrical energy. The kinetic energy lost by the electrons in collisions is
converted into the internal energy of the conductor and radiation. How are voltage, current, and resistance
related to electric power?

(a) (b)
Figure 9.23 (a) Pictured above are two incandescent bulbs: a 25-W bulb (left) and a 60-W bulb (right). The 60-W bulb provides a higher
intensity light than the 25-W bulb. The electrical energy supplied to the light bulbs is converted into heat and light. (b) This compact

fluorescent light (CFL) bulb puts out the same intensity of light as the 60-W bulb, but at 1/4 to 1/10 the input power. (credit a: modification
of works by “Dickbauch”/Wikimedia Commons and Greg Westfall; credit b: modification of work by “dbgg1979”/Flickr)

To calculate electric power, consider a voltage difference existing across a material (Figure 9.24). The electric
potential V] is higher than the electric potential at V;, and the voltage difference is negative V =V, — V]. As
discussed in Electric Potential, an electrical field exists between the two potentials, which points from the




higher potential to the lower potential. Recall that the electrical potential is defined as the potential energy per
charge, V' = AU/qg, and the charge AQ loses potential energy moving through the potential difference.
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Figure 9.24 When there is a potential difference across a conductor, an electrical field is present that points in the direction from the

higher potential to the lower potential.

If the charge is positive, the charge experiences a force due to the electrical field ﬁ' =ma= AQE. This force is
necessary to keep the charge moving. This force does not act to accelerate the charge through the entire
distance AL because of the interactions of the charge with atoms and free electrons in the material. The
speed, and therefore the kinetic energy, of the charge do not increase during the entire trip across AL, and
charge passing through area A, has the same drift velocity vy as the charge that passes through area Aj.
However, work is done on the charge, by the electrical field, which changes the potential energy. Since the
change in the electrical potential difference is negative, the electrical field is found to be

RUSIONNS
AL AL’

The work done on the charge is equal to the electric force times the length at which the force is applied,

E =

W =FAL=(AQE)AL = (AQA—VL> AL =AQV = AU.

The charge moves at a drift velocity vq so the work done on the charge results in a loss of potential energy, but
the average kinetic energy remains constant. The lost electrical potential energy appears as thermal energy in
the material. On a microscopic scale, the energy transfer is due to collisions between the charge and the
molecules of the material, which leads to an increase in temperature in the material. The loss of potential
energy results in an increase in the temperature of the material, which is dissipated as radiation. In a resistor,
it is dissipated as heat, and in a light bulb, it is dissipated as heat and light.

The power dissipated by the material as heat and light is equal to the time rate of change of the work:
p= A_U __ AQV _

At At
With a resistor, the voltage drop across the resistor is dissipated as heat. Ohm’s law states that the voltage

across the resistor is equal to the current times the resistance, V' = I R. The power dissipated by the resistor is
therefore

1v.

2
P=IV=I(UR) =1’R or P=IV=<K>V=V—.
R R

If a resistor is connected to a battery, the power dissipated as radiant energy by the wires and the resistor is

2
equalto P=1V = I’R = VT. The power supplied from the battery is equal to current times the voltage,
P=1V.



Electric Power

The electric power gained or lost by any device has the form
P=1V. 9.12

The power dissipated by a resistor has the form

2

p=[2R=V_, 9.13
R

Different insights can be gained from the three different expressions for electric power. For example,
P=VZ2/R implies that the lower the resistance connected to a given voltage source, the greater the power
delivered. Furthermore, since voltage is squared in P = V2/R, the effect of applying a higher voltage is
perhaps greater than expected. Thus, when the voltage is doubled to a 25-W bulb, its power nearly quadruples
to about 100 W, burning it out. If the bulb’s resistance remained constant, its power would be exactly 100 W,
but at the higher temperature, its resistance is higher, too.

@ EXAMPLE 9.9

Calculating Power in Electric Devices

A DC winch motor is rated at 20.00 A with a voltage of 115 V. When the motor is running at its maximum
power, it can lift an object with a weight of 4900.00 N a distance of 10.00 m, in 30.00 s, at a constant speed. (a)
What is the power consumed by the motor? (b) What is the power used in lifting the object? Ignore air
resistance. (c) Assuming that the difference in the power consumed by the motor and the power used lifting the
object are dissipated as heat by the resistance of the motor, estimate the resistance of the motor?

Strategy

(a) The power consumed by the motor can be found using P = I'V. (b) The power used in lifting the object at a
constant speed can be found using P = Fv, where the speed is the distance divided by the time. The upward
force supplied by the motor is equal to the weight of the object because the acceleration is zero. (c) The
resistance of the motor can be found using P = I ZR.

Solution

a. The power consumed by the motor is equal to P = I'V and the current is given as 20.00 A and the voltage

is115.00 V:
P=1V =(20.00A)115.00 V = 2300.00 W.

b. The power used lifting the object is equal to P = Fv where the force is equal to the weight of the object
(1960 N) and the magnitude of the velocity is v = % =033,
P = Fv=(4900N)0.33m/s = 1633.33 W.

c. The difference in the power equals 2300.00 W — 1633.33 W = 666.67 W and the resistance can be found
using P=1 ’R:
P 666.67 W
R=—2 = —2=1.67Q.

I (20.00 A)
Significance
The resistance of the motor is quite small. The resistance of the motor is due to many windings of copper wire.
The power dissipated by the motor can be significant since the thermal power dissipated by the motor is
proportional to the square of the current (P = IZR).

CHECK YOUR UNDERSTANDING 9.9



Electric motors have a reasonably high efficiency. A 100-hp motor can have an efficiency of 90% and a 1-hp
motor can have an efficiency of 80%. Why is it important to use high-performance motors?

A fuse (Figure 9.25) is a device that protects a circuit from currents that are too high. A fuse is basically a short
piece of wire between two contacts. As we have seen, when a current is running through a conductor, the
kinetic energy of the charge carriers is converted into thermal energy in the conductor. The piece of wire in the
fuse is under tension and has a low melting point. The wire is designed to heat up and break at the rated
current. The fuse is destroyed and must be replaced, but it protects the rest of the circuit. Fuses act quickly,
but there is a small time delay while the wire heats up and breaks.

Figure 9.25 A fuse consists of a piece of wire between two contacts. When a current passes through the wire that is greater than the rated
current, the wire melts, breaking the connection. Pictured is a “blown” fuse where the wire broke protecting a circuit (credit: modification of

work by “Shardayyy”/Flickr).

Circuit breakers are also rated for a maximum current, and open to protect the circuit, but can be reset. Circuit
breakers react much faster. The operation of circuit breakers is not within the scope of this chapter and will be
discussed in later chapters. Another method of protecting equipment and people is the ground fault circuit
interrupter (GFCI), which is common in bathrooms and kitchens. The GFCI outlets respond very quickly to
changes in current. These outlets open when there is a change in magnetic field produced by current-carrying
conductors, which is also beyond the scope of this chapter and is covered in a later chapter.

The Cost of Electricity

The more electric appliances you use and the longer they are left on, the higher your electric bill. This familiar

fact is based on the relationship between energy and power. You pay for the energy used. Since P = ”2—';:, we see

that
E= / Pt

is the energy used by a device using power P for a time interval t. If power is delivered at a constant rate, then
then the energy can be found by E = Pt. For example, the more light bulbs burning, the greater P used; the
longer they are on, the greater tis.

The energy unit on electric bills is the kilowatt-hour (kW - h), consistent with the relationship E = Pt. It is easy
to estimate the cost of operating electrical appliances if you have some idea of their power consumption rate in
watts or kilowatts, the time they are on in hours, and the cost per kilowatt-hour for your electric utility.
Kilowatt-hours, like all other specialized energy units such as food calories, can be converted into joules. You
can prove to yourself that 1 kW -h = 3.6 X 100 J.

The electrical energy (E) used can be reduced either by reducing the time of use or by reducing the power
consumption of that appliance or fixture. This not only reduces the cost but also results in a reduced impact on
the environment. Improvements to lighting are some of the fastest ways to reduce the electrical energy used in
a home or business. About 20% of a home’s use of energy goes to lighting, and the number for commercial
establishments is closer to 40%. Fluorescent lights are about four times more efficient than incandescent
lights—this is true for both the long tubes and the compact fluorescent lights (CFLs). (See Figure 9.23(b).) Thus,



a 60-W incandescent bulb can be replaced by a 15-W CFL, which has the same brightness and color. CFLs have
a bent tube inside a globe or a spiral-shaped tube, all connected to a standard screw-in base that fits standard
incandescent light sockets. (Original problems with color, flicker, shape, and high initial investment for CFLs
have been addressed in recent years.)

The heat transfer from these CFLs is less, and they last up to 10 times longer than incandescent bulbs. The
significance of an investment in such bulbs is addressed in the next example. New white LED lights (which are
clusters of small LED bulbs) are even more efficient (twice that of CFLs) and last five times longer than CFLs.

@ EXAMPLE 9.10

Calculating the Cost Effectiveness of LED Bulb

The typical replacement for a 100-W incandescent bulb is a 20-W LED bulb. The 20-W LED bulb can provide
the same amount of light output as the 100-W incandescent light bulb. What is the cost savings for using the
LED bulb in place of the incandescent bulb for one year, assuming $0.10 per kilowatt-hour is the average
energy rate charged by the power company? Assume that the bulb is turned on for three hours a day.

Strategy
(a) Calculate the energy used during the year for each bulb, using £ = Pt.

(b) Multiply the energy by the cost.
Solution

a. Calculate the power for each bulb.

Eincandescent = P = 100 W (7HS) (38) (365 days) = 109.5kW - h
Egp = Pi=20W (%) (—h (365 days) = 21.90kW - h

b. Calculate the cost for each.

COStncandescent = 109.5 kW-h ) $10.95

O':T‘

costtgp = 21.90kW-h

(8) s
(550) =219

Significance

A LED bulb uses 80% less energy than the incandescent bulb, saving $8.76 over the incandescent bulb for one
year. The LED bulb can cost $20.00 and the 100-W incandescent bulb can cost $0.75, which should be
calculated into the computation. A typical lifespan of an incandescent bulb is 1200 hours and is 50,000 hours
for the LED bulb. The incandescent bulb would last 1.08 years at 3 hours a day and the LED bulb would last
45.66 years. The initial cost of the LED bulb is high, but the cost to the home owner will be $0.69 for the
incandescent bulbs versus $0.44 for the LED bulbs per year. (Note that the LED bulbs are coming down in
price.) The cost savings per year is approximately $8.50, and that is just for one bulb.

CHECK YOUR UNDERSTANDING 9.10

Is the efficiency of the various light bulbs the only consideration when comparing the various light bulbs?

Changing light bulbs from incandescent bulbs to CFL or LED bulbs is a simple way to reduce energy
consumption in homes and commercial sites. CFL bulbs operate with a much different mechanism than do
incandescent lights. The mechanism is complex and beyond the scope of this chapter, but here is a very
general description of the mechanism. CFL bulbs contain argon and mercury vapor housed within a spiral-
shaped tube. The CFL bulbs use a “ballast” that increases the voltage used by the CFL bulb. The ballast produce
an electrical current, which passes through the gas mixture and excites the gas molecules. The excited gas
molecules produce ultraviolet (UV) light, which in turn stimulates the fluorescent coating on the inside of the



tube. This coating fluoresces in the visible spectrum, emitting visible light. Traditional fluorescent tubes and
CFL bulbs had a short time delay of up to a few seconds while the mixture was being “warmed up” and the
molecules reached an excited state. It should be noted that these bulbs do contain mercury, which is
poisonous, but if the bulb is broken, the mercury is never released. Even if the bulb is broken, the mercury
tends to remain in the fluorescent coating. The amount is also quite small and the advantage of the energy
saving may outweigh the disadvantage of using mercury.

The CFL light bulbs are being replaced with LED light bulbs, where LED stands for “light-emitting diode.” The
diode was briefly discussed as a nonohmic device, made of semiconducting material, which essentially
permits current flow in one direction. LEDs are a special type of diode made of semiconducting materials
infused with impurities in combinations and concentrations that enable the extra energy from the movement
of the electrons during electrical excitation to be converted into visible light. Semiconducting devices will be
explained in greater detail in Condensed Matter Physics.

Commercial LEDs are quickly becoming the standard for commercial and residential lighting, replacing
incandescent and CFL bulbs. They are designed for the visible spectrum and are constructed from gallium
doped with arsenic and phosphorous atoms. The color emitted from an LED depends on the materials used in
the semiconductor and the current. In the early years of LED development, small LEDs found on circuit boards
were red, green, and yellow, but LED light bulbs can now be programmed to produce millions of colors of light
as well as many different hues of white light.

Comparison of Incandescent, CFL, and LED Light Bulbs

The energy savings can be significant when replacing an incandescent light bulb or a CFL light bulb with an
LED light. Light bulbs are rated by the amount of power that the bulb consumes, and the amount of light output
is measured in lumens. The lumen (Im) is the SI -derived unit of luminous flux and is a measure of the total
quantity of visible light emitted by a source. A 60-W incandescent light bulb can be replaced with a 13- to 15-W
CFL bulb or a 6- to 8-W LED bulb, all three of which have a light output of approximately 800 Im. A table of light
output for some commonly used light bulbs appears in Table 9.2.

The life spans of the three types of bulbs are significantly different. An LED bulb has a life span of 50,000
hours, whereas the CFL has a lifespan of 8000 hours and the incandescent lasts a mere 1200 hours. The LED
bulb is the most durable, easily withstanding rough treatment such as jarring and bumping. The incandescent
light bulb has little tolerance to the same treatment since the filament and glass can easily break. The CFL bulb
is also less durable than the LED bulb because of its glass construction. The amount of heat emitted is 3.4 btu/h
for the 8-W LED bulb, 85 btu/h for the 60-W incandescent bulb, and 30 btu/h for the CFL bulb. As mentioned
earlier, a major drawback of the CFL bulb is that it contains mercury, a neurotoxin, and must be disposed of as
hazardous waste. From these data, it is easy to understand why the LED light bulb is quickly becoming the
standard in lighting.

Light Output LED Light Bulbs Incandescent Light Bulbs CFL Light Bulbs

(lumens) (watts) (watts) (watts)
450 4-5 40 9-13
800 6-8 60 13-15
1100 9-13 75 18-25
1600 16-20 100 23-30
2600 25-28 150 30-55

Table 9.2 Light Output of LED, Incandescent, and CFL Light Bulbs



Summary of Relationships

In this chapter, we have discussed relationships between voltages, current, resistance, and power. Figure 9.26
shows a summary of the relationships between these measurable quantities for ohmic devices. (Recall that
ohmic devices follow Ohm’s law V' = I R.) For example, if you need to calculate the power, use the pink section,

2
which shows that P = VI, P = X~ and P = I’R.

P = Power I = Current
V = Voltage R = Resistance

Figure 9.26 This circle shows a summary of the equations for the relationships between power, current, voltage, and resistance.

Which equation you use depends on what values you are given, or you measure. For example if you are given
the current and the resistance, use P = I 2R Although all the possible combinations may seem overwhelming,
don’t forget that they all are combinations of just two equations, Ohm’s law (V' = I R) and power (P = IV).

9.6 Superconductors

Learning Objectives

By the end of this section, you will be able to:
e Describe the phenomenon of superconductivity
e List applications of superconductivity

Touch the power supply of your laptop computer or some other device. It probably feels slightly warm. That
heat is an unwanted byproduct of the process of converting household electric power into a current that can be
used by your device. Although electric power is reasonably efficient, other losses are associated with it. As
discussed in the section on power and energy, transmission of electric power produces 1 2 Rline losses. These
line losses exist whether the power is generated from conventional power plants (using coal, oil, or gas),
nuclear plants, solar plants, hydroelectric plants, or wind farms. These losses can be reduced, but not
eliminated, by transmitting using a higher voltage. It would be wonderful if these line losses could be
eliminated, but that would require transmission lines that have zero resistance. In a world that has a global
interest in not wasting energy, the reduction or elimination of this unwanted thermal energy would be a
significant achievement. Is this possible?

The Resistance of Mercury

In 1911, Heike Kamerlingh Onnes of Leiden University, a Dutch physicist, was looking at the temperature
dependence of the resistance of the element mercury. He cooled the sample of mercury and noticed the
familiar behavior of a linear dependence of resistance on temperature; as the temperature decreased, the
resistance decreased. Kamerlingh Onnes continued to cool the sample of mercury, using liquid helium. As the
temperature approached 4.2 K (—269.2 °C), the resistance abruptly went to zero (Figure 9.27). This
temperature is known as the critical temperature 7. for mercury. The sample of mercury entered into a
phase where the resistance was absolutely zero. This phenomenon is known as superconductivity. (Note: If
you connect the leads of a three-digit ohmmeter across a conductor, the reading commonly shows up as



0.00 Q. The resistance of the conductor is not actually zero, it is less than 0.01 Q.) There are various methods
to measure very small resistances, such as the four-point method, but an ohmmeter is not an acceptable
method to use for testing resistance in superconductivity.
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Figure 9.27 The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to the temperature of

about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.

Other Superconducting Materials

As research continued, several other materials were found to enter a superconducting phase, when the
temperature reached near absolute zero. In 1941, an alloy of niobium-nitride was found that could become
superconducting at T, = 16 K (-257 °C) and in 1953, vanadium-silicon was found to become
superconductive at T, = 17.5 K(—255.7 °C). The temperatures for the transition into superconductivity were
slowly creeping higher. Strangely, many materials that make good conductors, such as copper, silver, and gold,
do not exhibit superconductivity. Imagine the energy savings if transmission lines for electric power-
generating stations could be made to be superconducting at temperatures near room temperature! A
resistance of zero ohms means no 12 R losses and a great boost to reducing energy consumption. The problem
is that Tc = 17.5 K is still very cold and in the range of liquid helium temperatures. At this temperature, it is
not cost effective to transmit electrical energy because of the cooling requirements.

Alarge jump was seen in 1986, when a team of researchers, headed by Dr. Ching Wu Chu of Houston
University, fabricated a brittle, ceramic compound with a transition temperature of T, = 92 K(—181 °C). The
ceramic material, composed of yttrium barium copper oxide (YBCO), was an insulator at room temperature.
Although this temperature still seems quite cold, it is near the boiling point of liquid nitrogen, a liquid
commonly used in refrigeration. You may have noticed refrigerated trucks traveling down the highway labeled

as “Liquid Nitrogen Cooled.”

YBCO ceramic is a material that could be useful for transmitting electrical energy because the cost saving of
reducing the I 2 R losses are larger than the cost of cooling the superconducting cable, making it financially
feasible. There were and are many engineering problems to overcome. For example, unlike traditional
electrical cables, which are flexible and have a decent tensile strength, ceramics are brittle and would break
rather than stretch under pressure. Processes that are rather simple with traditional cables, such as making
connections, become difficult when working with ceramics. The problems are difficult and complex, and
material scientists and engineers are coming up with innovative solutions.

An interesting consequence of the resistance going to zero is that once a current is established in a
superconductor, it persists without an applied voltage source. Current loops in a superconductor have been set
up and the current loops have been observed to persist for years without decaying.

Zero resistance is not the only interesting phenomenon that occurs as the materials reach their transition

temperatures. A second effect is the exclusion of magnetic fields. This is known as the Meissner effect (Figure
9.28). A light, permanent magnet placed over a superconducting sample will levitate in a stable position above
the superconductor. High-speed trains have been developed that levitate on strong superconducting magnets,



eliminating the friction normally experienced between the train and the tracks. In Japan, the Yamanashi
Maglev test line opened on April 3, 1997. In April 2015, the MLXO01 test vehicle attained a speed of 374 mph
(603 km/h).
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Figure 9.28 A small, strong magnet levitates over a superconductor cooled to liquid nitrogen temperature. The magnet levitates because

the superconductor excludes magnetic fields. (credit: Joseph J. Trout)

Table 9.3 shows a select list of elements, compounds, and high-temperature superconductors, along with the
critical temperatures for which they become superconducting. Each section is sorted from the highest critical
temperature to the lowest. Also listed is the critical magnetic field for some of the materials. This is the
strength of the magnetic field that destroys superconductivity. Finally, the type of the superconductor is listed.

There are two types of superconductors. There are 30 pure metals that exhibit zero resistivity below their
critical temperature and exhibit the Meissner effect, the property of excluding magnetic fields from the
interior of the superconductor while the superconductor is at a temperature below the critical temperature.
These metals are called Type I superconductors. The superconductivity exists only below their critical
temperatures and below a critical magnetic field strength. Type I superconductors are well described by the
BCS theory (described next). Type I superconductors have limited practical applications because the strength
of the critical magnetic field needed to destroy the superconductivity is quite low.

Type II superconductors are found to have much higher critical magnetic fields and therefore can carry much
higher current densities while remaining in the superconducting state. A collection of various ceramics
containing barium-copper-oxide have much higher critical temperatures for the transition into a
superconducting state. Superconducting materials that belong to this subcategory of the Type II
superconductors are often categorized as high-temperature superconductors.

Introduction to BCS Theory

Type I superconductors, along with some Type II superconductors can be modeled using the BCS theory,
proposed by John Bardeen, Leon Cooper, and Robert Schrieffer. Although the theory is beyond the scope of
this chapter, a short summary of the theory is provided here. (More detail is provided in Condensed Matter
Physics.) The theory considers pairs of electrons and how they are coupled together through lattice-vibration
interactions. Through the interactions with the crystalline lattice, electrons near the Fermi energy level feel a
small attractive force and form pairs (Cooper pairs), and the coupling is known as a phonon interaction. Single
electrons are fermions, which are particles that obey the Pauli exclusion principle. The Pauli exclusion
principle in quantum mechanics states that two identical fermions (particles with half-integer spin) cannot
occupy the same quantum state simultaneously. Each electron has four quantum numbers (n, [, m;, mg). The
principal quantum number (n) describes the energy of the electron, the orbital angular momentum quantum
number (J) indicates the most probable distance from the nucleus, the magnetic quantum number (m;)
describes the energy levels in the subshell, and the electron spin quantum number (m;) describes the
orientation of the spin of the electron, either up or down. As the material enters a superconducting state, pairs
of electrons act more like bosons, which can condense into the same energy level and need not obey the Pauli
exclusion principle. The electron pairs have a slightly lower energy and leave an energy gap above them on the
order of 0.001 eV. This energy gap inhibits collision interactions that lead to ordinary resistivity. When the
material is below the critical temperature, the thermal energy is less than the band gap and the material




exhibits zero resistivity.

. Critical Temperature Criti_cql-
Material Symbol or Formula T. (K) Mug|r_||et|c Field Type
c(T)

Elements

Lead Pb 7.19 0.08 I
Lanthanum La (a) 4.90 - (p) 6.30 I
Tantalum Ta 4.48 0.09 I
Mercury Hg (a) 4.15 - (p) 3.95 0.04 I
Tin Sn 3.72 0.03 I
Indium In 3.40 0.03 I
Thallium Tl 2.39 0.03 I
Rhenium Re 2.40 0.03 I
Thorium Th 1.37 0.013 I
Protactinium Pa 1.40 I
Aluminum Al 1.20 0.01 I
Gallium Ga 1.10 0.005 I
Zinc Zn 0.86 0.014 I
Titanium Ti 0.39 0.01 I
Uranium 8) (o) 0.68 - () 1.80 I
Cadmium cd 11.4 4.00 I
Compounds

Niobium-germanium | Nb3Ge 23.20 37.00 I
Niobium-tin NbsSn 18.30 30.00 II
Niobium-nitrite NbN 16.00 II
Niobium-titanium NbTi 10.00 15.00 I

High-Temperature Oxides




Critical
Critical Temperature

Material Symbol or Formula Magnetic Field Type
Te (K)
Hc (T)
HgBa,CaCu,0g 134.00 I
TlgBﬁzC&zCUgOlo 125.00 II
YBa,Cus0y 92.00 120.00 I

Table 9.3 Superconductor Critical Temperatures

Applications of Superconductors

Superconductors can be used to make superconducting magnets. These magnets are 10 times stronger than
the strongest electromagnets. These magnets are currently in use in magnetic resonance imaging (MRI), which
produces high-quality images of the body interior without dangerous radiation.

Another interesting application of superconductivity is the SQUID (superconducting quantum interference
device). A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields. The
operation of the SQUID is based on superconducting loops containing Josephson junctions. A Josephson
junction is the result of a theoretical prediction made by B. D. Josephson in an article published in 1962. In the
article, Josephson described how a supercurrent can flow between two pieces of superconductor separated by
a thin layer of insulator. This phenomenon is now called the Josephson effect. The SQUID consists of a
superconducting current loop containing two Josephson junctions, as shown in Figure 9.29. When the loop is
placed in even a very weak magnetic field, there is an interference effect that depends on the strength of the
magnetic field.

Magnetic
? } field
Josephson
junction
/ A
/
’total 1
g -
/)
/ y
Josephson
junction

Figure 9.29 The SQUID (superconducting quantum interference device) uses a superconducting current loop and two Josephson

junctions to detect magnetic fields as low as 10714 T (Earth’s magnet field is on the order of 0.3 X 1073 T).

Superconductivity is a fascinating and useful phenomenon. At critical temperatures near the boiling point of
liquid nitrogen, superconductivity has special applications in MRIs, particle accelerators, and high-speed
trains. Will we reach a state where we can have materials enter the superconducting phase at near room
temperatures? It seems a long way off, but if scientists in 1911 were asked if we would reach liquid-nitrogen
temperatures with a ceramic, they might have thought it implausible.



CHAPTER REVIEW
Key Terms

ampere (amp) SI unit for current; 1 A =1C/s

circuit complete path that an electrical current
travels along

conventional current current that flows through a
circuit from the positive terminal of a battery
through the circuit to the negative terminal of the
battery

critical temperature temperature at which a
material reaches superconductivity

current density flow of charge through a cross-
sectional area divided by the area

diode nonohmic circuit device that allows current
flow in only one direction

drift velocity velocity of a charge as it moves
nearly randomly through a conductor,
experiencing multiple collisions, averaged over a
length of a conductor, whose magnitude is the
length of conductor traveled divided by the time it
takes for the charges to travel the length

electrical conductivity measure of a material’s
ability to conduct or transmit electricity

electrical current rate at which charge flows,

_ 49
I'=3r
electrical power time rate of change of energy in

an electric circuit

Josephson junction junction of two pieces of
superconducting material separated by a thin
layer of insulating material, which can carry a
supercurrent

Meissner effect phenomenon that occursina
superconducting material where all magnetic

Key Equations

fields are expelled

nonohmic type of a material for which Ohm’s law is
not valid

ohm ( Q) unit of electrical resistance,
1Q =1V/A

Ohm’s law empirical relation stating that the
current Iis proportional to the potential
difference V; it is often written as V' = I R, where
Ris the resistance

ohmic type of a material for which Ohm’s law is
valid, that is, the voltage drop across the device is
equal to the current times the resistance

resistance electric property that impedes current;
for ohmic materials, it is the ratio of voltage to
current, R=V/I

resistivity intrinsic property of a material,
independent of its shape or size, directly
proportional to the resistance, denoted by p

schematic graphical representation of a circuit
using standardized symbols for components and
solid lines for the wire connecting the
components

SQUID (Superconducting Quantum Interference
Device) device that is a very sensitive
magnetometer, used to measure extremely subtle
magnetic fields

superconductivity phenomenon that occurs in
some materials where the resistance goes to
exactly zero and all magnetic fields are expelled,
which occurs dramatically at some low critical
temperature (T¢)

Average electrical current Love = %
Definition of an ampere 1A=1C/s
Electrical current I= %

. . _ I
Drift velocity Vd = sua

- -
Current density I'= J-dA
area

Resistivity p= %




Common expression of Ohm’s law

Resistivity as a function of temperature

V=1IR

Definition of resistance R = %
Resistance of a cylinder of material R= p%

Temperature dependence of resistance

Electric power

Power dissipated by a resistor

Summary

9.1 Electrical Current

The average electrical current I,ye is the rate at

which charge flows, given by Iave = 52,
AQ is the amount of charge passing through an
areain time At.

The instantaneous electrical current, or simply
the current I, is the rate at which charge flows.

Taking the limit as the change in time
a9
dr’
the time derivative of the charge.
The direction of conventional current is taken as
the direction in which positive charge moves. In
a simple direct-current (DC) circuit, this will be
from the positive terminal of the battery to the
negative terminal.

The SI unit for current is the ampere, or simply
the amp (A), where 1 A = 1 C/s.

Current consists of the flow of free charges, such
as electrons, protons, and ions.

where

where 49 is

approaches zero, we have I = i

9.2 Model of Conduction in Metals

The current through a conductor depends
mainly on the motion of free electrons.

When an electrical field is applied to a
conductor, the free electrons in a conductor do
not move through a conductor at a constant
speed and direction; instead, the motion is
almost random due to collisions with atoms and
other free electrons.

Even though the electrons move in a nearly
random fashion, when an electrical field is
applied to the conductor, the overall velocity of
the electrons can be defined in terms of a drift
velocity.

p=poll+a(T-Tp)

R =Ry (1 +aAT)

The current density is a vector quantity defined
as the current through an infinitesimal area
divided by the area.

The current can be found from the current

density, I = //de

area
An incandescent light bulb is a filament of wire
enclosed in a glass bulb that is partially
evacuated. Current runs through the filament,
where the electrical energy is converted to light
and heat.

9.3 Resistivity and Resistance

Resistance has units of ohms (Q), related to
volts and amperesby 1 Q = 1 V/A.

The resistance R of a cylinder of length L and
cross-sectional area Ais R = %, where p is the
resistivity of the material.

Values of p in Table 9.1 show that materials fall
into three groups—conductors, semiconductors,
and insulators.

Temperature affects resistivity; for relatively
small temperature changes AT, resistivity is

p = po (1 + aAT), where p is the original
resistivity and « is the temperature coefficient of
resistivity.

The resistance R of an object also varies with
temperature: R = Ry (1 + aAT), where Ry is
the original resistance, and R is the resistance
after the temperature change.

9.4 Ohm's Law

Ohm’s law is an empirical relationship for
current, voltage, and resistance for some




common types of circuit elements, including
resistors. It does not apply to other devices, such
as diodes.

One statement of Ohm’s law gives the
relationship among current I, voltage V, and
resistance R in a simple circuitas V' = IR.
Another statement of Ohm’s law, on a
microscopic level, is J = o E.

9.5 Electrical Energy and Power

Electric power is the rate at which electric
energy is supplied to a circuit or consumed by a
load.

Power dissipated by a resistor depends on the
square of the current through the resistor and is
equalto P = I’R= VT?.

The SI unit for electric power is the watt and the
ST unit for electric energy is the joule. Another
common unit for electric energy, used by power

companies, is the kilowatt-hour (kW - h).
The total energy used over a time interval can

Conceptual Questions

9.1 Electrical Current

1.

Can a wire carry a current and still be
neutral—that is, have a total charge of zero?
Explain.

Car batteries are rated in ampere-hours (A - h).
To what physical quantity do ampere-hours
correspond (voltage, current, charge, energy,
power,...)?

When working with high-power electric circuits,
it is advised that whenever possible, you work
“one-handed” or “keep one hand in your pocket.”
Why is this a sensible suggestion?

9.2 Model of Conduction in Metals

4.

Incandescent light bulbs are being replaced with
more efficient LED and CFL light bulbs. Is there
any obvious evidence that incandescent light
bulbs might not be that energy efficient? Is
energy converted into anything but visible light?
It was stated that the motion of an electron
appears nearly random when an electrical field is
applied to the conductor. What makes the motion
nearly random and differentiates it from the
random motion of molecules in a gas?

. Electric circuits are sometimes explained using a

conceptual model of water flowing through a
pipe. In this conceptual model, the voltage source
is represented as a pump that pumps water

be found by E = /Pdt.

9.6 Superconductors

Superconductivity is a phenomenon that occurs
in some materials when cooled to very low
critical temperatures, resulting in a resistance
of exactly zero and the expulsion of all magnetic
fields.

Materials that are normally good conductors
(such as copper, gold, and silver) do not
experience superconductivity.
Superconductivity was first observed in
mercury by Heike Kamerlingh Onnes in 1911. In
1986, Dr. Ching Wu Chu of Houston University
fabricated a brittle, ceramic compound with a
critical temperature close to the temperature of
liquid nitrogen.

Superconductivity can be used in the
manufacture of superconducting magnets for
use in MRIs and high-speed, levitated trains.

through pipes and the pipes connect components
in the circuit. Is a conceptual model of water
flowing through a pipe an adequate
representation of the circuit? How are electrons
and wires similar to water molecules and pipes?
How are they different?

An incandescent light bulb is partially evacuated.
Why do you suppose that is?

9.3 Resistivity and Resistance

8.

The IR drop across a resistor means that there is
a change in potential or voltage across the
resistor. Is there any change in current as it
passes through a resistor? Explain.

. Do impurities in semiconducting materials listed

in Table 9.1 supply free charges? (Hint: Examine
the range of resistivity for each and determine
whether the pure semiconductor has the higher
or lower conductivity.)

10. Does the resistance of an object depend on the path

current takes through it? Consider, for example, a
rectangular bar—is its resistance the same along its
length as across its width?



11.

If aluminum and copper wires of the same
length have the same resistance, which has the
larger diameter? Why?

9.4 Ohm's Law

12.

13.

14.

In Determining Field from Potential, resistance
was defined as R = % In this section, we
presented Ohm’s law, which is commonly
expressed as V' = I R. The equations look
exactly alike. What is the difference between
Ohm’s law and the definition of resistance?
Shown below are the results of an experiment
where four devices were connected across a
variable voltage source. The voltage is increased
and the current is measured. Which device, if
any, is an ohmic device?

Current vs. Voltage

Current
W
9]

Voltage

The current Iis measured through a sample of
an ohmic material as a voltage Vis applied. (a)
What is the current when the voltage is doubled
to 2V (assume the change in temperature of the
material is negligible)? (b) What is the voltage
applied is the current measured is 0.2] (assume
the change in temperature of the material is
negligible)? What will happen to the current if
the material if the voltage remains constant, but

Problems

9.1 Electrical Current

21.

A Van de Graaff generator is one of the original
particle accelerators and can be used to
accelerate charged particles like protons or
electrons. You may have seen it used to make
human hair stand on end or produce large

the temperature of the material increases
significantly?

9.5 Electrical Energy and Power

15.

16.

17.

18.

Common household appliances are rated at 110
V, but power companies deliver voltage in the
kilovolt range and then step the voltage down
using transformers to 110 V to be used in
homes. You will learn in later chapters that
transformers consist of many turns of wire,
which warm up as current flows through them,
wasting some of the energy that is given off as
heat. This sounds inefficient. Why do the power
companies transport electric power using this
method?

Your electric bill gives your consumption in
units of kilowatt-hour (kW - h). Does this unit
represent the amount of charge, current,
voltage, power, or energy you buy?

Resistors are commonly rated at %W, %W, %W,

1 W and 2 W for use in electrical circuits. If a
current of I = 2.00 A is accidentally passed
through a R = 1.00 Q resistor rated at 1 W,
what would be the most probable outcome? Is
there anything that can be done to prevent such
an accident?

An immersion heater is a small appliance used
to heat a cup of water for tea by passing current
through a resistor. If the voltage applied to the
appliance is doubled, will the time required to
heat the water change? By how much? Is this a
good idea?

9.6 Superconductors

19.

20.

What requirement for superconductivity makes
current superconducting devices expensive to
operate?

Name two applications for superconductivity
listed in this section and explain how
superconductivity is used in the application.
Can you think of a use for superconductivity
that is not listed?

sparks. One application of the Van de Graaff
generator is to create X-rays by bombarding a
hard metal target with the beam. Consider a
beam of protons at 1.00 keV and a current of
5.00 mA produced by the generator. (a) What is
the speed of the protons? (b) How many protons




22.

23.

24.

25.

26.

27.

are produced each second?

A cathode ray tube (CRT) is a device that
produces a focused beam of electrons in a
vacuum. The electrons strike a phosphor-
coated glass screen at the end of the tube, which
produces a bright spot of light. The position of
the bright spot of light on the screen can be
adjusted by deflecting the electrons with
electrical fields, magnetic fields, or both.
Although the CRT tube was once commonly
found in televisions, computer displays, and
oscilloscopes, newer appliances use a liquid
crystal display (LCD) or plasma screen. You still
may come across a CRT in your study of science.
Consider a CRT with an electron beam average
current of 25.00u A. How many electrons strike
the screen every minute?

How many electrons flow through a point in a
wire in 3.00 s if there is a constant current of

I =4.00A?

A conductor carries a current that is decreasing
exponentially with time. The current is modeled
as I = Ipe™"" where I = 3.00 A is the current
attime# = 0.00 s and 7 = 0.50 s is the time
constant. How much charge flows through the
conductor betweent = 0.00 s and ¢t = 37?

The quantity of charge through a conductor is
modeled as Q = 4.00-G-* — 1.0057 +6.00 mC.

What is the current at time ¢ = 3.00 s?

The current through a conductor is modeled as
1(t) = I, sin (27 [60 Hz] t). Write an equation
for the charge as a function of time.

The charge on a capacitor in a circuit is
modeled as Q () = Omax cos (@t + ¢). What is
the current through the circuit as a function of
time?

9.2 Model of Conduction in Metals

28.

29.

An aluminum wire 1.628 mm in diameter
(14-gauge) carries a current of 3.00 amps. (a)
What is the absolute value of the charge density
in the wire? (b) What is the drift velocity of the
electrons? (c) What would be the drift velocity if
the same gauge copper were used instead of
aluminum? The density of copper is 8.96 g/cm3
and the density of aluminum is 2.70 g/cm>. The
molar mass of aluminum is 26.98 g/mol and the
molar mass of copper is 63.5 g/mol. Assume
each atom of metal contributes one free
electron.

The current of an electron beam has a
measured current of I = 50.00 yA with a radius

30.

31.

32.

33.

of 1.00 mm. What is the magnitude of the
current density of the beam?

A high-energy proton accelerator produces a
proton beam with a radius of r = 0.90 mm. The
beam current is I = 9.00 yA and is constant.
The charge density of the beam is

n=6.00 x 10!! protons per cubic meter. (a)
What is the current density of the beam? (b)
What is the drift velocity of the beam? (c) How
much time does it take for 1.00 x 100 protons
to be emitted by the accelerator?

Consider a wire of a circular cross-section with
aradius of R = 3.00 mm. The magnitude of the
current density is modeled as

J=cr? =5.00 x 106ﬁr2.What is the

current through the inner section of the wire
from the center to r = 0.5R?

A cylindrical wire has a current density from
the center of the wire’s cross section as

J(r) = Cr? where risin meters, J is in amps
per square meter, and C = 103> A/m*. This
current density continues to the end of the wire
at a radius of 1.0 mm. Calculate the current just
outside of this wire.

The current supplied to an air conditioner unit
is 4.00 amps. The air conditioner is wired using
a 10-gauge (diameter 2.588 mm) wire. The
charge density isn = 8.48 x 1028 %. Find

the magnitude of (a) current density and (b) the
drift velocity.

9.3 Resistivity and Resistance

34.

35.

36.

37.

38.

39.

40.

What current flows through the bulb of a 3.00-V
flashlight when its hot resistance is 3.60 Q?
Calculate the effective resistance of a pocket
calculator that has a 1.35-V battery and through
which 0.200 mA flows.

How many volts are supplied to operate an
indicator light on a DVD player that has a
resistance of 140 Q, given that 25.0 mA passes
through it?

What is the resistance of a 20.0-m-long piece of
12-gauge copper wire having a 2.053-mm
diameter?

The diameter of 0-gauge copper wire is 8.252
mm. Find the resistance of a 1.00-km length of
such wire used for power transmission.

If the 0.100-mm-diameter tungsten filament in
a light bulb is to have a resistance of 0.200 Q at
20.0 °C, how long should it be?

Alead rod has a length of 30.00 cm and a
resistance of 5.00 Q. What is the radius of the



41.

42.

43.

44.

45.

rod?

Find the ratio of the diameter of aluminum to
copper wire, if they have the same resistance
per unit length (as they might in household
wiring).

What current flows through a 2.54-cm-diameter
rod of pure silicon that is 20.0 cm long, when
1.00 x 103 Vis applied to it? (Such a rod may
be used to make nuclear-particle detectors, for
example.)

(a) To what temperature must you raise a
copper wire, originally at 20.0 °C, to double its
resistance, neglecting any changes in
dimensions? (b) Does this happen in household
wiring under ordinary circumstances?

A resistor made of nichrome wire is used in an
application where its resistance cannot change
more than 1.00% from its value at 20.0 °C. Over
what temperature range can it be used?

Of what material is a resistor made if its
resistance is 40.0% greater at 100.0 °C than at
20.0 °C?

53.

54.

A. What is the resistance of the resistor?

A resistor is placed in a circuit with an
adjustable voltage source. The voltage across
and the current through the resistor and the
measurements are shown below. Estimate the
resistance of the resistor.

Ohm’s Law
1000 -
]
S 800 | . °
6500 )
g R
S 400 °
S .
200 | °
[ ]
0 T T T T 1
0 2 4 6 8 10

Current (A)

The following table show the measurements of a
current through and the voltage across a sample
of material. Plot the data, and assuming the
object is an ohmic device, estimate the
resistance.

46. An electronic device designed to operate at any
temperature in the range from —10.0 °C to IA)  WV)
55.0 °C contains pure carbon resistors. By what
factor does their resistance increase over this 0 3
range?

47. (a) Of what material is a wire made, if it is 25.0 2 23
m long with a diameter of 0.100 mm and has a
resistance of 77.7 Q at 20.0 °C? (b) What is its 4 39
resistance at 150.0 °C?

48. Assuming a constant temperature coefficient of 6 58
resistivity, what is the maximum percent
decrease in the resistance of a constantan wire 8 77
starting at 20.0 °C?

49. A copper wire has a resistance of 0.500 Q at 10 | 100
20.0 °C, and an iron wire has a resistance of e
0.525 Q at the same temperature. At what 12 | 119
temperature are their resistances equal? —

14 142

9.4 Ohm's Law —

. . 16 162

50. A2.2-k Qresistor is connected across a D cell

51.

52.

battery (1.5 V). What is the current through the
resistor?

A resistor rated at 250 k Q is connected across
two D cell batteries (each 1.50 V) in series, with
a total voltage of 3.00 V. The manufacturer
advertises that their resistors are within 5% of
the rated value. What are the possible minimum
current and maximum current through the
resistor?

A resistor is connected in series with a power
supply of 20.00 V. The current measure is 0.50

9.5 Electrical Energy and Power

55.

A 20.00-V battery is used to supply current to a
10-k Q resistor. Assume the voltage drop across
any wires used for connections is negligible. (a)
What is the current through the resistor? (b)
What is the power dissipated by the resistor? (c)
What is the power input from the battery,




56.

57.

58.

59.

60.

61.

assuming all the electrical power is dissipated
by the resistor? (d) What happens to the energy
dissipated by the resistor?

What is the maximum voltage that can be
applied to a 20-k Q resistor rated at %W?

A heater is being designed that uses a coil of
14-gauge nichrome wire to generate 300 W
using a voltage of V' = 110 V. How long should
the engineer make the wire?

An alternative to CFL bulbs and incandescent
bulbs are light-emitting diode (LED) bulbs. A
100-W incandescent bulb can be replaced by a
16-W LED bulb. Both produce 1600 lumens of
light. Assuming the cost of electricity is $0.10
per kilowatt-hour, how much does it cost to run
the bulb for one year if it runs for four hours a
day?

The power dissipated by a resistor with a
resistance of R = 100 Qis P = 2.0 W. What are
the current through and the voltage drop across
the resistor?

Running late to catch a plane, a driver
accidentally leaves the headlights on after
parking the car in the airport parking lot.
During takeoff, the driver realizes the mistake.
Having just replaced the battery, the driver
knows that the battery is a 12-V automobile
battery, rated at 100 A - h. The driver, knowing
there is nothing that can be done, estimates how
long the lights will shine, assuming there are
two 12-V headlights, each rated at 40 W. What
did the driver conclude?

A physics student has a single-occupancy dorm
room. The student has a small refrigerator that
runs with a current of 3.00 A and a voltage of
110V, alamp that contains a 100-W bulb, an
overhead light with a 60-W bulb, and various
other small devices adding up to 3.00 W. (a)
Assuming the power plant that supplies 110 V
electricity to the dorm is 10 km away and the
two aluminum transmission cables use 0-gauge
wire with a diameter of 8.252 mm, estimate the
percentage of the total power supplied by the
power company that is lost in the transmission.
(b) What would be the result is the power

62.

company delivered the electric power at 110
kv?

A 0.50-W, 220- Q resistor carries the maximum
current possible without damaging the resistor.
If the current were reduced to half the value,
what would be the power consumed?

9.6 Superconductors

63.

64.

65.

66.

67.

68.

Consider a power plant is located 60 km away
from a residential area uses 0-gauge
(A =42.40 mm2) wire of copper to transmit

power at a current of I = 100.00 A. How much
more power is dissipated in the copper wires
than it would be in superconducting wires?

A wire is drawn through a die, stretching it to
four times its original length. By what factor
does its resistance increase?

Digital medical thermometers determine
temperature by measuring the resistance of a
semiconductor device called a thermistor
(which has @ = —0.06/°C) when it is at the same
temperature as the patient. What is a patient’s
temperature if the thermistor’s resistance at
that temperature is 82.0% of its value at 37 °C
(normal body temperature)?

Electrical power generators are sometimes
“load tested” by passing current through a large
vat of water. A similar method can be used to
test the heat output of a resistor. A R = 30 Q
resistor is connected to a 9.0-V battery and the
resistor leads are waterproofed and the resistor
is placed in 1.0 kg of room temperature water
(T = 20 °C). Current runs through the resistor
for 20 minutes. Assuming all the electrical
energy dissipated by the resistor is converted to
heat, what is the final temperature of the water?
A 12-gauge gold wire has a length of 1 meter. (a)
What would be the length of a silver 12-gauge
wire with the same resistance? (b) What are
their respective resistances at the temperature
of boiling water?

What is the change in temperature required to
decrease the resistance for a carbon resistor by
10%?



Additional Problems

69. A coaxial cable consists of an inner conductor
with radius r; = 0.25 cm and an outer radius of

ro = 0.5 cm and has a length of 10 meters.
Plastic, with a resistivity of
p =200 x 1083 Q - m, separates the two

conductors. What is the resistance of the cable?

70. A 10.00-meter long wire cable that is made of

copper has a resistance of 0.051 ohms. (a) What
is the weight if the wire was made of copper? (b)
What is the weight of a 10.00-meter-long wire of
the same gauge made of aluminum? (c)What is

the resistance of the aluminum wire? The

density of copper is 8960 kg/m3 and the density

of aluminum is 2760 kg/m>.
71. A nichrome rod that is 3.00 mm long with a
cross-sectional area of 1.00 mm? is used for a

digital thermometer. (a) What is the resistance
at room temperature? (b) What is the resistance

at body temperature?

72. The temperature in Philadelphia, PA can vary
between 68.00 °F and 100.00 °F in one summer

day. By what percentage will an aluminum
wire’s resistance change during the day?
73. When 100.0 V is applied across a 5-gauge

(diameter 4.621 mm) wire that is 10 m long, the

magnitude of the current density is
2.0 x 108 A/m?. What is the resistivity of the
wire?

74. Awire with a resistance of 5.0 Q is drawn out
through a die so that its new length is twice

times its original length. Find the resistance of

the longer wire. You may assume that the
resistivity and density of the material are
unchanged.

Challenge Problems

81. A 10-gauge copper wire has a cross-sectional
area A = 5.26 mm? and carries a current of
I =5.00 A. The density of copper is
p=8.95 g/cm3. One mole of copper atoms
(6.02 x 1023 atoms) has a mass of

approximately 63.50 g. What is the magnitude

of the drift velocity of the electrons, assuming
that each copper atom contributes one free
electron to the current?

82. The current through a 12-gauge wire is given as

I () =(5.00 A)sin (2260 Hz t). What is the
current density at time 15.00 ms?

75.

76.

77.

78.

79.

80.

83.

What is the resistivity of a wire of 5-gauge wire
(A =16.8 x 10"°m?), 5.00 m length, and
5.10 m Q resistance?

Coils are often used in electrical and electronic
circuits. Consider a coil which is formed by
winding 1000 turns of insulated 20-gauge
copper wire (area 0.52 mmz) in a single layer on
a cylindrical non-conducting core of radius 2.0
mm. What is the resistance of the coil? Neglect
the thickness of the insulation.

Currents of approximately 0.06 A can be
potentially fatal. Currents in that range can
make the heart fibrillate (beat in an
uncontrolled manner). The resistance of a dry
human body can be approximately 100 k Q. (a)
What voltage can cause 0.06 A through a dry
human body? (b) When a human body is wet,
the resistance can fall to 100 Q. What voltage
can cause harm to a wet body?

A 20.00-ohm, 5.00-watt resistor is placed in
series with a power supply. (a) What is the
maximum voltage that can be applied to the
resistor without harming the resistor? (b) What
would be the current through the resistor?

A battery with an emf of 24.00 V delivers a
constant current of 2.00 mA to an appliance.
How much work does the battery do in three
minutes?

A 12.00-V battery has an internal resistance of a
tenth of an ohm. (a) What is the current if the
battery terminals are momentarily shorted
together? (b) What is the terminal voltage if the
battery delivers 0.25 amps to a circuit?

A particle accelerator produces a beam with a
radius of 1.25 mm with a current of 2.00 mA.
Each proton has a kinetic energy of 10.00 MeV.
(a) What is the velocity of the protons? (b) What
is the number (n) of protons per unit volume?
(b) How many electrons pass a cross sectional
area each second?




84.

85.

86.

In this chapter, most examples and problems
involved direct current (DC). DC circuits have
the current flowing in one direction, from
positive to negative. When the current was
changing, it was changed linearly from

I = —Inax to I = +1hax and the voltage
changed linearly from V = —Vyax to

V = +Vmax, where Vimax = Imax R. Suppose a
voltage source is placed in series with a resistor
of R = 10 Q that supplied a current that
alternated as a sine wave, for example,
I(t)=(3.00 A)sin (;22—1). () What would a
graph of the voltage drop across the resistor V(1)
versus time look like? (b) What would a plot of
V(f) versus I(f) for one period look like? (Hint: If
you are not sure, try plotting V(f) versus I(t)
using a spreadsheet.)

A current of I = 25A is drawn from a 100-V
battery for 30 seconds. By how much is the
chemical energy reduced?

Consider a square rod of material with sides of
length L = 3.00 cm with a current density of

J=Joek = (0354 ) (1107 g
m

as shown below. Find the current that passes
through the face of the rod.

Fh
]

-y

J,e%%k

—~

87. Aresistor of an unknown resistance is placed in

an insulated container filled with 0.75 kg of
water. A voltage source is connected in series
with the resistor and a current of 1.2 amps flows
through the resistor for 10 minutes. During this
time, the temperature of the water is measured
and the temperature change during this time is
AT = 10.00 °C. (a) What is the resistance of the
resistor? (b) What is the voltage supplied by the
power supply?

88.

89.

90.

91.

92.

The charge that flows through a point in a wire
as a function of time is modeled as

g () = goe T = 10.0 Ce™ 5. (a) What is the
initial current through the wire at time

t = 0.00 s? (b) Find the current at time ¢t = %T.
(c) At what time t will the current be reduced by
one-half I = %IO?

Consider a resistor made from a hollow cylinder
of carbon as shown below. The inner radius of
the cylinder is R; = 0.20 mm and the outer
radius is Ry = 0.30 mm. The length of the
resistor is L = 0.90 mm. The resistivity of the
carbonis p =3.5 X 1075Q -m. (a) Prove that
the resistance perpendicular from the axis is

R = Hl (b) What is the resistance?

What is the current through a cyhndrical wire of
radius R = 0.1 mm if the current density is

J = 2r, where Jy = 32000 A9

A student uses a 100.00-W, 115.00 V radiant
heater to heat the student’s dorm room, during
the hours between sunset and sunrise, 6:00
p-m. to 7:00 a.m. (a) What current does the
heater operate at? (b) How many electrons move
through the heater? (c) What is the resistance of
the heater? (d) How much heat was added to the
dorm room?

A 12-V car battery is used to power a 20.00-W,
12.00-V lamp during the physics club camping
trip/star party. The cable to the lamp is 2.00
meters long, 14-gauge copper wire with a
charge density of n = 9.50 X 1038m=3. ()
What is the current draw by the lamp? (b) How
long would it take an electron to get from the
battery to the lamp?
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93. A physics student uses a 115.00-V immersion
heater to heat 400.00 grams (almost two cups)
of water for herbal tea. During the two minutes
it takes the water to heat, the physics student
becomes bored and decides to figure out the
resistance of the heater. The student starts with
the assumption that the water is initially at the
temperature of the room 7; = 25.00 °C and
reaches Ty = 100.00 °C. The specific heat of

the wateris ¢ = 4180%. What is the
gK

resistance of the heater?




CHAPTER 10 . .
Direct-Current Circuits
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Figure 10.1 This circuit shown is used to amplify small signals and power the earbud speakers attached to a
cellular phone. This circuit’s components include resistors, capacitors, and diodes, all of which have been covered in
previous chapters, as well as transistors, which are semi-conducting devices covered in Condensed Matter Physics.
Circuits using similar components are found in all types of equipment and appliances you encounter in everyday life,
such as alarm clocks, televisions, computers, and refrigerators.

Chapter Outline

10.1 Electromotive Force

10.2 Resistors in Series and Parallel

10.3 Kirchhoff's Rules

10.4 Electrical Measuring Instruments

10.5 RC Circuits

10.6 Household Wiring and Electrical Safety

INTRODUCTION In the preceding few chapters, we discussed electric components, including capacitors,
resistors, and diodes. In this chapter, we use these electric components in circuits. A circuit is a collection of
electrical components connected to accomplish a specific task. Figure 10.1 shows an amplifier circuit, which



takes a small-amplitude signal and amplifies it to power the speakers in earbuds. Although the circuit looks
complex, it actually consists of a set of series, parallel, and series-parallel circuits. The second section of this
chapter covers the analysis of series and parallel circuits that consist of resistors. Later in this chapter, we
introduce the basic equations and techniques to analyze any circuit, including those that are not reducible
through simplifying parallel and series elements. But first, we need to understand how to power a circuit.

10.1 Electromotive Force

Learning Objectives

By the end of the section, you will be able to:
e Describe the electromotive force (emf) and the internal resistance of a battery
e Explain the basic operation of a battery

If you forget to turn off your car lights, they slowly dim as the battery runs down. Why don’t they suddenly blink
off when the battery’s energy is gone? Their gradual dimming implies that the battery output voltage decreases
as the battery is depleted. The reason for the decrease in output voltage for depleted batteries is that all voltage
sources have two fundamental parts—a source of electrical energy and an internal resistance. In this section,
we examine the energy source and the internal resistance.

Introduction to Electromotive Force

Voltage has many sources, a few of which are shown in Figure 10.2. All such devices create a potential
difference and can supply current if connected to a circuit. A special type of potential difference is known as
electromotive force (emf). The emf is not a force at all, but the term ‘electromotive force’ is used for historical
reasons. It was coined by Alessandro Volta in the 1800s, when he invented the first battery, also known as the
voltaic pile. Because the electromotive force is not a force, it is common to refer to these sources simply as
sources of emf (pronounced as the letters “ee-em-eff”), instead of sources of electromotive force.

(© (d)

Figure 10.2 A variety of voltage sources. (a) The Brazos Wind Farm in Fluvanna, Texas; (b) the Krasnoyarsk Dam in Russia; (c) a solar



farm; (d) a group of nickel metal hydride batteries. The voltage output of each device depends on its construction and load. The voltage
output equals emf only if there is no load. (credit a: modification of work by Stig Nygaard; credit b: modification of work by
"vadimpl"/Wikimedia Commons; credit c: modification of work by "The tdog"/Wikimedia Commons; credit d: modification of work by

"Ttrados"/Wikimedia Commons)

If the electromotive force is not a force at all, then what is the emf and what is a source of emf? To answer these
questions, consider a simple circuit of a 12-V lamp attached to a 12-V battery, as shown in Figure 10.3. The
battery can be modeled as a two-terminal device that keeps one terminal at a higher electric potential than the
second terminal. The higher electric potential is sometimes called the positive terminal and is labeled with a
plus sign. The lower-potential terminal is sometimes called the negative terminal and labeled with a minus
sign. This is the source of the emf.

‘;'
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Figure 10.3 A source of emf maintains one terminal at a higher electric potential than the other terminal, acting as a source of current in a

circuit.

When the emf source is not connected to the lamp, there is no net flow of charge within the emf source. Once
the battery is connected to the lamp, charges flow from one terminal of the battery, through the lamp (causing
the lamp to light), and back to the other terminal of the battery. If we consider positive (conventional) current
flow, positive charges leave the positive terminal, travel through the lamp, and enter the negative terminal.

Positive current flow is useful for most of the circuit analysis in this chapter, but in metallic wires and resistors,
electrons contribute the most to current, flowing in the opposite direction of positive current flow. Therefore, it
is more realistic to consider the movement of electrons for the analysis of the circuit in Figure 10.3. The
electrons leave the negative terminal, travel through the lamp, and return to the positive terminal. In order for
the emf source to maintain the potential difference between the two terminals, negative charges (electrons)
must be moved from the positive terminal to the negative terminal. The emf source acts as a charge pump,
moving negative charges from the positive terminal to the negative terminal to maintain the potential
difference. This increases the potential energy of the charges and, therefore, the electric potential of the
charges.

The force on the negative charge from the electric field is in the opposite direction of the electric field, as
shown in Figure 10.3. In order for the negative charges to be moved to the negative terminal, work must be
done on the negative charges. This requires energy, which comes from chemical reactions in the battery. The
potential is kept high on the positive terminal and low on the negative terminal to maintain the potential
difference between the two terminals. The emf is equal to the work done on the charge per unit charge

dq
coulomb, the unit for emf is the volt (1 V = 1J/C).

(5 = d—W> when there is no current flowing. Since the unit for work is the joule and the unit for charge is the

The terminal voltage Ve minal Of 2 battery is voltage measured across the terminals of the battery. An ideal
battery is an emf source that maintains a constant terminal voltage, independent of the current between the
two terminals. An ideal battery has no internal resistance, and the terminal voltage is equal to the emf of the
battery. In the next section, we will show that a real battery does have internal resistance and the terminal
voltage is always less than the emf of the battery.
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The Origin of Battery Potential

The combination of chemicals and the makeup of the terminals in a battery determine its emf. The lead acid
battery used in cars and other vehicles is one of the most common combinations of chemicals. Figure 10.4
shows a single cell (one of six) of this battery. The cathode (positive) terminal of the cell is connected to a lead
oxide plate, whereas the anode (negative) terminal is connected to a lead plate. Both plates are immersed in
sulfuric acid, the electrolyte for the system.

Cathode

//, Sulfuric acid

H,SO,

’ Lead oxide
Pb PbO,

Figure 10.4 Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode, which is connected to the lead
plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts the charge, as well as

participates in the chemical reaction.

Knowing a little about how the chemicals in a lead-acid battery interact helps in understanding the potential
created by the battery. Figure 10.5 shows the result of a single chemical reaction. Two electrons are placed on
the anode, making it negative, provided that the cathode supplies two electrons. This leaves the cathode
positively charged, because it has lost two electrons. In short, a separation of charge has been driven by a
chemical reaction.

Note that the reaction does not take place unless there is a complete circuit to allow two electrons to be
supplied to the cathode. Under many circumstances, these electrons come from the anode, flow through a
resistance, and return to the cathode. Note also that since the chemical reactions involve substances with
resistance, it is not possible to create the emf without an internal resistance.

Figure 10.5 Inalead-acid battery, two electrons are forced onto the anode of a cell, and two electrons are removed from the cathode of

the cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the cathode. It requires a

Access for free at openstax.org.



closed circuit to proceed, since the two electrons must be supplied to the cathode.

Internal Resistance and Terminal Voltage

The amount of resistance to the flow of current within the voltage source is called the internal resistance. The
internal resistance rof a battery can behave in complex ways. It generally increases as a battery is depleted,
due to the oxidation of the plates or the reduction of the acidity of the electrolyte. However, internal resistance
may also depend on the magnitude and direction of the current through a voltage source, its temperature, and
even its history. The internal resistance of rechargeable nickel-cadmium cells, for example, depends on how
many times and how deeply they have been depleted. A simple model for a battery consists of an idealized emf
source € and an internal resistance r (Figure 10.6).
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terminal
.......... [ TR

I~
|
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=

)

.......... 9--- H
Negative

terminal

Figure 10.6 A battery can be modeled as an idealized emf (g) with an internal resistance (r). The terminal voltage of the battery is

Vierminal = € — Ir.

Suppose an external resistor, known as the load resistance R, is connected to a voltage source such as a battery,
asin Figure 10.7. The figure shows a model of a battery with an emf €, an internal resistance r, and a load
resistor R connected across its terminals. Using conventional current flow, positive charges leave the positive
terminal of the battery, travel through the resistor, and return to the negative terminal of the battery. The
terminal voltage of the battery depends on the emf, the internal resistance, and the current, and is equal to

Vierminal = € — Ir. 10.1

For a given emf and internal resistance, the terminal voltage decreases as the current increases due to the
potential drop Ir of the internal resistance.



Figure 10.7 Schematic of a voltage source and its load resistor R. Since the internal resistance ris in series with the load, it can

significantly affect the terminal voltage and the current delivered to the load.

A graph of the potential difference across each element the circuit is shown in Figure 10.8. A current Iruns
through the circuit, and the potential drop across the internal resistor is equal to Ir. The terminal voltage is
equal to € — I'r, which is equal to the potential drop across the load resistor I R = € — Ir. As with potential
energy, it is the change in voltage that is important. When the term “voltage” is used, we assume that it is
actually the change in the potential, or AV. However, A is often omitted for convenience.

Vi
Battery

£ - L L)

}Av=lr
E — Ir A

Av=IR

a b c d ;

=i+
— i E—A——
& r R
Figure 10.8 A graph of the voltage through the circuit of a battery and a load resistance. The electric potential increases the emf of the

battery due to the chemical reactions doing work on the charges. There is a decrease in the electric potential in the battery due to the

internal resistance. The potential decreases due to the internal resistance (—Ir), making the terminal voltage of the battery equal to

£
r+R"’

(e — Ir). The voltage then decreases by (IR). The current is equalto I =

£
r+R"

resistance r, the greater the current the voltage source supplies to its load R. As batteries are depleted, r
increases. If rbecomes a significant fraction of the load resistance, then the current is significantly reduced, as
the following example illustrates.

@ EXAMPLE 10.1

Analyzing a Circuit with a Battery and a Load

A given battery has a 12.00-V emf and an internal resistance of 0.100 Q. (a) Calculate its terminal voltage when
connected to a 10.00-€2 load. (b) What is the terminal voltage when connected to a 0.500-Q load? (c) What
power does the 0.500-Q load dissipate? (d) If the internal resistance grows to 0.500 €, find the current,
terminal voltage, and power dissipated by a 0.500-€2 load.

The current through the load resistor is I = We see from this expression that the smaller the internal

Strategy
The analysis above gave an expression for current when internal resistance is taken into account. Once the



current is found, the terminal voltage can be calculated by using the equation Vierminal1 = € — I7. Once current
is found, we can also find the power dissipated by the resistor.

Solution

a.

Entering the given values for the emf, load resistance, and internal resistance into the expression above

yields
e 1200V

R+r 10.10Q 88

Enter the known values into the equation Vierminal = € — I7 to get the terminal voltage:
Vierminal = € — Ir =12.00V — (1.188 A)(0.100 Q) = 11.90 V.

The terminal voltage here is only slightly lower than the emf, implying that the current drawn by this light
load is not significant.

Similarly, with Rjo,q = 0.500 €, the current is
e 1200V

I'=R17 = oeo0gq = 2V00A

The terminal voltage is no
Vierminal = € — Ir = 12.00 V — (20.00 A) (0.100 Q) = 10.00 V.

The terminal voltage exhibits a more significant reduction compared with emf, implying 0.500 Q is a
heavy load for this battery. A “heavy load” signifies a larger draw of current from the source but not a
larger resistance.
The power dissipated by the 0.500-Q load can be found using the formula P = I*R. Entering the known
values gives

P=1?R=(20.0 A)*(0.5009Q) = 2.00 x 10*> W.

2
Note that this power can also be obtained using the expression Y= or IV, where Vis the terminal voltage

R
(10.0 V in this case).
Here, the internal resistance has increased, perhaps due to the depletion of the battery, to the point where
it is as great as the load resistance. As before, we first find the current by entering the known values into

the expression, yielding
e 1200V

I = =
R+r 1.00 Q

= 12.00 A.

Now the terminal voltage is
Vierminal = € — Ir =12.00 V — (12.00 A)(0.500 ) = 6.00 V,

and the power dissipated by the load is
P =TI%R = (12.00 A)*(0.500 ) = 72.00 W.

We see that the increased internal resistance has significantly decreased the terminal voltage, current,
and power delivered to a load.

Significance

The internal resistance of a battery can increase for many reasons. For example, the internal resistance of a
rechargeable battery increases as the number of times the battery is recharged increases. The increased
internal resistance may have two effects on the battery. First, the terminal voltage will decrease. Second, the
battery may overheat due to the increased power dissipated by the internal resistance.

CHECK YOUR UNDERSTANDING 10.1

If you place a wire directly across the two terminal of a battery, effectively shorting out the terminals, the
battery will begin to get hot. Why do you suppose this happens?



Battery Testers

Battery testers, such as those in Figure 10.9, use small load resistors to intentionally draw current to
determine whether the terminal potential drops below an acceptable level. Although it is difficult to measure
the internal resistance of a battery, battery testers can provide a measurement of the internal resistance of the
battery. If internal resistance is high, the battery is weak, as evidenced by its low terminal voltage.

(b)

Figure 10.9 Battery testers measure terminal voltage under a load to determine the condition of a battery. (a) A US Navy electronics

technician uses a battery tester to test large batteries aboard the aircraft carrier USS Nimitz. The battery tester she uses has a small
resistance that can dissipate large amounts of power. (b) The small device shown is used on small batteries and has a digital display to
indicate the acceptability of the terminal voltage. (credit a: modification of work by Jason A. Johnston; credit b: modification of work by
Keith Williamson)

Some batteries can be recharged by passing a current through them in the direction opposite to the current
they supply to an appliance. This is done routinely in cars and in batteries for small electrical appliances and
electronic devices (Figure 10.10). The voltage output of the battery charger must be greater than the emf of the
battery to reverse the current through it. This causes the terminal voltage of the battery to be greater than the
emf, since V' = € — Ir and Iis now negative.

Battery charger

C.C. Amperes |
R EE

Figure 10.10 A car battery charger reverses the normal direction of current through a battery, reversing its chemical reaction and

replenishing its chemical potential.

It is important to understand the consequences of the internal resistance of emf sources, such as batteries and
solar cells, but often, the analysis of circuits is done with the terminal voltage of the battery, as we have done in
the previous sections. The terminal voltage is referred to as simply as V, dropping the subscript “terminal.”
This is because the internal resistance of the battery is difficult to measure directly and can change over time.



10.2 Resistors in Series and Parallel

Learning Objectives

By the end of this section, you will be able to:
e Define the term equivalent resistance
e Calculate the equivalent resistance of resistors connected in series
e Calculate the equivalent resistance of resistors connected in parallel

In Current and Resistance, we described the term ‘resistance’ and explained the basic design of a resistor.
Basically, a resistor limits the flow of charge in a circuit and is an ohmic device where V' = I R. Most circuits
have more than one resistor. If several resistors are connected together and connected to a battery, the current
supplied by the battery depends on the equivalent resistance of the circuit.

The equivalent resistance of a combination of resistors depends on both their individual values and how they
are connected. The simplest combinations of resistors are series and parallel connections (Figure 10.11).In a
series circuit, the output current of the first resistor flows into the input of the second resistor; therefore, the
current is the same in each resistor. In a parallel circuit, all of the resistor leads on one side of the resistors are
connected together and all the leads on the other side are connected together. In the case of a parallel
configuration, each resistor has the same potential drop across it, and the currents through each resistor may
be different, depending on the resistor. The sum of the individual currents equals the current that flows into
the parallel connections.

WM—WM—W—W— 7S RS RT RS

R, R, R, R,

(a) Resistors connected in series (b) Resistors connected in parallel

Figure 10.11 (a) For a series connection of resistors, the current is the same in each resistor. (b) For a parallel connection of resistors, the

voltage is the same across each resistor.

Resistors in Series

Resistors are said to be in series whenever the current flows through the resistors sequentially. Consider
Figure 10.12, which shows three resistors in series with an applied voltage equal to V. Since there is only one
path for the charges to flow through, the current is the same through each resistor. The equivalent resistance
of a set of resistors in a series connection is equal to the algebraic sum of the individual resistances.
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(a) Original circuit (b) Equivalent circuit

Figure 10.12 (a) Three resistors connected in series to a voltage source. (b) The original circuit is reduced to an equivalent resistance and

a voltage source.

In Figure 10.12, the current coming from the voltage source flows through each resistor, so the current through
each resistor is the same. The current through the circuit depends on the voltage supplied by the voltage
source and the resistance of the resistors. For each resistor, a potential drop occurs that is equal to the loss of
electric potential energy as a current travels through each resistor. According to Ohm’s law, the potential drop
Vacross a resistor when a current flows through it is calculated using the equation V' = I R, where Iis the
current in amps (A) and R is the resistance in ohms (£2). Since energy is conserved, and the voltage is equal to
the potential energy per charge, the sum of the voltage applied to the circuit by the source and the potential
drops across the individual resistors around a loop should be equal to zero:

N
Y vi=o.
i=1

This equation is often referred to as Kirchhoff’s loop law, which we will look at in more detail later in this
chapter. For Figure 10.12, the sum of the potential drop of each resistor and the voltage supplied by the voltage
source should equal zero:

V-Vi-Va-V3 = 0,

V.= V+hh+Vs,
= IR{ + IRy + IRj3,
I = 14 _ Vv

R] +R2+R3 - R_S
Since the current through each component is the same, the equality can be simplified to an equivalent

resistance, which is just the sum of the resistances of the individual resistors.

Any number of resistors can be connected in series. If Nresistors are connected in series, the equivalent
resistance is

N
RS=R1+R2+R3+'"+RN_1+RN=ZR,'. 10.2
i=1

One result of components connected in a series circuit is that if something happens to one component, it
affects all the other components. For example, if several lamps are connected in series and one bulb burns out,
all the other lamps go dark.



@ EXAMPLE 10.2

Equivalent Resistance, Current, and Power in a Series Circuit

A battery with a terminal voltage of 9 V is connected to a circuit consisting of four 20-Q and one 10-Q resistors
allin series (Figure 10.13). Assume the battery has negligible internal resistance. (a) Calculate the equivalent
resistance of the circuit. (b) Calculate the current through each resistor. (c) Calculate the potential drop across
each resistor. (d) Determine the total power dissipated by the resistors and the power supplied by the battery.

AN AMN MN MN MN
R, =200 R,=200) R,=2000 R,=2000 R =100

=

V=9V

Figure 10.13 A simple series circuit with five resistors.

Strategy

In a series circuit, the equivalent resistance is the algebraic sum of the resistances. The current through the
circuit can be found from Ohm’s law and is equal to the voltage divided by the equivalent resistance. The
potential drop across each resistor can be found using Ohm’s law. The power dissipated by each resistor can be
found using P = 12 R, and the total power dissipated by the resistors is equal to the sum of the power
dissipated by each resistor. The power supplied by the battery can be found using P = I&.

Solution

a. The equivalent resistance is the algebraic sum of the resistances:
Rs=R{+R)+R3+ R4 +R;=20Q+20Q+20Q+20Q+ 10Q2 =90 Q.

b. The current through the circuit is the same for each resistor in a series circuit and is equal to the applied

voltage divided by the equivalent resistance:

=X -2V _gia
Rs  90Q

c. The potential drop across each resistor can be found using Ohm’s law:
Vi=Vh=V;=V;=(0.1A)20Q=2V,
Vs =0.1A)10Q=1YV,
Mi+V,+V3+Vi+V5=9V.
Note that the sum of the potential drops across each resistor is equal to the voltage supplied by the battery.

d. The power dissipated by a resistor is equalto P = [ 2R, and the power supplied by the battery is equal to
P=Ie:

PL=P,=P; =P, =0.1A)2>20Q)=02W,

Ps = (0.1 A)2(10Q) =0.1W,

Pyissipated = 02W +02W +02W +02W +0.1W =09 W,
Psource = Ie = (0.1 A)(OV) = 0.9 W.

Significance

There are several reasons why we would use multiple resistors instead of just one resistor with a resistance
equal to the equivalent resistance of the circuit. Perhaps a resistor of the required size is not available, or we
need to dissipate the heat generated, or we want to minimize the cost of resistors. Each resistor may cost a few
cents to a few dollars, but when multiplied by thousands of units, the cost saving may be appreciable.




CHECK YOUR UNDERSTANDING 10.2

Some strings of miniature holiday lights are made to short out when a bulb burns out. The device that causes
the short is called a shunt, which allows current to flow around the open circuit. A “short” is like putting a
piece of wire across the component. The bulbs are usually grouped in series of nine bulbs. If too many bulbs
burn out, the shunts eventually open. What causes this?

Let’s briefly summarize the major features of resistors in series:

Series resistances add together to get the equivalent resistance:

N
RS=R1+R2+R3+"'+RN_1+RN=ZR[.
i=1

The same current flows through each resistor in series.
Individual resistors in series do not get the total source voltage, but divide it. The total potential drop across a
series configuration of resistors is equal to the sum of the potential drops across each resistor.

Resistors in Parallel

Figure 10.14 shows resistors in parallel, wired to a voltage source. Resistors are in parallel when one end of all
the resistors are connected by a continuous wire of negligible resistance and the other end of all the resistors
are also connected to one another through a continuous wire of negligible resistance. The potential drop
across each resistor is the same. Current through each resistor can be found using Ohm’s law I = V/R, where
the voltage is constant across each resistor. For example, an automobile’s headlights, radio, and other systems
are wired in parallel, so that each subsystem utilizes the full voltage of the source and can operate completely
independently. The same is true of the wiring in your house or any building.

V v

[+,
o
-
-
[+,
b=

|
Q-J llI
<
0
M\
=~
)
ra
M\
-~
i
o]
<
Ey)
E
MN

(a) Original circuit (b) Equivalent circuit
Figure 10.14 (a) Two resistors connected in parallel to a voltage source. (b) The original circuit is reduced to an equivalent resistance and

a voltage source.

The current flowing from the voltage source in Figure 10.14 depends on the voltage supplied by the voltage
source and the equivalent resistance of the circuit. In this case, the current flows from the voltage source and
enters a junction, or node, where the circuit splits flowing through resistors Ry and Rj. As the charges flow
from the battery, some go through resistor R; and some flow through resistor Ry. The sum of the currents
flowing into a junction must be equal to the sum of the currents flowing out of the junction:

Z I, = Z Tout.

This equation is referred to as Kirchhoff’s junction rule and will be discussed in detail in the next section. In
Figure 10.14, the junction rule gives I = I| + I,. There are two loops in this circuit, which leads to the
equations V' = Iy Ry and I Ry = I R,. Note the voltage across the resistors in parallel are the same

(V =V = V,) and the current is additive:



Re = <L n ;)‘ ,
P Ry " Ry
Generalizing to any number of N resistors, the equivalent resistance Rp of a parallel connection is related to
the individual resistances by

-1 N =t
1 1 1 1 1 1
RP:<_+_+_+...+ +—> = E— . 10.3
R1 R2 R3 RN—I RN (i=1 Ri)

This relationship results in an equivalent resistance Rp that is less than the smallest of the individual
resistances. When resistors are connected in parallel, more current flows from the source than would flow for
any of them individually, so the total resistance is lower.

@ EXAMPLE 10.3

Analysis of a Parallel Circuit

Three resistors R = 1.00Q, R, =2.00Q, and R3 = 2.00 Q, are connected in parallel. The parallel
connection is attached toa V' = 3.00 V voltage source. (a) What is the equivalent resistance? (b) Find the
current supplied by the source to the parallel circuit. (¢) Calculate the currents in each resistor and show that
these add together to equal the current output of the source. (d) Calculate the power dissipated by each
resistor. (e) Find the power output of the source and show that it equals the total power dissipated by the
resistors.

Strategy

-1
1
(a) The total resistance for a parallel combination of resistors is found using Rp = <Z IT> .
= K
1
(Note that in these calculations, each intermediate answer is shown with an extra digit.)
(b) The current supplied by the source can be found from Ohm'’s law, substituting Rp for the total resistance

1=-X.
Rp

(c) The individual currents are easily calculated from Ohm’s law (I i = R—’_ ), since each resistor gets the full
1
voltage. The total current is the sum of the individual currents: I = 2 I;.
i
(d) The power dissipated by each resistor can be found using any of the equations relating power to current,
voltage, and resistance, since all three are known. Let us use P, = V2/R,-, since each resistor gets full voltage.

(e) The total power can also be calculated in several ways, use P = I'V.
Solution

a. The total resistance for a parallel combination of resistors is found using Equation 10.3. Entering known
values gives

-1 -1
T T 1 1 1
P <R1 TR T R3> (1.009 T20at 2.009)



The total resistance with the correct number of significant digits is Rp = 0.50 Q. As predicted, Rp is less
than the smallest individual resistance.

b. The total current can be found from Ohm’s law, substituting Rp for the total resistance. This gives
|4 3.00V
=—=——=600A.
Rp 0.50Q
Current I for each device is much larger than for the same devices connected in series (see the previous
example). A circuit with parallel connections has a smaller total resistance than the resistors connected in

series.
c. The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage.
Thus,
V 3.00V
I =—-= =3.00 A.
'R, ~ 1000
Similarly,
|4 3.00V
Ih=—=—-=150A
27 R, 200Q
and
|4 3.00V
I3 =—=—==150A.
37 Ry 200Q

The total current is the sum of the individual currents:
I+ 1, + I3 =6.00 A.

d. The power dissipated by each resistor can be found using any of the equations relating power to current,
voltage, and resistance, since all three are known. Let us use P = V2/R, since each resistor gets full
voltage. Thus,

V2 (3.00V)?
Pl=—=""_=900W.
7R, roog - 00
Similarly,
V2 (3.00V)?
Pp=—=-""_"" =450W
27 R, 200Q
and
V2 (3.00V)?
Py=— ="~ =—450W.
ST Ry 200Q 50

e. The total power can also be calculated in several ways. Choosing P = I'V and entering the total current
yields
P=1V =(6.00A)(3.00V) = 18.00 W.

Significance
Total power dissipated by the resistors is also 18.00 W:
P +P+P;=900W+450W+450W = 18.00 W.

Notice that the total power dissipated by the resistors equals the power supplied by the source.

CHECK YOUR UNDERSTANDING 10.3

Consider the same potential difference (V' = 3.00 V) applied to the same three resistors connected in series.
Would the equivalent resistance of the series circuit be higher, lower, or equal to the three resistor in parallel?
Would the current through the series circuit be higher, lower, or equal to the current provided by the same
voltage applied to the parallel circuit? How would the power dissipated by the resistor in series compare to the
power dissipated by the resistors in parallel?



CHECK YOUR UNDERSTANDING 10.4

How would you use a river and two waterfalls to model a parallel configuration of two resistors? How does this
analogy break down?

Let us summarize the major features of resistors in parallel:

Equivalent resistance is found from

R<1+1+1++1+1>‘1 szll
P = _— D — —_— ces _— — P s
Ry Ry Rs Rn-1  Rn ~ R

and is smaller than any individual resistance in the combination.

The potential drop across each resistor in parallel is the same.

Parallel resistors do not each get the total current; they divide it. The current entering a parallel combination
of resistors is equal to the sum of the current through each resistor in parallel.

In this chapter, we introduced the equivalent resistance of resistors connect in series and resistors connected
in parallel. You may recall that in Capacitance, we introduced the equivalent capacitance of capacitors
connected in series and parallel. Circuits often contain both capacitors and resistors. Table 10.1 summarizes
the equations used for the equivalent resistance and equivalent capacitance for series and parallel
connections.

Series combination Parallel combination
. . 1 _ 1 1 1
Equivalent capacitance Ts T O + ey + [y + - Cp=C;+Cy+C3+ -
N
. . 1 _ 1 1 1
Equivalent resistance Rs=R|+Ry+R3+-- = Z R; Rp TR + Ry + Ry + -
i=1

Table 10.1 Summary for Equivalent Resistance and Capacitance in Series and Parallel Combinations

Combinations of Series and Parallel

More complex connections of resistors are often just combinations of series and parallel connections. Such
combinations are common, especially when wire resistance is considered. In that case, wire resistance is in
series with other resistances that are in parallel.

Combinations of series and parallel can be reduced to a single equivalent resistance using the technique
illustrated in Figure 10.15. Various parts can be identified as either series or parallel connections, reduced to
their equivalent resistances, and then further reduced until a single equivalent resistance is left. The process
is more time consuming than difficult. Here, we note the equivalent resistance as Req.
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Figure 10.15 (a) The original circuit of four resistors. (b) Step 1: The resistors R3 and R4 are in series and the equivalent resistance is

R34 = 10 Q. (c) Step 2: The reduced circuit shows resistors Ry and R3y4 are in parallel, with an equivalent resistance of Ry34 = 5 Q. (d)
Step 3: The reduced circuit shows that Ry and Ry34 are in series with an equivalent resistance of Rjp34 = 12 Q, which is the equivalent
resistance Req. (€) The reduced circuit with a voltage source of V' = 24 V with an equivalent resistance of Req = 12 Q. This results in a

current of I = 2 A from the voltage source.

Notice that resistors Rz and R4 are in series. They can be combined into a single equivalent resistance. One
method of keeping track of the process is to include the resistors as subscripts. Here the equivalent resistance
of R3 and Ry is

R3y=R3+R; =6Q+4Q=10Q.

The circuit now reduces to three resistors, shown in Figure 10.15(c). Redrawing, we now see that resistors R,
and R34 constitute a parallel circuit. Those two resistors can be reduced to an equivalent resistance:

-1 -1
1 1 1 1
R = —+ — = —+ —= =5Q.
234 <R2 R34> (109 109)
This step of the process reduces the circuit to two resistors, shown in in Figure 10.15(d). Here, the circuit

reduces to two resistors, which in this case are in series. These two resistors can be reduced to an equivalent
resistance, which is the equivalent resistance of the circuit:

Req =Rip23a =R +Ry3u =7Q+5Q=12Q.

The main goal of this circuit analysis is reached, and the circuit is now reduced to a single resistor and single



voltage source.

Now we can analyze the circuit. The current provided by the voltage source is I = R—zq = %g—s\; =2 A. This

current runs through resistor R; and is designated as I . The potential drop across Rj can be found using
Ohm’s law:

Vi=1LR =QA)(TQ) = 14V.

Looking at Figure 10.15(c), thisleaves 24 V — 14 V = 10 V to be dropped across the parallel combination of
R5 and Rszy4. The current through R; can be found using Ohm’s law:
i 10V

= =1A.

I, = -
2R, 10Q

The resistors R3 and Ry are in series so the currents I3 and I are equal to
ILi=Ih=1-1)=2A-1A=1A.

Using Ohm’s law, we can find the potential drop across the last two resistors. The potential drops are
V3 =I3R3 =6V andV, = I4 Ry =4 V. The final analysis is to look at the power supplied by the voltage
source and the power dissipated by the resistors. The power dissipated by the resistors is

Pl = IR =QA?(7Q) =28W,
P = TRy =(1A?(10Q) =10W,
Py = IZR3=(1AP (6Q) =6W,
Py = IRy =(1A?(4Q) =4W,
Piissipaed = P1+ Py + P3+ P, =48 W.
The total energy is constant in any process. Therefore, the power supplied by the voltage source is

Py =1V = (2 A)(24 V) = 48 W. Analyzing the power supplied to the circuit and the power dissipated by the
resistors is a good check for the validity of the analysis; they should be equal.

@ EXAMPLE 10.4

Combining Series and Parallel Circuits

Figure 10.16 shows resistors wired in a combination of series and parallel. We can consider R; to be the
resistance of wires leading to R, and Rj3. (a) Find the equivalent resistance of the circuit. (b) What is the
potential drop V| across resistor R;? (c) Find the current I, through resistor R,. (d) What power is dissipated
by Ry?

vV, =72
MN
R, =1.00 Q)
+
= vVv=1.0V lff?

R, = 6.00 .Q.§ R, =13.00 £} § Vy=2?

Figure 10.16 These three resistors are connected to a voltage source so that R, and Rj are in parallel with one another and that

combination is in series with Rj.



Strategy

(a) To find the equivalent resistance, first find the equivalent resistance of the parallel connection of Ry and
Rs3. Then use this result to find the equivalent resistance of the series connection with R;.

(b) The current through R can be found using Ohm’s law and the voltage applied. The current through Rj is
equal to the current from the battery. The potential drop V] across the resistor R| (which represents the
resistance in the connecting wires) can be found using Ohm’s law.

V-
(c) The current through R; can be found using Ohm’s law I, = R—é. The voltage across R can be found using
Vo=V -T1].

(d) Using Ohm’s law (V, = I, R,), the power dissipated by the resistor can also be found
2

- 2 0
usingP) = IRy = I

Solution

a. To find the equivalent resistance of the circuit, notice that the parallel connection of R, and Rj is in series
with Ry, so the equivalent resistance is

-1 -1
1o 1 1
Rg=Ri+(—+—) =100Q =510Q.
e 1+<R2+R3> +<6.00Q+13.00Q>

The total resistance of this combination is intermediate between the pure series and pure parallel values (
20.0 Q and 0.804 Q, respectively).
b. The current through R; is equal to the current supplied by the battery:

Vo 120V
! Req 5.10Q

The voltage across R; is
Vi=1L1R =235A)(1Q)=235V.

The voltage applied to Ry and Rj is less than the voltage supplied by the battery by an amount V;. When
wire resistance is large, it can significantly affect the operation of the devices represented by R, and R3.
c. To find the current through R;, we must first find the voltage applied to it. The voltage across the two

resistors in parallel is the same:
Vo=V3=V-V; =120V -235V=9.65V.

Now we can find the current I, through resistance R, using Ohm’s law:
Vs 9.65V
Ih=—=——==1.61A.
27 R, 600Q
The current is less than the 2.00 A that flowed through R, when it was connected in parallel to the battery
in the previous parallel circuit example.
d. The power dissipated by R is given by
Py = I2Ry = (1.61 A*(6.00Q) = 15.5W.

Significance

The analysis of complex circuits can often be simplified by reducing the circuit to a voltage source and an
equivalent resistance. Even if the entire circuit cannot be reduced to a single voltage source and a single
equivalent resistance, portions of the circuit may be reduced, greatly simplifying the analysis.

CHECK YOUR UNDERSTANDING 10.5

Consider the electrical circuits in your home. Give at least two examples of circuits that must use a
combination of series and parallel circuits to operate efficiently.



Practical Implications

One implication of this last example is that resistance in wires reduces the current and power delivered to a
resistor. If wire resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be
significant. If a large current is drawn, the IR drop in the wires can also be significant and may become
apparent from the heat generated in the cord.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims
momentarily. Similarly, you can see the passenger compartment light dim when you start the engine of your
car (although this may be due to resistance inside the battery itself).

What is happening in these high-current situations is illustrated in Figure 10.17. The device represented by
R3 has a very low resistance, so when it is switched on, a large current flows. This increased current causes a
larger IR drop in the wires represented by R, reducing the voltage across the light bulb (which is R;), which
then dims noticeably.

Refrigerator

I

Large IR

drop in wires Bulb

dims

R, = wire

resistance <
Low R,
draws large

R3
—AWW

@ 1 Motor —2—

o

Figure 10.17 Why do lights dim when a large appliance is switched on? The answer is that the large current the appliance motor draws

causes a significant IR drop in the wires and reduces the voltage across the light.

@ PROBLEM-SOLVING STRATEGY

Series and Parallel Resistors

1. Draw a clear circuit diagram, labeling all resistors and voltage sources. This step includes a list of the
known values for the problem, since they are labeled in your circuit diagram.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is
useful.

3. Determine whether resistors are in series, parallel, or a combination of both series and parallel. Examine
the circuit diagram to make this assessment. Resistors are in series if the same current must pass
sequentially through them.

4. Use the appropriate list of major features for series or parallel connections to solve for the unknowns.
There is one list for series and another for parallel.



5. Check to see whether the answers are reasonable and consistent.

@ EXAMPLE 10.5

Combining Series and Parallel Circuits

Two resistors connected in series (R, Ry ) are connected to two resistors that are connected in parallel

(R3, Ry). The series-parallel combination is connected to a battery. Each resistor has a resistance of 10.00
Ohms. The wires connecting the resistors and battery have negligible resistance. A current of 2.00 Amps runs
through resistor R;. What is the voltage supplied by the voltage source?

Strategy
Use the steps in the preceding problem-solving strategy to find the solution for this example.

Solution

1. Draw a clear circuit diagram (Figure 10.18).
I, = 2.00 A
—_—
AN MN
R, =1000() R, =10.00)

I
III
<

I

~J

R, = 10.00 n§ R, = 10.00 n§

Figure 10.18 To find the unknown voltage, we must first find the equivalent resistance of the circuit.

2. The unknown is the voltage of the battery. In order to find the voltage supplied by the battery, the
equivalent resistance must be found.

3. Inthis circuit, we already know that the resistors Ry and Rj are in series and the resistors Ry and R4 are
in parallel. The equivalent resistance of the parallel configuration of the resistors Rz and R4 is in series
with the series configuration of resistors R; and Rj.

4. The voltage supplied by the battery can be found by multiplying the current from the battery and the
equivalent resistance of the circuit. The current from the battery is equal to the current through R; and is
equal to 2.00 A. We need to find the equivalent resistance by reducing the circuit. To reduce the circuit,
first consider the two resistors in parallel. The equivalent resistance is
R34 = (m + m)_l = 5.00 Q. This parallel combination is in series with the other two resistors,
so the equivalent resistance of the circuit is Req = Ry + Ry + R34 = 25.00 Q. The voltage supplied by the
battery is therefore V' = I Req = 2.00 A (25.00 Q) = 50.00 V.

5. One way to check the consistency of your results is to calculate the power supplied by the battery and the
power dissipated by the resistors. The power supplied by the battery is Py = IV = 100.00 W.

Since they are in series, the current through R, equals the current through R;. Since R3 = Ry, the
current through each will be 1.00 Amps. The power dissipated by the resistors is equal to the sum of the

power dissipated by each resistor:
P=1I}R; + I3Ry + I3 R3 + I7 Ry = 40.00 W + 40.00 W + 10.00 W + 10.00 W = 100.00 W.

Since the power dissipated by the resistors equals the power supplied by the battery, our solution seems
consistent.



Significance

If a problem has a combination of series and parallel, as in this example, it can be reduced in steps by using
the preceding problem-solving strategy and by considering individual groups of series or parallel connections.
When finding Req for a parallel connection, the reciprocal must be taken with care. In addition, units and
numerical results must be reasonable. Equivalent series resistance should be greater, whereas equivalent
parallel resistance should be smaller, for example. Power should be greater for the same devices in parallel
compared with series, and so on.

10.3 Kirchhoff's Rules

Learning Objectives

By the end of this section, you will be able to:
e State Kirchhoff’s junction rule
e State Kirchhoff’s loop rule
e Analyze complex circuits using Kirchhoff’s rules

We have just seen that some circuits may be analyzed by reducing a circuit to a single voltage source and an
equivalent resistance. Many complex circuits cannot be analyzed with the series-parallel techniques
developed in the preceding sections. In this section, we elaborate on the use of Kirchhoff’s rules to analyze
more complex circuits. For example, the circuit in Figure 10.19 is known as a multi-loop circuit, which
consists of junctions. A junction, also known as a node, is a connection of three or more wires. In this circuit,
the previous methods cannot be used, because not all the resistors are in clear series or parallel configurations
that can be reduced. Give it a try. The resistors R; and R are in series and can be reduced to an equivalent
resistance. The same is true of resistors R4 and Rs. But what do you do then?

Even though this circuit cannot be analyzed using the methods already learned, two circuit analysis rules can
be used to analyze any circuit, simple or complex. The rules are known as Kirchhoff’s rules, after their
inventor Gustav Kirchhoff (1824-1887).

Vy Ry
—li\l+

I
Figure 10.19 This circuit cannot be reduced to a combination of series and parallel connections. However, we can use Kirchhoff’s rules to

analyze it.

Kirchhoff’s Rules

» Kirchhoff’s first rule—the junction rule. The sum of all currents entering a junction must equal the sum
of all currents leaving the junction:
Z I, = Z Tout. 10.4

« Kirchhoff’s second rule—the loop rule. The algebraic sum of changes in potential around any closed
circuit path (loop) must be zero:

Z vV =0. 10.5




We now provide explanations of these two rules, followed by problem-solving hints for applying them and a
worked example that uses them.

Kirchhoff’s First Rule

Kirchhoff’s first rule (the junction rule) applies to the charge entering and leaving a junction (Figure 10.20). As
stated earlier, a junction, or node, is a connection of three or more wires. Current is the flow of charge, and
charge is conserved; thus, whatever charge flows into the junction must flow out.

>

2 hin T < Tout
I+ by + 1y + g = Iy + g

>

Figure 10.20 Charge must be conserved, so the sum of currents into a junction must be equal to the sum of currents out of the junction.

Although it is an over-simplification, an analogy can be made with water pipes connected in a plumbing
junction. If the wires in Figure 10.20 were replaced by water pipes, and the water was assumed to be
incompressible, the volume of water flowing into the junction must equal the volume of water flowing out of
the junction.

Kirchhoff’s Second Rule

Kirchhoff’s second rule (the loop rule) applies to potential differences. The loop rule is stated in terms of
potential Vrather than potential energy, but the two are related since U = gV. In a closed loop, whatever
energy is supplied by a voltage source, the energy must be transferred into other forms by the devices in the
loop, since there are no other ways in which energy can be transferred into or out of the circuit. Kirchhoff’s
loop rule states that the algebraic sum of potential differences, including voltage supplied by the voltage
sources and resistive elements, in any loop must be equal to zero. For example, consider a simple loop with no
junctions, as in Figure 10.21.

V=120V R, =100}

a - b
{IF——w '
R, = 2.00 )
Loop
abcda
*"‘_
b M\ .
Ry = 3.00 () %

Figure 10.21 A simple loop with no junctions. Kirchhoff’s loop rule states that the algebraic sum of the voltage differences is equal to

Zero.

The circuit consists of a voltage source and three external load resistors. The labels a, b, ¢, and d serve as
references, and have no other significance. The usefulness of these labels will become apparent soon. The loop
is designated as Loop abcda, and the labels help keep track of the voltage differences as we travel around the
circuit. Start at point a and travel to point b. The voltage of the voltage source is added to the equation and the
potential drop of the resistor R; is subtracted. From point b to c, the potential drop across R is subtracted.
From cto d, the potential drop across Rj is subtracted. From points d to a, nothing is done because there are
no components.

Figure 10.22 shows a graph of the voltage as we travel around the loop. Voltage increases as we cross the



battery, whereas voltage decreases as we travel across a resistor. The potential drop, or change in the electric
potential, is equal to the current through the resistor times the resistance of the resistor. Since the wires have
negligible resistance, the voltage remains constant as we cross the wires connecting the components.

Battery
_ Vi —
i e wv =R,
Av=IRr,
V=6V
Av = IR,
a b c  de
= P—WWA——WA——WW\
Rl RZ RB

Figure 10.22 A voltage graph as we travel around the circuit. The voltage increases as we cross the battery and decreases as we cross
each resistor. Since the resistance of the wire is quite small, we assume that the voltage remains constant as we cross the wires connecting
the components.
Then Kirchhoff’s loop rule states
V —1IR, — IRy —IR3 =0.
The loop equation can be used to find the current through the loop:
e 14 B 12.00 V
" Ri+Ry+Ry  1.00Q+2.00Q+3.00Q

This loop could have been analyzed using the previous methods, but we will demonstrate the power of
Kirchhoff’s method in the next section.

=2.00A.

Applying Kirchhoff’s Rules

By applying Kirchhoff’s rules, we generate a set of linear equations that allow us to find the unknown values in
circuits. These may be currents, voltages, or resistances. Each time a rule is applied, it produces an equation. If
there are as many independent equations as unknowns, then the problem can be solved.

Using Kirchhoff’s method of analysis requires several steps, as listed in the following procedure.

@ PROBLEM-SOLVING STRATEGY

Kirchhoff’s Rules

1. Label points in the circuit diagram using lowercase letters a, b, ¢, .... These labels simply help with
orientation.

2. Locate the junctions in the circuit. The junctions are points where three or more wires connect. Label each
junction with the currents and directions into and out of it. Make sure at least one current points into the
junction and at least one current points out of the junction.

3. Choose the loops in the circuit. Every component must be contained in at least one loop, but a component
may be contained in more than one loop.

4. Apply the junction rule. Again, some junctions should not be included in the analysis. You need only use
enough nodes to include every current.

5. Apply the loop rule. Use the map in Figure 10.23.




Direction of travel Direction of travel

b b

a a

—A\— AW~

Av=Vv,-V,=-IR Av=Vv,-V,=IR
(@) (b)

Direction of travel Direction of travel

a _V+ b a _V+ b
= =

Av=V, -V, =+V Av=v,-V,= -V

a

(© (d)
Figure 10.23 Each of these resistors and voltage sources is traversed from ato b. (a) When moving across a resistor in the same direction
as the current flow, subtract the potential drop. (b) When moving across a resistor in the opposite direction as the current flow, add the
potential drop. (c) When moving across a voltage source from the negative terminal to the positive terminal, add the potential drop. (d)

When moving across a voltage source from the positive terminal to the negative terminal, subtract the potential drop.

Let’s examine some steps in this procedure more closely. When locating the junctions in the circuit, do not be
concerned about the direction of the currents. If the direction of current flow is not obvious, choosing any
direction is sufficient as long as at least one current points into the junction and at least one current points out
of the junction. If the arrow is in the opposite direction of the conventional current flow, the result for the
current in question will be negative but the answer will still be correct.

The number of nodes depends on the circuit. Each current should be included in a node and thus included in
at least one junction equation. Do not include nodes that are not linearly independent, meaning nodes that
contain the same information.

Consider Figure 10.24. There are two junctions in this circuit: Junction b and Junction e. Points a, ¢, d, and f
are not junctions, because a junction must have three or more connections. The equation for Junction b is
I, = I + I3, and the equation for Junction eis Iy 4+ I3 = I;. These are equivalent equations, so it is
necessary to keep only one of them.

Junction b
R, e 1

— h c

.\“ _i’}z

+
vV =
_ l’z
[P B S
f

Junction e

Figure 10.24 At first glance, this circuit contains two junctions, Junction b and Junction e, but only one should be considered because

their junction equations are equivalent.

When choosing the loops in the circuit, you need enough loops so that each component is covered once,
without repeating loops. Figure 10.25 shows four choices for loops to solve a sample circuit; choices (a), (b),
and (c) have a sufficient amount of loops to solve the circuit completely. Option (d) reflects more loops than



necessary to solve the circuit.
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Figure 10.25 Panels (a)—(c) are sufficient for the analysis of the circuit. In each case, the two loops shown contain all the circuit elements

necessary to solve the circuit completely. Panel (d) shows three loops used, which is more than necessary. Any two loops in the system will

contain all information needed to solve the circuit. Adding the third loop provides redundant information.

Consider the circuit in Figure 10.26(a). Let us analyze this circuit to find the current through each resistor.
First, label the circuit as shown in part (b).

R, = 3.00 ) Ry = 3.00 ()
MN MN
R, = 3.00 () g R, =4.00 () g
V, = 24.00V V, = 29.00 V
=i

+|il=
|||

@)

o R1=3004 p Rs=300 -
R, =3.00 Q) R, =4.00Q)
Vv, =24.00V V, =29.00V
+|I = ! —1 Il"’ !
f s 1 d
(b)

Figure 10.26 (a) A multi-loop circuit. (b) Label the circuit to help with orientation.

Next, determine the junctions. In this circuit, points b and e each have three wires connected, making them
junctions. Start to apply Kirchhoff’s junction rule (Z I, = Z Iout) by drawing arrows representing the

currents and labeling each arrow, as shown in Figure 10.27(b). Junction b shows that I} = I, + I3 and
Junction e shows that I, + I3 = I;. Since Junction e gives the same information of Junction b, it can be
disregarded. This circuit has three unknowns, so we need three linearly independent equations to analyze it.
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Figure 10.27 (a) This circuit has two junctions, labeled b and e, but only node b is used in the analysis. (b) Labeled arrows represent the

currents into and out of the junctions.

Next we need to choose the loops. In Figure 10.28, Loop abefa includes the voltage source V| and resistors R
and R;. The loop starts at point a, then travels through points b, e, and £, and then back to point a. The second
loop, Loop ebcde, starts at point e and includes resistors R, and Rz, and the voltage source V5.
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Figure 10.28 Choose the loops in the circuit.

Now we can apply Kirchhoff’s loop rule, using the map in Figure 10.23. Starting at point a and moving to point
b, the resistor R; is crossed in the same direction as the current flow I, so the potential drop 11 R; is
subtracted. Moving from point b to point e, the resistor R; is crossed in the same direction as the current flow
I, so the potential drop I R, is subtracted. Moving from point e to point £, the voltage source V] is crossed
from the negative terminal to the positive terminal, so V] is added. There are no components between points
and a. The sum of the voltage differences must equal zero:

Loopabefa: —I1Ri —IhbRy+V; =00orV; =11R| + L R;.

Finally, we check loop ebcde. We start at point e and move to point b, crossing R, in the opposite direction as
the current flow I,. The potential drop I, R; is added. Next, we cross R3 and R4 in the same direction as the
current flow I3 and subtract the potential drops I3 R3 and I3 R4. Note that the current is the same through
resistors Ry and Ry, because they are connected in series. Finally, the voltage source is crossed from the
positive terminal to the negative terminal, and the voltage source V5 is subtracted. The sum of these voltage
differences equals zero and yields the loop equation

Loopebcde : Iy Ry — I3 (R3 + Ry) — Vo = 0.

We now have three equations, which we can solve for the three unknowns.



(D Junctionb: I} — I, — I3 =0.
(2)Loopabefa: I1 Ry + LRy, = V7.
(3)Loopebede : Iy Ry — I3 (R3 + Ry) = V5.

To solve the three equations for the three unknown currents, start by eliminating current I5. First add Eq. (1)
times Ry to Eq. (2). The result is labeled as Eq. (4):

(Ri+R) I} —RyIz =17,

@6QI; —3QI; =24V.
Next, subtract Eq. (3) from Eq. (2). The result is labeled as Eq. (5):

LRy +I3(R3+Ry) =V — V.

5)3QI +7QI3 =-5V.

We can solve Egs. (4) and (5) for current I;. Adding seven times Eq. (4) and three times Eq. (5) results in
51 QI =153 V,or I} =3.00 A. Using Eq. (4) results in I3 = —2.00 A. Finally, Eq. (1) yields
I, = I — Is = 5.00 A. One way to check that the solutions are consistent is to check the power supplied by
the voltage sources and the power dissipated by the resistors:
Phn=0LVi+ 13V, =130W,
Pow = I{Ry + I3Ry + I3R3 + I3 Ry = 130 W.
Note that the solution for the current /3 is negative. This is the correct answer, but suggests that the arrow

originally drawn in the junction analysis is the direction opposite of conventional current flow. The power
supplied by the second voltage source is 58 W and not -58 W.

@ EXAMPLE 10.6

Calculating Current by Using Kirchhoff’s Rules
Find the currents flowing in the circuit in Figure 10.29.
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Figure 10.29 This circuit is combination of series and parallel configurations of resistors and voltage sources. This circuit cannot be

analyzed using the techniques discussed in Electromotive Force but can be analyzed using Kirchhoff’s rules.

Strategy

This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel
techniques—it is necessary to use Kirchhoff’s rules. Currents have been labeled 1,1, and I3 in the figure, and
assumptions have been made about their directions. Locations on the diagram have been labeled with letters a
through h. In the solution, we apply the junction and loop rules, seeking three independent equations to allow
us to solve for the three unknown currents.

Solution
Applying the junction and loop rules yields the following three equations. We have three unknowns, so three
equations are required.
Junctionc: I1 + I, = I5.
Loopabedefa: It (R1 + Ry) — I (Ry + R5 + Rg) =V — V3.
Loopcdefc: Ip (R, + Rs + Rg) + I3R3 =V, + V3.
Simplify the equations by placing the unknowns on one side of the equations.
Junctionc: I} + 1, — I3 =0.
Loop abedefa: 11 3Q)— 1, (8Q) =05V -230V.
Loopcdefc: I, (8Q)+ I3(1Q)=0.6V +2.30V.
Simplify the equations. The first loop equation can be simplified by dividing both sides by 3.00. The second
loop equation can be simplified by dividing both sides by 6.00.
Junctionc: I} + 1 — I3 =0.
Loop abedefa: 11 (3Q)— 1, (8Q)=—-1.8V.
Loopecdefc: Ib (8Q)+ I3 (1Q)=29V.
The results are
I} =020A, I, =030A, I3 =050A.
Significance

A method to check the calculations is to compute the power dissipated by the resistors and the power supplied
by the voltage sources:



PR, = I?R; = 0.04W.
Pr, = I3Ry =045 W.
Pry = I3R3 =025 W.
Pr, = I{ R4 = 0.08 W.
Prs = I3Rs =0.09 W.
Pgg = I2Rs = 0.18 W.

Pdissipated =1.09W.
Psource = III/I +IZI/3 +I3I/2 = 0.10W+0.69W+0.30W = 1.09W.

The power supplied equals the power dissipated by the resistors.

CHECK YOUR UNDERSTANDING 10.6

In considering the following schematic and the power supplied and consumed by a circuit, will a voltage
source always provide power to the circuit, or can a voltage source consume power?

R, = 10KQ
+
+ v.d WSV
=v,=24v = Y%=12V
R, = 30 KQ
MN

@ EXAMPLE 10.7

Calculating Current by Using Kirchhoff’s Rules
Find the current flowing in the circuit in Figure 10.30.

a b
é Ry =20.0() R, =100}
+
= \V,=240V
+
=V, =120V
R, =300
¢ d

Figure 10.30 This circuit consists of three resistors and two batteries connected in series. Note that the batteries are connected with

opposite polarities.

Strategy
This circuit can be analyzed using Kirchhoff’s rules. There is only one loop and no nodes. Choose the direction



of current flow. For this example, we will use the clockwise direction from point a to point b. Consider Loop
abcda and use Figure 10.23 to write the loop equation. Note that according to Figure 10.23, battery V] will be
added and battery V, will be subtracted.

Solution

Applying the junction rule yields the following three equations. We have one unknown, so one equation is
required:

Loopabcda: —IRy — Vi — IRy +V, — 1IR3 =0.

Simplify the equations by placing the unknowns on one side of the equations. Use the values given in the
figure.

I(R1+R2+R3)=V2—V1.

__nhn _ 24V-12V _
I= R{+Ry+R3 — 10.0Q+30.0Q+10.0Q 020 A.
Significance
The power dissipated or consumed by the circuit equals the power supplied to the circuit, but notice that the
current in the battery V] is flowing through the battery from the positive terminal to the negative terminal and
consumes power.

P, = I?R; =040 W
Pr, =I*Ry = 1.20W
Pr, = I’R; =080 W

PV1 =1V =240W
Pdissipated =4.80 W
Pyource = 1V, =4.80 W

The power supplied equals the power dissipated by the resistors and consumed by the battery V.

CHECK YOUR UNDERSTANDING 10.7

When using Kirchhoff’s laws, you need to decide which loops to use and the direction of current flow through
each loop. In analyzing the circuit in Example 10.7, the direction of current flow was chosen to be clockwise,
from point a to point b. How would the results change if the direction of the current was chosen to be
counterclockwise, from point b to point a?

Multiple Voltage Sources

Many devices require more than one battery. Multiple voltage sources, such as batteries, can be connected in
series configurations, parallel configurations, or a combination of the two.

In series, the positive terminal of one battery is connected to the negative terminal of another battery. Any
number of voltage sources, including batteries, can be connected in series. Two batteries connected in series
are shown in Figure 10.31. Using Kirchhoff’s loop rule for the circuit in part (b) gives the result

g1 —Iri+e —1Irp —IR=0,

[(e1 +&)—I(r1 +r)]—IR= 0.



(@) (b)
Figure 10.31 (a) Two batteries connected in series with a load resistor. (b) The circuit diagram of the two batteries and the load resistor,

with each battery modeled as an idealized emf source and an internal resistance.

When voltage sources are in series, their internal resistances can be added together and their emfs can be
added together to get the total values. Series connections of voltage sources are common—for example, in
flashlights, toys, and other appliances. Usually, the cells are in series in order to produce a larger total emf. In
Figure 10.31, the terminal voltage is

Vierminal = (€1 — Ir1) + (g2 = Irp) = [(e1 + &2) = I (ry +rp)] = (€1 + €2) + Ireq-
Note that the same current I is found in each battery because they are connected in series. The disadvantage of

series connections of cells is that their internal resistances are additive.

Batteries are connected in series to increase the voltage supplied to the circuit. For instance, an LED flashlight
may have two AAA cell batteries, each with a terminal voltage of 1.5V, to provide 3.0 V to the flashlight.

Any number of batteries can be connected in series. For N batteries in series, the terminal voltage is equal to

N
Vierminal = (€1 + &2 + - +en_1+en) =L (ri +ra+ - +ry_1 +rN) = Zei —1Ireq 106

i=1

where the equivalent resistance is req = ri.

™=

Il
—_

1
When a load is placed across voltage sources in series, as in Figure 10.32, we can find the current:

(61 —1Ir1)+(ep — Irp) = IR,

Iri+1Irp+IR=¢€| + ¢y,
_ 8]+£2
= R

As expected, the internal resistances increase the equivalent resistance.



Battery 2

@ (b)

Figure 10.32 Two batteries connect in series to an LED bulb, as found in a flashlight.

Voltage sources, such as batteries, can also be connected in parallel. Figure 10.33 shows two batteries with
identical emfs in parallel and connected to a load resistance. When the batteries are connect in parallel, the
positive terminals are connected together and the negative terminals are connected together, and the load
resistance is connected to the positive and negative terminals. Normally, voltage sources in parallel have
identical emfs. In this simple case, since the voltage sources are in parallel, the total emf is the same as the
individual emfs of each battery.

I=1, +1,

b c _pd

?"1 ?"z

@)
Figure 10.33 (a) Two batteries connect in parallel to a load resistor. (b) The circuit diagram shows the shows battery as an emf source and

an internal resistor. The two emf sources have identical emfs (each labeled by €) connected in parallel that produce the same emf.

Consider the Kirchhoff analysis of the circuit in Figure 10.33(b). There are two loops and a node at point band
E=¢€| =¢&).

Node b: I} + I, — I =0.

-Liri+1 —e = 0,
Loop abcfa: € 1 22— #

Ilrl = Izrz.
2 — Izrz - IR = 0,

Loop fedef: ¢
S—Izrz—IR = 0.

-1
where req = (% + %) . The

). The parallel connection

Solving for the current through the load resistor results in I = reqﬁ’

£
req+R

terminal voltage is equal to the potential drop across the load resistor IR = (

reduces the internal resistance and thus can produce a larger current.

Any number of batteries can be connected in parallel. For N batteries in parallel, the terminal voltage is equal
to



11 1 1\!
Vierminal =€ —I{ — + —+ -+ + ar == =£—Ireq 10.7
ry r rnv—1 rnN

N -1
. . . 1
where the equivalent resistance is req = 2 —
i=1 "
As an example, some diesel trucks use two 12-V batteries in parallel; they produce a total emf of 12 V but can
deliver the larger current needed to start a diesel engine.

In summary, the terminal voltage of batteries in series is equal to the sum of the individual emfs minus the
sum of the internal resistances times the current. When batteries are connected in parallel, they usually have
equal emfs and the terminal voltage is equal to the emf minus the equivalent internal resistance times the
current, where the equivalent internal resistance is smaller than the individual internal resistances. Batteries
are connected in series to increase the terminal voltage to the load. Batteries are connected in parallel to
increase the current to the load.

Solar Cell Arrays

Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both
series and parallel combinations to yield a desired voltage and current. Photovoltaic generation, which is the
conversion of sunlight directly into electricity, is based upon the photoelectric effect. The photoelectric effect
is beyond the scope of this chapter and is covered in Photons and Matter Waves, but in general, photons hitting
the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon. Most single cells have a voltage output of about 0.5 V, while the
current output is a function of the amount of sunlight falling on the cell (the incident solar radiation known as
the insolation). Under bright noon sunlight, a current per unit area of about 100 mA/cm? of cell surface area is
produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical energy needs. They can be wired
together in series or in parallel—connected like the batteries discussed earlier. A solar-cell array or module
usually consists of between 36 and 72 cells, with a power output of 50 W to 140 W.

Solar cells, like batteries, provide a direct current (dc) voltage. Current from a dc voltage source is
unidirectional. Most household appliances need an alternating current (ac) voltage.

10.4 Electrical Measuring Instruments

Learning Objectives

By the end of this section, you will be able to:
e Describe how to connect a voltmeter in a circuit to measure voltage
e Describe how to connect an ammeter in a circuit to measure current
e Describe the use of an ohmmeter

Ohm’s law and Kirchhoff’s method are useful to analyze and design electrical circuits, providing you with the
voltages across, the current through, and the resistance of the components that compose the circuit. To
measure these parameters require instruments, and these instruments are described in this section.

DC Voltmeters and Ammeters

Whereas voltmeters measure voltage, ammeters measure current. Some of the meters in automobile
dashboards, digital cameras, cell phones, and tuner-amplifiers are actually voltmeters or ammeters (Figure
10.34). The internal construction of the simplest of these meters and how they are connected to the system
they monitor give further insight into applications of series and parallel connections.



Figure 10.34 The fuel and temperature gauges (far right and far left, respectively) in this 1996 Volkswagen are voltmeters that register
the voltage output of “sender” units. These units are proportional to the amount of gasoline in the tank and to the engine temperature.

(credit: Christian Giersing)

Measuring Current with an Ammeter

To measure the current through a device or component, the ammeter is placed in series with the device or
component. A series connection is used because objects in series have the same current passing through
them. (See Figure 10.35, where the ammeter is represented by the symbol A.)

Positive + Positive

terminal § § terminal CAj Q_D

Negative _¢ Negative
terminal terminal
(@ (b)

Figure 10.35 (a) When an ammeter is used to measure the current through two resistors connected in series to a battery, a single
ammeter is placed in series with the two resistors because the current is the same through the two resistors in series. (b) When two
resistors are connected in parallel with a battery, three meters, or three separate ammeter readings, are necessary to measure the current

from the battery and through each resistor. The ammeter is connected in series with the component in question.

Ammeters need to have a very low resistance, a fraction of a milliohm. If the resistance is not negligible,
placing the ammeter in the circuit would change the equivalent resistance of the circuit and modify the
current that is being measured. Since the current in the circuit travels through the meter, ammeters normally
contain a fuse to protect the meter from damage from currents which are too high.

Measuring Voltage with a Voltmeter

A voltmeter is connected in parallel with whatever device it is measuring. A parallel connection is used
because objects in parallel experience the same potential difference. (See Figure 10.36, where the voltmeter is
represented by the symbol V.)
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Figure 10.36 To measure potential differences in this series circuit, the voltmeter (V) is placed in parallel with the voltage source or either
of the resistors. Note that terminal voltage is measured between the positive terminal and the negative terminal of the battery or voltage

source. It is not possible to connect a voltmeter directly across the emf without including the internal resistance rof the battery.

Since voltmeters are connected in parallel, the voltmeter must have a very large resistance. Digital voltmeters
convert the analog voltage into a digital value to display on a digital readout (Figure 10.37). Inexpensive
voltmeters have resistances on the order of Ry = 10 M Q, whereas high-precision voltmeters have
resistances on the order of Ry = 10 G Q. The value of the resistance may vary, depending on which scale is
used on the meter.

(b)

Figure 10.37 (a) An analog voltmeter uses a galvanometer to measure the voltage. (b) Digital meters use an analog-to-digital converter to

measure the voltage. (credit: modification of works by Joseph J. Trout)

Analog and Digital Meters

You may encounter two types of meters in the physics lab: analog and digital. The term ‘analog’ refers to
signals or information represented by a continuously variable physical quantity, such as voltage or current. An
analog meter uses a galvanometer, which is essentially a coil of wire with a small resistance, in a magnetic
field, with a pointer attached that points to a scale. Current flows through the coil, causing the coil to rotate. To
use the galvanometer as an ammeter, a small resistance is placed in parallel with the coil. For a voltmeter, a
large resistance is placed in series with the coil. A digital meter uses a component called an analog-to-digital
(A to D) converter and expresses the current or voltage as a series of the digits 0 and 1, which are used to run a
digital display. Most analog meters have been replaced by digital meters.

) CHECK YOUR UNDERSTANDING 10.8

Digital meters are able to detect smaller currents than analog meters employing galvanometers. How does this
explain their ability to measure voltage and current more accurately than analog meters?




@ INTERACTIVE

In this virtual lab (https:/openstax.org/l/21cirreslabsim) simulation, you may construct circuits with resistors,
voltage sources, ammeters and voltmeters to test your knowledge of circuit design.

Ohmmeters

An ohmmeter is an instrument used to measure the resistance of a component or device. The operation of the
ohmmeter is based on Ohm’s law. Traditional ohmmeters contained an internal voltage source (such as a
battery) that would be connected across the component to be tested, producing a current through the
component. A galvanometer was then used to measure the current and the resistance was deduced using
Ohm’s law. Modern digital meters use a constant current source to pass current through the component, and
the voltage difference across the component is measured. In either case, the resistance is measured using
Ohm’s law (R = V/I), where the voltage is known and the current is measured, or the current is known and
the voltage is measured.

The component of interest should be isolated from the circuit; otherwise, you will be measuring the equivalent
resistance of the circuit. An ohmmeter should never be connected to a “live” circuit, one with a voltage source
connected to it and current running through it. Doing so can damage the meter.

10.5 RC Circuits

Learning Objectives

By the end of this section, you will be able to:
e Describe the charging process of a capacitor
e Describe the discharging process of a capacitor
e List some applications of RC circuits

When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light
flash discharges the capacitor in a tiny fraction of a second. Why does charging take longer than discharging?
This question and several other phenomena that involve charging and discharging capacitors are discussed in
this module.

Circuits with Resistance and Capacitance

An RC circuit is a circuit containing resistance and capacitance. As presented in Capacitance, the capacitor is
an electrical component that stores electric charge, storing energy in an electric field.

Figure 10.38(a) shows a simple RC circuit that employs a dc (direct current) voltage source €, a resistor R, a
capacitor C, and a two-position switch. The circuit allows the capacitor to be charged or discharged, depending
on the position of the switch. When the switch is moved to position A, the capacitor charges, resulting in the
circuit in part (b). When the switch is moved to position B, the capacitor discharges through the resistor.

A A
R a5 R R
! /
e B [
B
+ + +q +q
= & C=— =& Ci=— C=—
- = -q -q
(a) Original circuit (b) Charging capacitor (c) Discharging capacitor

Figure 10.38 (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved
to position A, the circuit reduces to a simple series connection of the voltage source, the resistor, the capacitor, and the switch. (c) When the
switch is moved to position B, the circuit reduces to a simple series connection of the resistor, the capacitor, and the switch. The voltage

source is removed from the circuit.



Charging a Capacitor

We can use Kirchhoff’s loop rule to understand the charging of the capacitor. This results in the equation
€ — VR — V, = 0. This equation can be used to model the charge as a function of time as the capacitor charges.
Capacitance is defined as C = ¢/V, so the voltage across the capacitor is V¢ = %. Using Ohm’s law, the

potential drop across the resistor is Vg = IR, and the current is defined as I = dg/dt.

e—Vr—-V:=0,
9 _
s—IR—E—O,
dg g _

E — E_E_O'

This differential equation can be integrated to find an equation for the charge on the capacitor as a function of
time.

dqg _ g _
6_RE_€ —0,
dq eC—q
dt RC
q t
eC—q RC
0 0

Letu = eC — g, then du = —dgq. The result is

Simplifying results in an equation for the charge on the charging capacitor as a function of time:
- t
q(t) = Ce <1—e RC>:Q<1—e_?>. 10.8

A graph of the charge on the capacitor versus time is shown in Figure 10.39(a). First note that as time
approaches infinity, the exponential goes to zero, so the charge approaches the maximum charge Q = Ce and
has units of coulombs. The units of RC are seconds, units of time. This quantity is known as the time constant:

7 = RC. 10.9

Attimet = 7 = RC, the chargeisequalto 1 — e~1 =1-0.368 = 0.632 of the maximum charge O = Ce.
Notice that the time rate change of the charge is the slope at a point of the charge versus time plot. The slope of
the graph is large at time # = 0.0 s and approaches zero as time increases.

As the charge on the capacitor increases, the current through the resistor decreases, as shown in Figure



10.39(b). The current through the resistor can be found by taking the time derivative of the charge.

I1(1) = Iye ", 10.10

Attime t = 0.00 s, the current through the resistor is Iy = %. As time approaches infinity, the current

approaches zero. At time ¢ = 7, the current through the resistoris I (t = 7) = Ioe_1 = 0.3681.
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Figure 10.39 (a) Charge on the capacitor versus time as the capacitor charges. (b) Current through the resistor versus time. (c) Voltage

difference across the capacitor. (d) Voltage difference across the resistor.

Figure 10.39(c) and Figure 10.39(d) show the voltage differences across the capacitor and the resistor,
respectively. As the charge on the capacitor increases, the current decreases, as does the voltage difference
across the resistorVg (¥) = (IgR) e~ = ge~! The voltage difference across the capacitor increases
asVe () =¢ (1 - e‘”’) )

Discharging a Capacitor

When the switch in Figure 10.38(a) is moved to position B, the circuit reduces to the circuit in part (c), and the
charged capacitor is allowed to discharge through the resistor. A graph of the charge on the capacitor as a
function of time is shown in Figure 10.40(a). Using Kirchhoff’s loop rule to analyze the circuit as the capacitor
discharges results in the equation —Vg — V. = 0, which simplifies to IR + % = (. Using the definition of

current%R = —% and integrating the loop equation yields an equation for the charge on the capacitor as a

function of time:



q(1) = Qe™"". 10.11

Here, Qis the initial charge on the capacitor and ¢ = RC is the time constant of the circuit. As shown in the
graph, the charge decreases exponentially from the initial charge, approaching zero as time approaches
infinity.

The current as a function of time can be found by taking the time derivative of the charge:

1() = _Q e 10.12
RC

The negative sign shows that the current flows in the opposite direction of the current found when the
capacitor is charging. Figure 10.40(b) shows an example of a plot of charge versus time and current versus
time. A plot of the voltage difference across the capacitor and the voltage difference across the resistor as a
function of time are shown in parts (c) and (d) of the figure. Note that the magnitudes of the charge, current,
and voltage all decrease exponentially, approaching zero as time increases.
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Figure 10.40 (a) Charge on the capacitor versus time as the capacitor discharges. (b) Current through the resistor versus time. (c) Voltage

difference across the capacitor. (d) Voltage difference across the resistor.

Now we can explain why the flash camera mentioned at the beginning of this section takes so much longer to
charge than discharge: The resistance while charging is significantly greater than while discharging. The
internal resistance of the battery accounts for most of the resistance while charging. As the battery ages, the
increasing internal resistance makes the charging process even slower.

@ EXAMPLE 10.8

The Relaxation Oscillator
One application of an RC circuit is the relaxation oscillator, as shown below. The relaxation oscillator consists




of a voltage source, a resistor, a capacitor, and a neon lamp. The neon lamp acts like an open circuit (infinite
resistance) until the potential difference across the neon lamp reaches a specific voltage. At that voltage, the
lamp acts like a short circuit (zero resistance), and the capacitor discharges through the neon lamp and
produces light. In the relaxation oscillator shown, the voltage source charges the capacitor until the voltage
across the capacitor is 80 V. When this happens, the neon in the lamp breaks down and allows the capacitor to
discharge through the lamp, producing a bright flash. After the capacitor fully discharges through the neon
lamp, it begins to charge again, and the process repeats. Assuming that the time it takes the capacitor to
discharge is negligible, what is the time interval between flashes?

R =100 () g

1 “ 1 \ Neon
C=50mF == G; lamp

Strategy
The time period can be found from considering the equation V¢ (t) = € (1 — e"”) ,Wheret = (R+r)C.

Solution

The neon lamp flashes when the voltage across the capacitor reaches 80 V. The RC time constant is equal to
T=(R+r)C=(101Q) (50 X 10_3F) = 5.05 s. We can solve the voltage equation for the time it takes the
capacitor to reach 80 V:

Ve = e(l—e),
ot — 1_ch<’>,
ln(e_’/f) = ln<1—VCE(t)),
r = —dn(1-2€2) =—5055-In (1- 2¥)=8.13s

Significance
One application of the relaxation oscillator is for controlling indicator lights that flash at a frequency
determined by the values for R and C. In this example, the neon lamp will flash every 8.13 seconds, a frequency

of f= % = ﬁ = (0.123 Hz. The relaxation oscillator has many other practical uses. It is often used in

electronic circuits, where the neon lamp is replaced by a transistor or a device known as a tunnel diode. The
description of the transistor and tunnel diode is beyond the scope of this chapter, but you can think of them as
voltage controlled switches. They are normally open switches, but when the right voltage is applied, the switch
closes and conducts. The “switch” can be used to turn on another circuit, turn on a light, or run a small motor.
A relaxation oscillator can be used to make the turn signals of your car blink or your cell phone to vibrate.

RC circuits have many applications. They can be used effectively as timers for applications such as
intermittent windshield wipers, pace makers, and strobe lights. Some models of intermittent windshield
wipers use a variable resistor to adjust the interval between sweeps of the wiper. Increasing the resistance
increases the RCtime constant, which increases the time between the operation of the wipers.

Another application is the pacemaker. The heart rate is normally controlled by electrical signals, which cause
the muscles of the heart to contract and pump blood. When the heart rhythm is abnormal (the heartbeat is too



high or too low), pace makers can be used to correct this abnormality. Pacemakers have sensors that detect
body motion and breathing to increase the heart rate during physical activities, thus meeting the increased
need for blood and oxygen, and an RC timing circuit can be used to control the time between voltage signals to
the heart.

Looking ahead to the study of ac circuits (Alternating-Current Circuits), ac voltages vary as sine functions with
specific frequencies. Periodic variations in voltage, or electric signals, are often recorded by scientists. These
voltage signals could come from music recorded by a microphone or atmospheric data collected by radar.
Occasionally, these signals can contain unwanted frequencies known as “noise.” RC filters can be used to filter
out the unwanted frequencies.

In the study of electronics, a popular device known as a 555 timer provides timed voltage pulses. The time
between pulses is controlled by an RC circuit. These are just a few of the countless applications of RC circuits.

@ EXAMPLE 10.9

Intermittent Windshield Wipers

A relaxation oscillator is used to control a pair of windshield wipers. The relaxation oscillator consists of a
10.00-mF capacitor and a 10.00-k€2 variable resistor known as a rheostat. A knob connected to the variable
resistor allows the resistance to be adjusted from 0.00 € to 10.00 kQ. The output of the capacitor is used to
control a voltage-controlled switch. The switch is normally open, but when the output voltage reaches 10.00 V,
the switch closes, energizing an electric motor and discharging the capacitor. The motor causes the windshield
wipers to sweep once across the windshield and the capacitor begins to charge again. To what resistance
should the rheostat be adjusted for the period of the wiper blades be 10.00 seconds?

"Z

I

— V=120V

out

Strategy
The resistance considers the equation Voyut (1) = V (1 —e T) ,where 7 = RC. The capacitance, output
voltage, and voltage of the battery are given. We need to solve this equation for the resistance.

Solution

The output voltage will be 10.00 V and the voltage of the battery is 12.00 V. The capacitance is given as 10.00
mF. Solving for the resistance yields



Vou ) = V(1—e7),

—t/RC  _ Vout (1)
e = 1- %,
In(e7/RC) = In (1 - —me,t(t) ) ,
r Vout®)
—RC — In (1 - %) .
R = —t = —10.00s =558.11 Q.

Ve 3 10V
Cln<1__V > 10x 10 Fln(l _12\/)

Significance

Increasing the resistance increases the time delay between operations of the windshield wipers. When the
resistance is zero, the windshield wipers run continuously. At the maximum resistance, the period of the
operation of the wipers is:

Vout (1) _3 3 10V .
t=—RCln<1 _T> == (10 x 1077 F) (10 x 10° @) In { 1 = 5 ) = 179.18 5 = 2.98 min.

The RC circuit has thousands of uses and is a very important circuit to study. Not only can it be used to time
circuits, it can also be used to filter out unwanted frequencies in a circuit and used in power supplies, like the
one for your computer, to help turn ac voltage to dc voltage.

10.6 Household Wiring and Electrical Safety

Learning Objectives
By the end of this section, you will be able to:
e List the basic concepts involved in house wiring
o Define the terms thermal hazard and shock hazard
e Describe the effects of electrical shock on human physiology and their relationship to the amount of current
through the body
e Explain the function of fuses and circuit breakers

Electricity presents two known hazards: thermal and shock. A thermal hazard is one in which an excessive
electric current causes undesired thermal effects, such as starting a fire in the wall of a house. A shock hazard
occurs when an electric current passes through a person. Shocks range in severity from painful, but otherwise
harmless, to heart-stopping lethality. In this section, we consider these hazards and the various factors
affecting them in a quantitative manner. We also examine systems and devices for preventing electrical
hazards.

Thermal Hazards

Electric power causes undesired heating effects whenever electric energy is converted into thermal energy at a
rate faster than it can be safely dissipated. A classic example of this is the short circuit, a low-resistance path
between terminals of a voltage source. An example of a short circuit is shown in Figure 10.41. A toaster is
plugged into a common household electrical outlet. Insulation on wires leading to an appliance has worn
through, allowing the two wires to come into contact, or “short.” As a result, thermal energy can quickly raise
the temperature of surrounding materials, melting the insulation and perhaps causing a fire.

The circuit diagram shows a symbol that consists of a sine wave enclosed in a circle. This symbol represents
an alternating current (ac) voltage source. In an ac voltage source, the voltage oscillates between a positive and
negative maximum amplitude. Up to now, we have been considering direct current (dc) voltage sources, but
many of the same concepts are applicable to ac circuits.
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Figure 10.41 A short circuit is an undesired low-resistance path across a voltage source. (a) Worn insulation on the wires of a toaster
allow them to come into contact with a low resistance r. Since P = Vz/r, thermal power is created so rapidly that the cord melts or burns.

(b) A schematic of the short circuit.

Another serious thermal hazard occurs when wires supplying power to an appliance are overloaded. Electrical
wires and appliances are often rated for the maximum current they can safely handle. The term “overloaded”
refers to a condition where the current exceeds the rated maximum current. As current flows through a wire,
the power dissipated in the supply wires is P = 12 Ry, where Ryy is the resistance of the wires and Iis the
current flowing through the wires. If either I or Ry is too large, the wires overheat. Fuses and circuit breakers
are used to limit excessive currents.

Shock Hazards

Electric shock is the physiological reaction or injury caused by an external electric current passing through the
body. The effect of an electric shock can be negative or positive. When a current with a magnitude above 300
mA passes through the heart, death may occur. Most electrical shock fatalities occur because a current causes
ventricular fibrillation, a massively irregular and often fatal, beating of the heart. On the other hand, a heart
attack victim, whose heart is in fibrillation, can be saved by an electric shock from a defibrillator.

The effects of an undesirable electric shock can vary in severity: a slight sensation at the point of contact, pain,
loss of voluntary muscle control, difficulty breathing, heart fibrillation, and possibly death. The loss of
voluntary muscle control can cause the victim to not be able to let go of the source of the current.

The major factors upon which the severity of the effects of electrical shock depend are

The amount of current I

The path taken by the current

The duration of the shock

The frequency fof the current (f = 0 for dc)

Our bodies are relatively good electric conductors due to the body’s water content. A dangerous condition
occurs when the body is in contact with a voltage source and “ground.” The term “ground” refers to a large sink
or source of electrons, for example, the earth (thus, the name). When there is a direct path to ground, large
currents will pass through the parts of the body with the lowest resistance and a direct path to ground. A safety
precaution used by many professions is the wearing of insulated shoes. Insulated shoes prohibit a pathway to
ground for electrons through the feet by providing a large resistance. Whenever working with high-power
tools, or any electric circuit, ensure that you do not provide a pathway for current flow (especially across the
heart). A common safety precaution is to work with one hand, reducing the possibility of providing a current
path through the heart.

Very small currents pass harmlessly and unfelt through the body. This happens to you regularly without your
knowledge. The threshold of sensation is only 1 mA and, although unpleasant, shocks are apparently harmless
for currents less than 5 mA. A great number of safety rules take the 5-mA value for the maximum allowed
shock. At 5-30 mA and above, the current can stimulate sustained muscular contractions, much as regular
nerve impulses do (Figure 10.42). Very large currents (above 300 mA) cause the heart and diaphragm of the



lung to contract for the duration of the shock. Both the heart and respiration stop. Both often return to normal
following the shock.

Electrically v N
“hot” wire ) kg ‘
/r Electrically
Metal (X P~ “hot” wire
tool -
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Figure 10.42 An electric current can cause muscular contractions with varying effects. (a) The victim is “thrown” backward by involuntary
muscle contractions that extend the legs and torso. (b) The victim can’t let go of the wire that is stimulating all the muscles in the hand.

Those that close the fingers are stronger than those that open them.

Current is the major factor determining shock severity. A larger voltage is more hazardous, but since I = V/R,
the severity of the shock depends on the combination of voltage and resistance. For example, a person with dry
skin has a resistance of about 200 k€. If he comes into contact with 120-V ac, a current

I = (120 V)/(200kQ) = 0.6 mA

passes harmlessly through him. The same person soaking wet may have a resistance of 10.0 kQ and the same
120 V will produce a current of 12 mA—above the “can’t let go” threshold and potentially dangerous.

Electrical Safety: Systems and Devices

Figure 10.43(a) shows the schematic for a simple ac circuit with no safety features. This is not how power is
distributed in practice. Modern household and industrial wiring requires the three-wire system, shown
schematically in part (b), which has several safety features, with live, neutral, and ground wires. First is the
familiar circuit breaker (or fuse) to prevent thermal overload. Second is a protective case around the appliance,
such as a toaster or refrigerator. The case’s safety feature is that it prevents a person from touching exposed
wires and coming into electrical contact with the circuit, helping prevent shocks.
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Figure 10.43 (a) Schematic of a simple ac circuit with a voltage source and a single appliance represented by the resistance R. There are

no safety features in this circuit. (b) The three-wire system connects the neutral wire to ground at the voltage source and user location,
forcing it to be at zero volts and supplying an alternative return path for the current through ground. Also grounded to zero volts is the case

of the appliance. A circuit breaker or fuse protects against thermal overload and is in series on the active (live/hot) wire.

There are three connections to ground shown in Figure 10.43(b). Recall that a ground connection is a low-
resistance path directly to ground. The two ground connections on the neutral wire force it to be at zero volts
relative to ground, giving the wire its name. This wire is therefore safe to touch even if its insulation, usually
white, is missing. The neutral wire is the return path for the current to follow to complete the circuit.
Furthermore, the two ground connections supply an alternative path through ground (a good conductor) to
complete the circuit. The ground connection closest to the power source could be at the generating plant,
whereas the other is at the user’s location. The third ground is to the case of the appliance, through the green
ground wire, forcing the case, too, to be at zero volts. The live or hot wire (hereafter referred to as “live/hot”)
supplies voltage and current to operate the appliance. Figure 10.44 shows a more pictorial version of how the
three-wire system is connected through a three-prong plug to an appliance.

Case of
Black (hot) Sgt':’"a”"e
Circuit
breaker

Plug

3R

Neutral

White (neutral)

L 4

b SECETY g
Alternate return Cord of appliance

path through earth | — carries these three wires

Green

Three-hole outlet

Figure 10.44 The standard three-prong plug can only be inserted in one way, to ensure proper function of the three-wire system.

Insulating plastic is color-coded to identify live/hot, neutral, and ground wires, but these codes vary around the
world. It is essential to determine the color code in your region. Striped coatings are sometimes used for the
benefit of those who are colorblind.

Grounding the case solves more than one problem. The simplest problem is worn insulation on the live/hot



wire that allows it to contact the case, as shown in Figure 10.45. Lacking a ground connection, a severe shock is
possible. This is particularly dangerous in the kitchen, where a good connection to ground is available through
water on the floor or a water faucet. With the ground connection intact, the circuit breaker will trip, forcing
repair of the appliance.

Failed insulation brings Zero when

wire into contact with circuit breaker

metal case trips

High voltage m ' ~ High voltage
' | Circuit
( breaker
trips > |
25’ R
l l Low voltage L J_ l l Low voltage \
L 1 Broken - = L L Proper case -
- - J_ground s i ground
@) (b)

Figure 10.45 Worn insulation allows the live/hot wire to come into direct contact with the metal case of this appliance. (a) The ground
connection being broken, the person is severely shocked. The appliance may operate normally in this situation. (b) With a proper ground,

the circuit breaker trips, forcing repair of the appliance.

A ground fault circuit interrupter (GFCI) is a safety device found in updated kitchen and bathroom wiring that
works based on electromagnetic induction. GFCIs compare the currents in the live/hot and neutral wires.
When live/hot and neutral currents are not equal, it is almost always because current in the neutral is less than
in the live/hot wire. Then some of the current, called a leakage current, is returning to the voltage source by a
path other than through the neutral wire. It is assumed that this path presents a hazard. GFCIs are usually set
to interrupt the circuit if the leakage current is greater than 5 mA, the accepted maximum harmless shock.
Even if the leakage current goes safely to ground through an intact ground wire, the GFCI will trip, forcing
repair of the leakage.



CHAPTER REVIEW
Key Terms

ammeter instrument that measures current

electromotive force (emf) energy produced per
unit charge, drawn from a source that produces
an electrical current

equivalent resistance resistance of a combination
of resistors; it can be thought of as the resistance
of a single resistor that can replace a combination
of resistors in a series and/or parallel circuit

internal resistance amount of resistance to the
flow of current within the voltage source

junction rule sum of all currents entering a
junction must equal the sum of all currents
leaving the junction

Kirchhoff’s rules set of two rules governing
current and changes in potential in an electric
circuit

loop rule algebraic sum of changes in potential
around any closed circuit path (loop) must be
Zero

Key Equations

Terminal voltage of a single voltage source

Equivalent resistance of a series circuit

Equivalent resistance of a parallel circuit

Junction rule

Loop rule

Terminal voltage of Nvoltage sources in series

Terminal voltage of Nvoltage sources in parallel

Charge on a charging capacitor

Time constant

q(z)=Cs<1—e‘ﬁ) =0(1-¢

potential difference difference in electric
potential between two points in an electric
circuit, measured in volts

potential drop loss of electric potential energy as a
current travels across a resistor, wire, or other
component

RCcircuit circuit that contains both a resistor and
a capacitor

shock hazard hazard in which an electric current
passes through a person

terminal voltage potential difference measured
across the terminals of a source when there is no
load attached

thermal hazard hazard in which an excessive
electric current causes undesired thermal effects

three-wire system wiring system used at present
for safety reasons, with live, neutral, and ground
wires

voltmeter instrument that measures voltage
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Current during charging of a capacitor

Charge on a discharging capacitor

Current during discharging of a capacitor

Summary

10.1 Electromotive Force

All voltage sources have two fundamental parts:
a source of electrical energy that has a
characteristic electromotive force (emf), and an
internal resistance r. The emf is the work done
per charge to keep the potential difference of a
source constant. The emf is equal to the
potential difference across the terminals when
no current is flowing. The internal resistance r
of a voltage source affects the output voltage
when a current flows.

The voltage output of a device is called its
terminal voltage Vierminal @nd is given by
Vierminal = € — Ir, where Iis the electric current
and is positive when flowing away from the
positive terminal of the voltage source and ris
the internal resistance.

10.2 Resistors in Series and Parallel

The equivalent resistance of an electrical circuit
with resistors wired in a series is the sum of the
individual resistances:

N
Ry=R;+Ry+R3+- =) Ri.
i=1

Each resistor in a series circuit has the same
amount of current flowing through it.

The potential drop, or power dissipation, across
each individual resistor in a series is different,
and their combined total is the power source
input.

The equivalent resistance of an electrical circuit
with resistors wired in parallel is less than the
lowest resistance of any of the components and
can be determined using the formula

-1 N -1
1 1 1 1
Ro= [ — 4 — + — 4+ ... - —\
. <R1+R2+R3+ > <Z}Ri>

i=

Each resistor in a parallel circuit has the same
full voltage of the source applied to it.

The current flowing through each resistor in a
parallel circuit is different, depending on the
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resistance.

If a more complex connection of resistors is a
combination of series and parallel, it can be
reduced to a single equivalent resistance by
identifying its various parts as series or parallel,
reducing each to its equivalent, and continuing
until a single resistance is eventually reached.

10.3 Kirchhoff's Rules

Kirchhoff’s rules can be used to analyze any
circuit, simple or complex. The simpler series
and parallel connection rules are special cases
of Kirchhoff’s rules.

Kirchhoff’s first rule, also known as the junction
rule, applies to the charge to a junction. Current
is the flow of charge; thus, whatever charge
flows into the junction must flow out.
Kirchhoff’s second rule, also known as the loop
rule, states that the voltage drop around a loop is
Zero.

When calculating potential and current using
Kirchhoff’s rules, a set of conventions must be
followed for determining the correct signs of
various terms.

When multiple voltage sources are in series,
their internal resistances add together and their
emfs add together to get the total values.

When multiple voltage sources are in parallel,
their internal resistances combine to an
equivalent resistance that is less than the
individual resistance and provides a higher
current than a single cell.

Solar cells can be wired in series or parallel to
provide increased voltage or current,
respectively.

10.4 Electrical Measuring Instruments

Voltmeters measure voltage, and ammeters
measure current. Analog meters are based on
the combination of a resistor and a
galvanometer, a device that gives an analog
reading of current or voltage. Digital meters are
based on analog-to-digital converters and



provide a discrete or digital measurement of the
current or voltage.

A voltmeter is placed in parallel with the voltage
source to receive full voltage and must have a
large resistance to limit its effect on the circuit.
An ammeter is placed in series to get the full
current flowing through a branch and must have
a small resistance to limit its effect on the
circuit.

Standard voltmeters and ammeters alter the
circuit they are connected to and are thus
limited in accuracy.

Ohmmeters are used to measure resistance. The
component in which the resistance is to be
measured should be isolated (removed) from
the circuit.

10.5 RC Circuits

An RC circuit is one that has both a resistor and
a capacitor.

The time constant 7 for an RC circuit is 7 = RC.
When an initially uncharged (¢ = 0 at t = 0)
capacitor in series with a resistor is charged by
a dc voltage source, the capacitor asymptotically
approaches the maximum charge.

As the charge on the capacitor increases, the
current exponentially decreases from the initial

Conceptual Questions

10.1 Electromotive Force

1.

What effect will the internal resistance of a
rechargeable battery have on the energy being
used to recharge the battery?

A battery with an internal resistance of rand an
emf of 10.00 V is connected to a load resistor

R = r. As the battery ages, the internal resistance
triples. How much is the current through the load
resistor reduced?

. Show that the power dissipated by the load

resistor is maximum when the resistance of the
load resistor is equal to the internal resistance of
the battery.

10.2 Resistors in Series and Parallel

4. Avoltage occurs across an open switch. What is

5.

the power dissipated by the open switch?

The severity of a shock depends on the
magnitude of the current through your body.
Would you prefer to be in series or in parallel
with a resistance, such as the heating element of
a toaster, if you were shocked by it? Explain.

current: Iy = &/R.

If a capacitor with an initial charge Qis
discharged through a resistor starting att = 0,
then its charge decreases exponentially. The
current flows in the opposite direction,
compared to when it charges, and the
magnitude of the charge decreases with time.

10.6 Household Wiring and Electrical

Safety

The two types of electric hazards are thermal
(excessive power) and shock (current through a
person). Electrical safety systems and devices
are employed to prevent thermal and shock
hazards.

Shock severity is determined by current, path,
duration, and ac frequency.

Circuit breakers and fuses interrupt excessive
currents to prevent thermal hazards.

The three-wire system guards against thermal
and shock hazards, utilizing live/hot, neutral,
and ground wires, and grounding the neutral
wire and case of the appliance.

A ground fault circuit interrupter (GFCI)
prevents shock by detecting the loss of current
to unintentional paths.

6. Suppose you are doing a physics lab that asks you

to put a resistor into a circuit, but all the resistors
supplied have a larger resistance than the
requested value. How would you connect the
available resistances to attempt to get the smaller
value asked for?

Some light bulbs have three power settings (not
including zero), obtained from multiple filaments
that are individually switched and wired in
parallel. What is the minimum number of
filaments needed for three power settings?

10.3 Kirchhoff's Rules

8.

Can all of the currents going into the junction
shown below be positive? Explain.

l‘2_ "3

Consider the circuit shown below. Does the




10.

11.

12.

analysis of the circuit require Kirchhoff’s
method, or can it be redrawn to simplify the
circuit? If it is a circuit of series and parallel
connections, what is the equivalent resistance?

1|+
Il
<

Do batteries in a circuit always supply power to
a circuit, or can they absorb power in a circuit?
Give an example.

What are the advantages and disadvantages of
connecting batteries in series? In parallel?
Semi-tractor trucks use four large 12-V
batteries. The starter system requires 24V,
while normal operation of the truck’s other
electrical components utilizes 12 V. How could
the four batteries be connected to produce 24
V? To produce 12 V? Why is 24 V better than 12
V for starting the truck’s engine (a very heavy
load)?

10.4 Electrical Measuring Instruments

13.

14.

15.

What would happen if you placed a voltmeter in
series with a component to be tested?

What is the basic operation of an ohmmeter as
it measures a resistor?

Why should you not connect an ammeter
directly across a voltage source as shown

Problems

10.1 Electromotive Force

20.

21

A car battery with a 12-V emf and an internal
resistance of 0.050 Q is being charged with a
current of 60 A. Note that in this process, the
battery is being charged. (a) What is the
potential difference across its terminals? (b) At
what rate is thermal energy being dissipated in
the battery? (c) At what rate is electric energy
being converted into chemical energy?

The label on a battery-powered radio
recommends the use of a rechargeable nickel-
cadmium cell (nicads), although it has a 1.25-V
emf, whereas an alkaline cell has a 1.58-V emf.
The radio has a 3.20 Q resistance. (a) Draw a

below?

DO NOT DO
THIS!

®

10.5 RC Circuits

16.

17.

A battery, switch, capacitor, and lamp are
connected in series. Describe what happens to
the lamp when the switch is closed.

When making an ECG measurement, it is
important to measure voltage variations over
small time intervals. The time is limited by the
RC constant of the circuit—it is not possible to
measure time variations shorter than RC. How
would you manipulate R and Cin the circuit to
allow the necessary measurements?

10.6 Household Wiring and Electrical

Safety

18.

19.

22

Why isn’t a short circuit necessarily a shock
hazard?

We are often advised to not flick electric
switches with wet hands, dry your hand first. We
are also advised to never throw water on an
electric fire. Why?

circuit diagram of the radio and its battery. Now,
calculate the power delivered to the radio (b)
when using a nicad cells, each having an
internal resistance of 0.0400 Q, and (c) when
using an alkaline cell, having an internal
resistance of 0.200 Q. (d) Does this difference
seem significant, considering that the radio’s
effective resistance is lowered when its volume
is turned up?

An automobile starter motor has an equivalent
resistance of 0.0500 Q and is supplied by a
12.0-V battery with a 0.0100-Q internal
resistance. (a) What is the current to the motor?
(b) What voltage is applied to it? (c) What power
is supplied to the motor? (d) Repeat these



23.

24.

25.

calculations for when the battery connections
are corroded and add 0.0900 Q to the circuit.
(Significant problems are caused by even small
amounts of unwanted resistance in low-voltage,
high-current applications.)

(a) What is the internal resistance of a voltage
source if its terminal potential drops by 2.00 V
when the current supplied increases by 5.00 A?
(b) Can the emf of the voltage source be found
with the information supplied?

A person with body resistance between his
hands of 10.0 kQ accidentally grasps the
terminals of a 20.0-kV power supply. (Do NOT
do this!) (a) Draw a circuit diagram to represent
the situation. (b) If the internal resistance of the
power supply is 2000 €, what is the current
through his body? (c) What is the power
dissipated in his body? (d) If the power supply is
to be made safe by increasing its internal
resistance, what should the internal resistance
be for the maximum current in this situation to
be 1.00 mA or less? (e) Will this modification
compromise the effectiveness of the power
supply for driving low-resistance devices?
Explain your reasoning.

A 12.0-V emf automobile battery has a terminal
voltage of 16.0 V when being charged by a
current of 10.0 A. (a) What is the battery’s
internal resistance? (b) What power is
dissipated inside the battery? (c) At what rate (in
°C/min) will its temperature increase if its mass
is 20.0 kg and it has a specific heat of

0.300 kcal/kg - °C, assuming no heat escapes?

10.2 Resistors in Series and Parallel

26.

27.

28.

29.

(2) What is the resistance ofa 1.00 x 10%-Q, a
2.50-k€Q, and a 4.00-kQ resistor connected in
series? (b) In parallel?

What are the largest and smallest resistances
you can obtain by connecting a 36.0-Q, a
50.0-Q, and a 700-Q resistor together?

An 1800-W toaster, a 1400-W speaker, and a
75-W lamp are plugged into the same outlet in a
15-A fuse and 120-V circuit. (The three devices
are in parallel when plugged into the same
socket.) (a) What current is drawn by each
device? (b) Will this combination blow the 15-A
fuse?

Your car’s 30.0-W headlight and 2.40-kW starter
are ordinarily connected in parallel in a 12.0-V
system. What power would one headlight and
the starter consume if connected in series to a
12.0-V battery? (Neglect any other resistance in

30.

31.

32.

33.

34.

35.

the circuit and any change in resistance in the
two devices.)

(a) Given a 48.0-V battery and 24.0-Q and
96.0-Q resistors, find the current and power for
each when connected in series. (b) Repeat when
the resistances are in parallel.

Referring to the example combining series and
parallel circuits and Figure 10.16, calculate I3
in the following two different ways: (a) from the
known values of I and I5; (b) using Ohm’s law
for R3.In both parts, explicitly show how you
follow the steps in the Figure 10.17.

Referring to Figure 10.16, (a) Calculate Py and
note how it compares with P; found in the first
two example problems in this module. (b) Find
the total power supplied by the source and
compare it with the sum of the powers
dissipated by the resistors.

Refer to Figure 10.17 and the discussion of
lights dimming when a heavy appliance comes
on. (a) Given the voltage source is 120V, the
wire resistance is 0.800 €, and the bulb is
nominally 75.0 W, what power will the bulb
dissipate if a total of 15.0 A passes through the
wires when the motor comes on? Assume
negligible change in bulb resistance. (b) What
power is consumed by the motor?

Show that if two resistors Ry and R, are
combined and one is much greater than the
other (R; > Ry), (a) their series resistance is
very nearly equal to the greater resistance Ry
and (b) their parallel resistance is very nearly
equal to the smaller resistance Rj.

Consider the circuit shown below. The terminal
voltage of the battery is ¥ = 18.00 V. (a) Find
the equivalent resistance of the circuit. (b) Find
the current through each resistor. (c) Find the
potential drop across each resistor. (d) Find the
power dissipated by each resistor. (e) Find the
power supplied by the battery.

R, =4.00()

=V =18.00 V R, =1.00 Q)

+|
MN

R, = 4.00 Q)
M\

10.3 Kirchhoff's Rules

36.

Consider the circuit shown below. (a) Find the
voltage across each resistor. (b)What is the
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power supplied to the circuit and the power Vi,V>, and Ry.
dissipated or consumed by the circuit? — MN
+ I,=4A R, =6()
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40. Consider the circuit shown below. Find
AN 11,1, and I5.
Rg = 10 k()
37. Consider the circuits shown below. (a) What is
the current through each resistor in part (a)? (b) R —80Q .
What is the current through each resistor in § 1- =V,=10V
part (b)? (c) What is the power dissipated or + | =T
consumed by each circuit? (d) What is the =V,=24V ¢ 1
power supplied to each circuit? - R, =6} Ry =4}
—WWV —VW
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=V,=16V =V,;=14V 41. Consider the circuit shown below. (2) Find
= - 11,1, I3, 14, and I5. (b) Find the power supplied
R, =1 KO Ry =1 e l;y Elﬁe Volt_atge sources. (c) Find the power dissipated
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42. Consider the circuit shown below. Write the three
(b) loop equations for the loops shown.
38. Consider the circuit shown below. Find — ,,._Wv
V1,1, and I3. ly l;ﬁ l3 Ry
— —_—
I = 2A TJ’ I Loop 3
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=T R.—50) 43. Consider the circuit shown below. Write equations
v for the three currents in terms of Rand V.
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39. Consider the circuit shown below. Find
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44.

45.

46.

47.
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Consider the circuit shown in the preceding
problem. Write equations for the power
supplied by the voltage sources and the power
dissipated by the resistors in terms of Rand V.
A child’s electronic toy is supplied by three
1.58-V alkaline cells having internal resistances
0f 0.0200 Q in series with a 1.53-V carbon-zinc
dry cell having a 0.100-Q internal resistance.
The load resistance is 10.0 Q. (a) Draw a circuit
diagram of the toy and its batteries. (b) What
current flows? (c) How much power is supplied
to the load? (d) What is the internal resistance of
the dry cell if it goes bad, resulting in only 0.500
W being supplied to the load?

Apply the junction rule to Junction b shown below.

Is any new information gained by applying the
junction rule at e?

R,=20Q ,  Ry=80Q

a

A
yyy

Apply the loop rule to Loop afedcba in the
preceding problem.

10.4 Electrical Measuring Instruments

48.

Suppose you measure the terminal voltage of a
1.585-V alkaline cell having an internal
resistance of 0.100 Q by placing a 1.00-kQ
voltmeter across its terminals (see below). (a)

What current flows? (b) Find the terminal
voltage. (c) To see how close the measured
terminal voltage is to the emf, calculate their
ratio.

10.5 RC Circuits

49.

50.

51.

54.

The timing device in an automobile’s
intermittent wiper system is based on an RC
time constant and utilizes a 0.500-uF capacitor
and a variable resistor. Over what range must R
be made to vary to achieve time constants from
2.00t015.0s?

A heart pacemaker fires 72 times a minute,
each time a 25.0-nF capacitor is charged (by a
battery in series with a resistor) to 0.632 of its
full voltage. What is the value of the resistance?
The duration of a photographic flash is related
to an RC time constant, which is 0.100us for a
certain camera. (a) If the resistance of the flash
lamp is 0.0400 Q during discharge, what is the
size of the capacitor supplying its energy? (b)
What is the time constant for charging the
capacitor, if the charging resistance is 800 kQ?

. A 2.00- and a 7.50-uF capacitor can be

connected in series or parallel, as can a 25.0-
and a 100-kQ resistor. Calculate the four RC
time constants possible from connecting the
resulting capacitance and resistance in series.

. A500-Q resistor, an uncharged 1.50-uF

capacitor, and a 6.16-V emf are connected in
series. (a) What is the initial current? (b) What is
the RC time constant? (c) What is the current
after one time constant? (d) What is the voltage
on the capacitor after one time constant?

A heart defibrillator being used on a patient has
an RCtime constant of 10.0 ms due to the
resistance of the patient and the capacitance of
the defibrillator. (a) If the defibrillator has a
capacitance of 8.00uF, what is the resistance of
the path through the patient? (You may neglect
the capacitance of the patient and the
resistance of the defibrillator.) (b) If the initial




55.

56.

57.

voltage is 12.0 kV, how long does it take to
decline t0 6.00 x 102 V?

An ECG monitor must have an RC time constant
less than 1.00 x 102;45 to be able to measure
variations in voltage over small time intervals.
(a) If the resistance of the circuit (due mostly to
that of the patient’s chest) is 1.00 k€, what is the
maximum capacitance of the circuit? (b) Would
it be difficult in practice to limit the capacitance
to less than the value found in (a)?

Using the exact exponential treatment,
determine how much time is required to charge
an initially uncharged 100-pF capacitor through
a 75.0-MQ resistor to 90.0% of its final voltage.
If you wish to take a picture of a bullet traveling
at 500 m/s, then a very brief flash of light
produced by an RC discharge through a flash
tube can limit blurring. Assuming 1.00 mm of
motion during one RC constant is acceptable,
and given that the flash is driven by a 600-uF
capacitor, what is the resistance in the flash
tube?

10.6 Household Wiring and Electrical

Safety

58.

59.

60.

61.

(a) How much power is dissipated in a short
circuit of 240-V ac through a resistance of
0.250 Q? (b) What current flows?

What voltage is involved in a 1.44-kW short
circuit through a 0.100-Q resistance?

Find the current through a person and identify
the likely effect on her if she touches a 120-V ac
source: (a) if she is standing on a rubber mat
and offers a total resistance of 300 kQ; (b) if she
is standing barefoot on wet grass and has a
resistance of only 4000 kQ.

While taking a bath, a person touches the metal

Additional Problems

67.

A circuit contains a D cell battery, a switch, a
20-Q resistor, and four 20-mF capacitors
connected in series. (a) What is the equivalent
capacitance of the circuit? (b) What is the RC
time constant? (c) How long before the current
decreases to 50% of the initial value once the
switch is closed?

62.

64.

65.

66.

68.

case of a radio. The path through the person to
the drainpipe and ground has a resistance of
4000 Q. What is the smallest voltage on the case
of the radio that could cause ventricular
fibrillation?

A man foolishly tries to fish a burning piece of
bread from a toaster with a metal butter knife
and comes into contact with 120-V ac. He does
not even feel it since, luckily, he is wearing
rubber-soled shoes. What is the minimum
resistance of the path the current follows
through the person?

. (a) During surgery, a current as small as

20.0 uA applied directly to the heart may cause
ventricular fibrillation. If the resistance of the
exposed heart is 300 2, what is the smallest
voltage that poses this danger? (b) Does your
answer imply that special electrical safety
precautions are needed?

(a) What is the resistance of a 220-V ac short
circuit that generates a peak power of 96.8 kW?
(b) What would the average power be if the
voltage were 120 V ac?

A heart defibrillator passes 10.0 A through a
patient’s torso for 5.00 ms in an attempt to
restore normal beating. (a) How much charge
passed? (b) What voltage was applied if 500 J of
energy was dissipated? (c) What was the path’s
resistance? (d) Find the temperature increase
caused in the 8.00 kg of affected tissue.

A short circuit in a 120-V appliance cord has a
0.500-Q resistance. Calculate the temperature
rise of the 2.00 g of surrounding materials,
assuming their specific heat capacity is

0.200 cal/g - °C and that it takes 0.0500 s for a
circuit breaker to interrupt the current. Is this
likely to be damaging?

A circuit contains a D-cell battery, a switch, a
20-Q resistor, and three 20-mF capacitors. The
capacitors are connected in parallel, and the
parallel connection of capacitors are connected
in series with the switch, the resistor and the
battery. (a) What is the equivalent capacitance
of the circuit? (b) What is the RC time constant?
(c) How long before the current decreases to
50% of the initial value once the switch is
closed?



69.

70.

71.

Consider the circuit below. The battery has an emf
of e = 30.00 V and an internal resistance of
r = 1.00 Q. (a) Find the equivalent resistance of the
circuit and the current out of the battery. (b) Find
the current through each resistor. (c) Find the
potential drop across each resistor. (d) Find the
power dissipated by each resistor. (e) Find the total
power supplied by the batteries.

R, = 18.00 )

£ =30.00V

/

R, = 10.00 ()

A homemade capacitor is constructed of 2
sheets of aluminum foil with an area of 2.00
square meters, separated by paper, 0.05 mm
thick, of the same area and a dielectric constant
of 3.7. The homemade capacitor is connected in
series with a 100.00-Q resistor, a switch, and a
6.00-V voltage source. (a) What is the RC time
constant of the circuit? (b) What is the initial
current through the circuit, when the switch is
closed? (c) How long does it take the current to
reach one third of its initial value?

A student makes a homemade resistor from a
graphite pencil 5.00 cm long, where the
graphite is 0.05 mm in diameter. The resistivity
of the graphite is p = 1.38 X 107 Q/m. The
homemade resistor is place in series with a
switch, a 10.00-mF uncharged capacitor and a
0.50-V power source. (a) What is the RC time
constant of the circuit? (b) What is the potential
drop across the pencil 1.00 s after the switch is
closed?

72.

73.

74.

75.

The rather simple circuit shown below is known as
a voltage divider. The symbol consisting of three
horizontal lines is represents “ground” and can be
defined as the point where the potential is zero. The
voltage divider is widely used in circuits and a
single voltage source can be used to provide
reduced voltage to a load resistor as shown in the
second part of the figure. (a) What is the output
voltage Voyt of circuit (a) in terms of

R, Ry, and Vi, ? (b) What is the output voltage Vout
of circuit (b) in terms of Ry, Ry, Ry, and V;,?
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(@) (b)
Three 300-C resistors are connect in series with
an AAA battery with a rating of 3 AmpHours. (a)
How long can the battery supply the resistors
with power? (b) If the resistors are connected in
parallel, how long can the battery last?
Consider a circuit that consists of a real battery
with an emf € and an internal resistance of r
connected to a variable resistor R. (a) In order
for the terminal voltage of the battery to be
equal to the emf of the battery, what should the
resistance of the variable resistor be adjusted
to? (b) In order to get the maximum current
from the battery, what should the resistance of
the variable resistor be adjusted to? (c) In order
for the maximum power output of the battery to
be reached, what should the resistance of the
variable resistor be set to?
Consider the circuit shown below. What is the energy
stored in each capacitor after the switch has been
closed for a very long time?

R, = 100 () R, = 100 )
— ——MA—
C,=10mF
I o ”
= V=12V R, =100} C,=47mF
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Consider a circuit consisting of a battery with an 80.
emf € and an internal resistance of r connected

in series with a resistor R and a capacitor C.

Show that the total energy supplied by the

battery while charging the battery is equal to

e2C.

Consider the circuit shown below. The terminal 81.
voltages of the batteries are shown. (a) Find the
equivalent resistance of the circuit and the current

out of the battery. (b) Find the current through each
resistor. (c) Find the potential drop across each

resistor. (d) Find the power dissipated by each

resistor. (e) Find the total power supplied by the 82.
batteries.

Vi= = R, = 14.00 ()
12.00 vV o

= R,=9000 Rs =
1200V% 2 18.00 ()
R, =4.00)
AMN

Consider the circuit shown below. (a) What is the
terminal voltage of the battery? (b) What is the
potential drop across resistor R?

Voo = §Rl=40.00-ﬂ- §92=5.00£1
o V, =2
T.‘l = 50.00 mA 83.
? Ry =15.00() g4

Consider the circuit shown below. (a)Determine the
equivalent resistance and the current from the
battery with switch S| open. (b) Determine the
equivalent resistance and the current from the
battery with switch .S closed.

R, = 8.00 ()

Ry = 4.00 ()

Two resistors, one having a resistance of 145 Q,
are connected in parallel to produce a total
resistance of 150 Q. (a) What is the value of the
second resistance? (b) What is unreasonable
about this result? (c) Which assumptions are
unreasonable or inconsistent?

Two resistors, one having a resistance of

900 k€, are connected in series to produce a
total resistance of 0.500 MQ. (a) What is the
value of the second resistance? (b) What is
unreasonable about this result? (¢) Which
assumptions are unreasonable or inconsistent?
Apply the junction rule at point a shown below.

Irl =010

Apply the loop rule to Loop akledcbha in the
preceding problem.

Find the currents flowing in the circuit in the
preceding problem. Explicitly show how you
follow the steps in the Problem-Solving
Strategy: Series and Parallel Resistors.

. Consider the circuit shown below. (a) Find the

current through each resistor. (b) Check the
calculations by analyzing the power in the
circuit.




86. A flashinglamp in a Christmas earring is based

on an RC discharge of a capacitor through its
resistance. The effective duration of the flash is
0.250 s, during which it produces an average
0.500 W from an average 3.00 V. (a) What
energy does it dissipate? (b) How much charge
moves through the lamp? (c) Find the
capacitance. (d) What is the resistance of the
lamp? (Since average values are given for some
quantities, the shape of the pulse profile is not
needed.)

Challenge Problems

88. Some camera flashes use flash tubes that

require a high voltage. They obtain a high
voltage by charging capacitors in parallel and
then internally changing the connections of the
capacitors to place them in series. Consider a
circuit that uses four AAA batteries connected
in series to charge six 10-mF capacitors
through an equivalent resistance of 100 Q. The
connections are then switched internally to
place the capacitors in series. The capacitors
discharge through a lamp with a resistance of
100 Q. (a) What is the RC time constant and the
initial current out of the batteries while they are
connected in parallel? (b) How long does it take
for the capacitors to charge to 90% of the
terminal voltages of the batteries? (c) What is
the RC time constant and the initial current of
the capacitors connected in series assuming it
discharges at 90% of full charge? (d) How long
does it take the current to decrease to 10% of
the initial value?

87.

89.

A 160-yF capacitor charged to 450 V is
discharged through a 31.2-kQ resistor. (a) Find
the time constant. (b) Calculate the temperature
increase of the resistor, given that its mass is
2.50 g and its specific heat is 1.67 kJ/kg - °C,
noting that most of the thermal energy is
retained in the short time of the discharge. (c)
Calculate the new resistance, assuming it is
pure carbon. (d) Does this change in resistance
seem significant?

Consider the circuit shown below. Each battery
has an emf of 1.50 V and an internal resistance
of 1.00 Q. (a) What is the current through the
external resistor, which has a resistance of
10.00 ohms? (b) What is the terminal voltage of
each battery?

By
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VVv




90.

Analog meters use a galvanometer, which essentially 91.

consists of a coil of wire with a small resistance and
a pointer with a scale attached. When current runs
through the coil, the pointer turns; the amount the
pointer turns is proportional to the amount of
current running through the coil. Galvanometers
can be used to make an ammeter if a resistor is
placed in parallel with the galvanometer. Consider a
galvanometer that has a resistance of 25.00 Q and
gives a full scale reading when a 50-uA current runs
through it. The galvanometer is to be used to make
an ammeter that has a full scale reading of 10.00 A,
as shown below. Recall that an ammeter is
connected in series with the circuit of interest, so all
10 A must run through the meter. (a) What is the
current through the parallel resistor in the meter?
(b) What is the voltage across the parallel resistor?
(c) What is the resistance of the series resistor?

Ammeter

AAA
Yy

Rp
Positive MWV Negative
terminal terminal
T! = 10.00 A

92.

Analog meters use a galvanometer, which essentially
consists of a coil of wire with a small resistance and
a pointer with a scale attached. When current runs
through the coil, the point turns; the amount the
pointer turns is proportional to the amount of
current running through the coil. Galvanometers
can be used to make a voltmeter if a resistor is
placed in series with the galvanometer. Consider a
galvanometer that has a resistance of 25.00 Q and
gives a full scale reading when a 50-uA current runs
through it. The galvanometer is to be used to make
an voltmeter that has a full scale reading of 10.00V,
as shown below. Recall that a voltmeter is connected
in parallel with the component of interest, so the
meter must have a high resistance or it will change
the current running through the component. (a)
What is the potential drop across the series resistor
in the meter? (b) What is the resistance of the
parallel resistor?

Voltmeter

Rg
AAM AAM
yyy yyy

Ru

Positive
terminal

Negative
terminal

| |
e—— Av = 10.00 v —=]

Consider the circuit shown below. Find
II,VI,Iz, andVg.

Ry = Ry= < V,=7?
6.00 () 13.000 2 b
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Consider the circuit below. (a) What is the RC time
constant of the circuit? (b) What is the initial current
in the circuit once the switch is closed? (c) How
much time passes between the instant the switch is
closed and the time the current has reached half of
the initial current?

——

C, = 100 mF
R, = 10 k()
+ =
=V,=2V s
- < _
3 R, = 10 k()
+
=V, =24V
R, = 30 k() Ry = 30 k()
‘VVU’ ‘\WU

Consider the circuit below. (a) What is the initial
current through resistor Ry when the switch is
closed? (b) What is the current through resistor Ry
when the capacitor is fully charged, long after the
switch is closed? (c) What happens if the switch is
opened after it has been closed for some time? (d) If
the switch has been closed for a time period long
enough for the capacitor to become fully charged,
and then the switch is opened, how long before the
current through resistor Ry reaches half of its initial 97
value?

+
=V,=24V R, =10kl 3
- Y ¢, =10uF =—
R, = 30 k()
AAA
yyy

Consider the infinitely long chain of resistors shown
below. What is the resistance between terminals a

and b?
a

96.

98.

Consider the circuit below. The capacitor has a
capacitance of 10 mF. The switch is closed and
after a long time the capacitor is fully charged.
(a) What is the current through each resistor a
long time after the switch is closed? (b) What is
the voltage across each resistor a long time after
the switch is closed? (c) What is the voltage
across the capacitor a long time after the switch
is closed? (d) What is the charge on the
capacitor a long time after the switch is closed?
(e) The switch is then opened. The capacitor
discharges through the resistors. How long from
the time before the current drops to one fifth of
the initial value?

|.|I|+
Tl

. A120-Vimmersion heater consists of a coil of

wire that is placed in a cup to boil the water. The
heater can boil one cup of 20.00 °C water in
180.00 seconds. You buy one to use in your
dorm room, but you are worried that you will
overload the circuit and trip the 15.00-A, 120-V
circuit breaker, which supplies your dorm
room. In your dorm room, you have four
100.00-W incandescent lamps and a 1500.00-W
space heater. (a) What is the power rating of the
immersion heater? (b) Will it trip the breaker
when everything is turned on? (c) If it you
replace the incandescent bulbs with 18.00-W
LED, will the breaker trip when everything is
turned on?

Find the resistance that must be placed in
series with a 25.0-Q galvanometer having a
50.0- 1A sensitivity (the same as the one
discussed in the text) to allow it to be used as a
voltmeter with a 3000-V full-scale reading.
Include a circuit diagram with your solution.




478 10 ¢ Chapter Review

99. Find the resistance that must be placed in
parallel with a 60.0-Q galvanometer having a
1.00-mA sensitivity (the same as the one
discussed in the text) to allow it to be used as an
ammeter with a 25.0-A full-scale reading.
Include a circuit diagram with your solution.

Access for free at openstax.org.




CHAPTER 11 .
Magnetic Forces and Fields
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Figure 11.1 An industrial electromagnet is capable of lifting thousands of pounds of metallic waste. (credit:
modification of work by “BedfordAl”/Flickr)

Chapter Outline

11.1 Magnetism and Its Historical Discoveries

11.2 Magnetic Fields and Lines

11.3 Motion of a Charged Particle in a Magnetic Field

11.4 Magnetic Force on a Current-Carrying Conductor

11.5 Force and Torque on a Current Loop

11.6 The Hall Effect

11.7 Applications of Magnetic Forces and Fields

INTRODUCTION For the past few chapters, we have been studying electrostatic forces and fields, which are
caused by electric charges at rest. These electric fields can move other free charges, such as producing a
current in a circuit; however, the electrostatic forces and fields themselves come from other static charges. In
this chapter, we see that when an electric charge moves, it generates other forces and fields. These additional
forces and fields are what we commonly call magnetism.

Before we examine the origins of magnetism, we first describe what it is and how magnetic fields behave. Once
we are more familiar with magnetic effects, we can explain how they arise from the behavior of atoms and



molecules, and how magnetism is related to electricity. The connection between electricity and magnetism is
fascinating from a theoretical point of view, but it is also immensely practical, as shown by an industrial
electromagnet that can lift thousands of pounds of metal.

11.1 Magnetism and Its Historical Discoveries

Learning Objectives
By the end of this section, you will be able to:
e Explain attraction and repulsion by magnets
e Describe the historical and contemporary applications of magnetism

Magnetism has been known since the time of the ancient Greeks, but it has always been a bit mysterious. You
can see electricity in the flash of a lightning bolt, but when a compass needle points to magnetic north, you
can’t see any force causing it to rotate. People learned about magnetic properties gradually, over many years,
before several physicists of the nineteenth century connected magnetism with electricity. In this section, we
review the basic ideas of magnetism and describe how they fit into the picture of a magnetic field.

Brief History of Magnetism

Magnets are commonly found in everyday objects, such as toys, hangers, elevators, doorbells, and computer
devices. Experimentation on these magnets shows that all magnets have two poles: One is labeled north (N)
and the other is labeled south (S). Magnetic poles repel if they are alike (both N or both S), they attract if they
are opposite (one N and the other S), and both poles of a magnet attract unmagnetized pieces of iron. An
important point to note here is that you cannot isolate an individual magnetic pole. Every piece of a magnet, no
matter how small, which contains a north pole must also contain a south pole.

@ INTERACTIVE

Visit this website (https://openstax.org/l/21magnetcompass) for an interactive demonstration of magnetic
north and south poles.

An example of a magnet is a compass needle. It is simply a thin bar magnet suspended at its center, so it is free
to rotate in a horizontal plane. Earth itself also acts like a very large bar magnet, with its south-seeking pole
near the geographic North Pole (Figure 11.2). The north pole of a compass is attracted toward Earth’s
geographic North Pole because the magnetic pole that is near the geographic North Pole is actually a south
magnetic pole. Confusion arises because the geographic term “North Pole” has come to be used (incorrectly)
for the magnetic pole that is near the North Pole. Thus, “north magnetic pole” is actually a misnomer—it
should be called the south magnetic pole. [Note that the orientation of Earth’s magnetic field is not permanent
but changes (“flips”) after long time intervals. Eventually, Earth’s north magnetic pole may be located near its
geographic North Pole.]



Geographic North Pole

Magnetic South Pole
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Figure 11.2 The north pole of a compass needle points toward the south pole of a magnet, which is how today’s magnetic field is oriented

from inside Earth. It also points toward Earth’s geographic North Pole because the geographic North Pole is near the magnetic south pole.

Back in 1819, the Danish physicist Hans Oersted was performing a lecture demonstration for some students
and noticed that a compass needle moved whenever current flowed in a nearby wire. Further investigation of
this phenomenon convinced Oersted that an electric current could somehow cause a magnetic force. He
reported this finding to an 1820 meeting of the French Academy of Science.

Soon after this report, Oersted’s investigations were repeated and expanded upon by other scientists. Among
those whose work was especially important were Jean-Baptiste Biot and Felix Savart, who investigated the
forces exerted on magnets by currents; André Marie Ampere, who studied the forces exerted by one current on
another; Francois Arago, who found that iron could be magnetized by a current; and Humphry Davy, who
discovered that a magnet exerts a force on a wire carrying an electric current. Within 10 years of Oersted’s
discovery, Michael Faraday found that the relative motion of a magnet and a metallic wire induced current in
the wire. This finding showed not only that a current has a magnetic effect, but that a magnet can generate
electric current. You will see later that the names of Biot, Savart, Ampere, and Faraday are linked to some of
the fundamental laws of electromagnetism.

The evidence from these various experiments led Ampére to propose that electric current is the source of all
magnetic phenomena. To explain permanent magnets, he suggested that matter contains microscopic current
loops that are somehow aligned when a material is magnetized. Today, we know that permanent magnets are
actually created by the alignment of spinning electrons, a situation quite similar to that proposed by Ampere.
This model of permanent magnets was developed by Ampeére almost a century before the atomic nature of
matter was understood. (For a full quantum mechanical treatment of magnetic spins, see Quantum Mechanics
and Atomic Structure.)

Contemporary Applications of Magnetism

Today, magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has
enabled the development of technologies that affect both individuals and society. The electronic tablet in your
purse or backpack, for example, wouldn’t have been possible without the applications of magnetism and
electricity on a small scale (Figure 11.3). Weak changes in a magnetic field in a thin film of iron and chromium
were discovered to bring about much larger changes in resistance, called giant magnetoresistance.
Information can then be recorded magnetically based on the direction in which the iron layer is magnetized.
As aresult of the discovery of giant magnetoresistance and its applications to digital storage, the 2007 Nobel
Prize in Physics was awarded to Albert Fert from France and Peter Grunberg from Germany.



Figure 11.3 Engineering technology like computer storage would not be possible without a deep understanding of magnetism. (credit:
Klaus Eifert)

All electric motors—with uses as diverse as powering refrigerators, starting cars, and moving
elevators—contain magnets. Generators, whether producing hydroelectric power or running bicycle lights, use
magnetic fields. Recycling facilities employ magnets to separate iron from other refuse. Research into using
magnetic containment of fusion as a future energy source has been continuing for several years. Magnetic
resonance imaging (MRI) has become an important diagnostic tool in the field of medicine, and the use of
magnetism to explore brain activity is a subject of contemporary research and development. The list of
applications also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation
of high-speed trains. Magnetism is involved in the structure of atomic energy levels, as well as the motion of
cosmic rays and charged particles trapped in the Van Allen belts around Earth. Once again, we see that all
these disparate phenomena are linked by a small number of underlying physical principles.

11.2 Magnetic Fields and Lines

Learning Objectives
By the end of this section, you will be able to:
¢ Define the magnetic field based on a moving charge experiencing a force
e Apply the right-hand rule to determine the direction of a magnetic force based on the motion of a charge in a
magnetic field
e Sketch magnetic field lines to understand which way the magnetic field points and how strong itis in a
region of space

We have outlined the properties of magnets, described how they behave, and listed some of the applications of
magnetic properties. Even though there are no such things as isolated magnetic charges, we can still define the
attraction and repulsion of magnets as based on a field. In this section, we define the magnetic field, determine
its direction based on the right-hand rule, and discuss how to draw magnetic field lines.

Defining the Magnetic Field

A magnetic field is defined by the force that a charged particle experiences moving in this field, after we
account for the gravitational and any additional electric forces possible on the charge. The magnitude of this
force is proportional to the amount of charge g, the speed of the charged particle v, and the magnitude of the
applied magnetic field. The direction of this force is perpendicular to both the direction of the moving charged
particle and the direction of the applied magnetic field. Based on these observations, we define the magnetic

N
field strength Bbased on the magnetic force F on a charge g moving at velocity V as the cross product of the
velocity and magnetic field, that is,

F=gv x B. 11.1

>
In fact, this is how we define the magnetic field B—in terms of the force on a charged particle moving in a



magnetic field. The magnitude of the force is determined from the definition of the cross product as it relates
to the magnitudes of each of the vectors. In other words, the magnitude of the force satisfies

F = quBsin6 11.2

where 0is the angle between the velocity and the magnetic field.

The ST unit for magnetic field strength Bis called the tesla (T) after the eccentric but brilliant inventor Nikola
Tesla (1856-1943), where
1N
1T=——.
A-m
A smaller unit, called the gauss (G), where 1 G = 10_4T, is sometimes used. The strongest permanent

magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. Earth’s magnetic field
on its surface is only about 5 X 1075T, or 0.5 G.

113

@ PROBLEM-SOLVING STRATEGY

Direction of the Magnetic Field by the Right-Hand Rule

The direction of the magnetic force 1_5 is perpendicular to the plane formed by V and ﬁ as determined by the
right-hand rule-1 (or RHR-1), which is illustrated in Figure 11.4.

1. Orient your right hand so that your fingers curl in the plane defined by the velocity and magnetic field
vectors.

2. Using your right hand, sweep from the velocity toward the magnetic field with your fingers through the
smallest angle possible.

3. The magnetic force is directed where your thumb is pointing.

4. Ifthe charge was negative, reverse the direction found by these steps.

utl
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Figure 11.4 Magnetic fields exert forces on moving charges. The direction of the magnetic force on a moving charge is perpendicular to

the plane formed by Vand ﬁ and follows the right-hand rule-1 (RHR-1) as shown. The magnitude of the force is proportional to ¢, v, B, and

the sine of the angle between Vand ﬁ

@ INTERACTIVE

Visit this website (https:/openstax.org/l/21magfields) for additional practice with the direction of magnetic
fields.

There is no magnetic force on static charges. However, there is a magnetic force on charges moving at an angle
to a magnetic field. When charges are stationary, their electric fields do not affect magnets. However, when
charges move, they produce magnetic fields that exert forces on other magnets. When there is relative motion,



a connection between electric and magnetic forces emerges—each affects the other.

@ EXAMPLE 11.1

An Alpha-Particle Moving in a Magnetic Field

An alpha-particle (q =32 X 10_19C) moves through a uniform magnetic field whose magnitude is 1.5 T. The
field is directly parallel to the positive z-axis of the rectangular coordinate system of Figure 11.5. What is the
magnetic force on the alpha-particle when it is moving (a) in the positive x-direction with a speed of

5.0 x 10*m/s? (b) in the negative y-direction with a speed of 5.0 x 10*m/s? (c) in the positive z-direction with
aspeed of 5.0 x 10*m/s? (d) with a velocity V = (2.01 — 3.0j + 1.0k) x 10*m/s?
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Figure 11.5 The magnetic forces on an alpha-particle moving in a uniform magnetic field. The field is the same in each drawing, but the

velocity is different.

Strategy
We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the

equation ﬁ =qv X ﬁ or F = quBsin# to calculate the force. The direction of the force is determined by
RHR-1.

Solution

a. First, to determine the direction, start with your fingers pointing in the positive x-direction. Sweep your
fingers upward in the direction of magnetic field. Your thumb should point in the negative y-direction.
This should match the mathematical answer. To calculate the force, we use the given charge, velocity, and
magnetic field and the definition of the magnetic force in cross-product form to calculate:



F=g¥ x B= (32 x 107°C) (5.0 x 10*mss§) x (1L.5Tk) = -2.4 x 107N7.

b. First, to determine the directionality, start with your fingers pointing in the negative y-direction. Sweep
your fingers upward in the direction of magnetic field as in the previous problem. Your thumb should be
open in the negative x-direction. This should match the mathematical answer. To calculate the force, we
use the given charge, velocity, and magnetic field and the definition of the magnetic force in cross-product
form to calculate:

F=q¥ x B=(32x1071C) (=5.0 x 10*m/s§) x (1.5Tk) = -2.4 x 107*N{.

An alternative approach is to use Equation 11.2 to find the magnitude of the force. This applies for both
parts (a) and (b). Since the velocity is perpendicular to the magnetic field, the angle between them is 90
degrees. Therefore, the magnitude of the force is:

F = quBsind = (3.2 x 107°C) (5.0 x 10" m/s)(1.5 T)sin(90°) = 2.4 x 107'*N.

c. Since the velocity and magnetic field are parallel to each other, there is no orientation of your hand that
will result in a force direction. Therefore, the force on this moving charge is zero. This is confirmed by the
cross product. When you cross two vectors pointing in the same direction, the result is equal to zero.

d. First, to determine the direction, your fingers could point in any orientation; however, you must sweep
your fingers upward in the direction of the magnetic field. As you rotate your hand, notice that the thumb
can point in any x- or y-direction possible, but not in the z-direction. This should match the mathematical
answer. To calculate the force, we use the given charge, velocity, and magnetic field and the definition of
the magnetic force in cross-product form to calculate:

F =qv x B= (32 x 107°C) ((2.0{ - 3.0J + 1.0k) x 10*m/s) x (1.5TK)
= (~14.41-9.6]) x 107N,

This solution can be rewritten in terms of a magnitude and angle in the xy-plane:

|§| = \/F2+F2 =/(-1447 + (9.6 x 10715N = 1.7 x 107N
0 = tan~! <ﬂ) — tan~! ( -9.6x 10”1ON ) — 340
Fx -14.4 x 10-15N ’

The magnitude of the force can also be calculated using Equation 11.2. The velocity in this question,
however, has three components. The z-component of the velocity can be neglected, because it is parallel to
the magnetic field and therefore generates no force. The magnitude of the velocity is calculated from the x-
and y-components. The angle between the velocity in the xy-plane and the magnetic field in the z-plane is
90 degrees. Therefore, the force is calculated to be:

M = V@7 +(-3)* x 10" =36 x 1042

F = quBsinf= (32 x 10719C)(3.6 x 10*m/s)(1.5 T)sin(90°) = 1.7 x 10~14N.
This is the same magnitude of force calculated by unit vectors.

Significance

The cross product in this formula results in a third vector that must be perpendicular to the other two. Other
physical quantities, such as angular momentum, also have three vectors that are related by the cross product.
Note that typical force values in magnetic force problems are much larger than the gravitational force.
Therefore, for an isolated charge, the magnetic force is the dominant force governing the charge’s motion.

CHECK YOUR UNDERSTANDING 11.1

Repeat the previous problem with the magnetic field in the x-direction rather than in the z-direction. Check
your answers with RHR-1.



Representing Magnetic Fields

The representation of magnetic fields by magnetic field lines is very useful in visualizing the strength and
direction of the magnetic field. As shown in Figure 11.6, each of these lines forms a closed loop, even if not
shown by the constraints of the space available for the figure. The field lines emerge from the north pole (N),
loop around to the south pole (S), and continue through the bar magnet back to the north pole.

Magnetic field lines have several hard-and-fast rules:

The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point
in the direction of the field line.

The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of
lines per unit area perpendicular to the lines (called the areal density).

Magnetic field lines can never cross, meaning that the field is unique at any point in space.

Magnetic field lines are continuous, forming closed loops without a beginning or end. They are directed from
the north pole to the south pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct
difference from electric field lines, which generally begin on positive charges and end on negative charges or at
infinity. If isolated magnetic charges (referred to as magnetic monopoles) existed, then magnetic field lines

would begin and end on them.

Magnetic field lines of a bar magnet Magnetic field lines Magnetic field lines
between unlike poles between like poles
@ (b) (©

Figure 11.6 Magnetic field lines are defined to have the direction in which a small compass points when placed at a location in the field.
The strength of the field is proportional to the closeness (or density) of the lines. If the interior of the magnet could be probed, the field
lines would be found to form continuous, closed loops. To fit in a reasonable space, some of these drawings may not show the closing of the

loops; however, if enough space were provided, the loops would be closed.

11.3 Motion of a Charged Particle in a Magnetic Field

Learning Objectives
By the end of this section, you will be able to:
e Explain how a charged particle in an external magnetic field undergoes circular motion
e Describe how to determine the radius of the circular motion of a charged particle in a magnetic field

A charged particle experiences a force when moving through a magnetic field. What happens if this field is
uniform over the motion of the charged particle? What path does the particle follow? In this section, we discuss
the circular motion of the charged particle as well as other motion that results from a charged particle entering
a magnetic field.

The simplest case occurs when a charged particle moves perpendicular to a uniform B-field (Figure 11.7). If
the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic
force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field.
The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is



that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The
particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
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Figure 11.7 A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the
paper (represented by the small X ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in
direction but not magnitude. The result is uniform circular motion. (Note that because the charge is negative, the force is opposite in

direction to the prediction of the right-hand rule.)

2
In this situation, the magnetic force supplies the centripetal force F. = mf
perpendicular to the magnetic field, the magnitude of the magnetic force is reduced to F' = quB. Because the

magnetic force F supplies the centripetal force F,, we have

. Noting that the velocity is

2

quB = mv ‘ 114
r
Solving for ryields
mv
r=—.
4B 11.5

Here, ris the radius of curvature of the path of a charged particle with mass m and charge g, moving at a speed
vthat is perpendicular to a magnetic field of strength B. The time for the charged particle to go around the
circular path is defined as the period, which is the same as the distance traveled (the circumference) divided
by the speed. Based on this and Equation 11.4, we can derive the period of motion as

2zr 2w mv  27mm
T=—=——=—vo. 11.6
v v gqB qB
If the velocity is not perpendicular to the magnetic field, then we can compare each component of the velocity
separately with the magnetic field. The component of the velocity perpendicular to the magnetic field
produces a magnetic force perpendicular to both this velocity and the field:

Uperp = USING, Upara = 0COSO. 11.7

where @ is the angle between vand B. The component parallel to the magnetic field creates constant motion
along the same direction as the magnetic field, also shown in Equation 11.7. The parallel motion determines
the pitch p of the helix, which is the distance between adjacent turns. This distance equals the parallel
component of the velocity times the period:



p= UparaT- 11.8
The result is a helical motion, as shown in the following figure.

y
i

Figure 11.8 A charged particle moving with a velocity not in the same direction as the magnetic field. The velocity component
perpendicular to the magnetic field creates circular motion, whereas the component of the velocity parallel to the field moves the particle

along a straight line. The pitch is the horizontal distance between two consecutive circles. The resulting motion is helical.

While the charged particle travels in a helical path, it may enter a region where the magnetic field is not
uniform. In particular, suppose a particle travels from a region of strong magnetic field to a region of weaker
field, then back to a region of stronger field. The particle may reflect back before entering the stronger
magnetic field region. This is similar to a wave on a string traveling from a very light, thin string to a hard wall
and reflecting backward. If the reflection happens at both ends, the particle is trapped in a so-called magnetic
bottle.

Trapped particles in magnetic fields are found in the Van Allen radiation belts around Earth, which are part of
Earth’s magnetic field. These belts were discovered by James Van Allen while trying to measure the flux of
cosmic rays on Earth (high-energy particles that come from outside the solar system) to see whether this was
similar to the flux measured on Earth. Van Allen found that due to the contribution of particles trapped in
Earth’s magnetic field, the flux was much higher on Earth than in outer space. Aurorae, like the famous aurora
borealis (northern lights) in the Northern Hemisphere (Figure 11.9), are beautiful displays of light emitted as
ions recombine with electrons entering the atmosphere as they spiral along magnetic field lines. (The ions are
primarily oxygen and nitrogen atoms that are initially ionized by collisions with energetic particles in Earth’s
atmosphere.) Aurorae have also been observed on other planets, such as Jupiter and Saturn.
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Figure 11.9 (a) The Van Allen radiation belts around Earth trap ions produced by cosmic rays striking Earth’s atmosphere. (b) The
magnificent spectacle of the aurora borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air Force Base,
Alaska. Shaped by Earth’s magnetic field, this light is produced by glowing molecules and ions of oxygen and nitrogen. (credit b:

modification of work by USAF Senior Airman Joshua Strang)

@ EXAMPLE 11.2

Beam Deflector

A research group is investigating short-lived radioactive isotopes. They need to design a way to transport
alpha-particles (helium nuclei) from where they are made to a place where they will collide with another
material to form an isotope. The beam of alpha-particles (m =6.64 x 10727 kg, g=32 x 10‘19C) bends
through a 90-degree region with a uniform magnetic field of 0.050 T (Figure 11.10). (a) In what direction

should the magnetic field be applied? (b) How much time does it take the alpha-particles to traverse the
uniform magnetic field region?

Region with uniform
vertical magnetic field
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Figure 11.10 Top view of the beam deflector setup.
Strategy

a. The direction of the magnetic field is shown by the RHR-1. Your fingers point in the direction of v, and your
thumb needs to point in the direction of the force, to the left. Therefore, since the alpha-particles are
positively charged, the magnetic field must point down.



b. The period of the alpha-particle going around the circle is

_ 2rm

Because the particle is only going around a quarter of a circle, we can take 0.25 times the period to find the
time it takes to go around this path.

Solution

a. Let’s start by focusing on the alpha-particle entering the field near the bottom of the picture. First, point
your thumb up the page. In order for your palm to open to the left where the centripetal force (and hence
the magnetic force) points, your fingers need to change orientation until they point into the page. This is
the direction of the applied magnetic field.

b. The period of the charged particle going around a circle is calculated by using the given mass, charge, and
magnetic field in the problem. This works out to be

27 (6.64 x 10727k
gB (3.2 x 10719C) (0.050 T)

However, for the given problem, the alpha-particle goes around a quarter of the circle, so the time it takes
would be
1=025x 261 x 1079 =65 x 107s.
Significance
This time may be quick enough to get to the material we would like to bombard, depending on how short-lived
the radioactive isotope is and continues to emit alpha-particles. If we could increase the magnetic field applied

in the region, this would shorten the time even more. The path the particles need to take could be shortened,
but this may not be economical given the experimental setup.

CHECK YOUR UNDERSTANDING 11.2

A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east. (a) What is the magnetic
force on a proton at the instant when it is moving vertically downward in the field with a speed of 4 x 107 m/s?
(b) Compare this force with the weight w of a proton.

@ EXAMPLE 11.3

Helical Motion in a Magnetic Field
A proton enters a uniform magnetic field of 1.0 X 10~*T with a speed of 5 X 10° m/s. At what angle must the

magnetic field be from the velocity so that the pitch of the resulting helical motion is equal to the radius of the
helix?

Strategy

The pitch of the motion relates to the parallel velocity times the period of the circular motion, whereas the
radius relates to the perpendicular velocity component. After setting the radius and the pitch equal to each
other, solve for the angle between the magnetic field and velocity or 6.

Solution

The pitch is given by Equation 11.8, the period is given by Equation 11.6, and the radius of circular motion is
given by Equation 11.5. Note that the velocity in the radius equation is related to only the perpendicular
velocity, which is where the circular motion occurs. Therefore, we substitute the sine component of the overall
velocity into the radius equation to equate the pitch and radius:



p=r

_ mUJ_
T = —3
2rm _  musin@
vCoS Gq—B = B
2r = tanf
6 = 81.0°.

Significance

If this angle were 0°, only parallel velocity would occur and the helix would not form, because there would be
no circular motion in the perpendicular plane. If this angle were 90°, only circular motion would occur and
there would be no movement of the circles perpendicular to the motion. That is what creates the helical
motion.

11.4 Magnetic Force on a Current-Carrying Conductor

Learning Objectives

By the end of this section, you will be able to:
e Determine the direction in which a current-carrying wire experiences a force in an external magnetic field
e Calculate the force on a current-carrying wire in an external magnetic field

Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire
is carrying a current—the wire should also experience a force. However, before we discuss the force exerted on
a current by a magnetic field, we first examine the magnetic field generated by an electric current. We are
studying two separate effects here that interact closely: A current-carrying wire generates a magnetic field and
the magnetic field exerts a force on the current-carrying wire.

Magnetic Fields Produced by Electrical Currents

When discussing historical discoveries in magnetism, we mentioned Oersted’s finding that a wire carrying an
electrical current caused a nearby compass to deflect. A connection was established that electrical currents
produce magnetic fields. (This connection between electricity and magnetism is discussed in more detail in
Sources of Magnetic Fields.)

The compass needle near the wire experiences a force that aligns the needle tangent to a circle around the
wire. Therefore, a current-carrying wire produces circular loops of magnetic field. To determine the direction
of the magnetic field generated from a wire, we use a second right-hand rule. In RHR-2, your thumb points in
the direction of the current while your fingers wrap around the wire, pointing in the direction of the magnetic
field produced (Figure 11.11). If the magnetic field were coming at you or out of the page, we represent this
with a dot. If the magnetic field were going into the page, we represent this with an X. These symbols come
from considering a vector arrow: An arrow pointed toward you, from your perspective, would look like a dot or
the tip of an arrow. An arrow pointed away from you, from your perspective, would look like a cross or an X. A
composite sketch of the magnetic circles is shown in Figure 11.11, where the field strength is shown to
decrease as you get farther from the wire by loops that are farther separated.
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Figure 11.11 (a) When the wire is in the plane of the paper, the field is perpendicular to the paper. Note the symbols used for the field
pointing inward (like the tail of an arrow) and the field pointing outward (like the tip of an arrow). (b) A long and straight wire creates a field

with magnetic field lines forming circular loops.

Calculating the Magnetic Force

Electric current is an ordered movement of charge. A current-carrying wire in a magnetic field must therefore
experience a force due to the field. To investigate this force, let’s consider the infinitesimal section of wire as
shown in Figure 11.12. The length and cross-sectional area of the section are dl and A, respectively, so its
volumeis V' = A - dl. The wire is formed from material that contains n charge carriers per unit volume, so the
number of charge carriers in the section is nA - dl. If the charge carriers move with drift velocity V4, the
current Iin the wire is (from Current and Resistance)

I =neAvy.

- =
The magnetic force on any single charge carrier is evq X B, so the total magnetic force dF on the nA - dl
charge carriers in the section of wire is

dF = (nA - dl)evq X B. 11.10
We can define dI to be a vector of length dI pointing along Vd, which allows us to rewrite this equation as
dﬁ = neAvdai X ﬁ, 11.11
or
di‘) = Iai X 1_3) 11.12

This is the magnetic force on the section of wire. Note that it is actually the net force exerted by the field on the
charge carriers themselves. The direction of this force is given by RHR-1, where you point your fingers in the
direction of the current and curl them toward the field. Your thumb then points in the direction of the force.



B
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Figure 11.12 An infinitesimal section of current-carrying wire in a magnetic field.

-
To determine the magnetic force F on a wire of arbitrary length and shape, we must integrate Equation 11.12
over the entire wire. If the wire section happens to be straight and B is uniform, the equation differentials
become absolute quantities, giving us

- - —

F=1I1 x B. 11.13

This is the force on a straight, current-carrying wire in a uniform magnetic field.

@ EXAMPLE 11.4

Balancing the Gravitational and Magnetic Forces on a Current-Carrying Wire

A wire of length 50 cm and mass 10 g is suspended in a horizontal plane by a pair of flexible leads (Figure
11.13). The wire is then subjected to a constant magnetic field of magnitude 0.50 T, which is directed as shown.
What are the magnitude and direction of the current in the wire needed to remove the tension in the
supporting leads?
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Figure 11.13 (a) A wire suspended in a magnetic field. (b) The free-body diagram for the wire.

Strategy

From the free-body diagram in the figure, the tensions in the supporting leads go to zero when the
gravitational and magnetic forces balance each other. Using the RHR-1, we find that the magnetic force points
up. We can then determine the current I by equating the two forces.



Solution
Equate the two forces of weight and magnetic force on the wire:

mg = IIB.
Thus,

_ mg _ (0.010kg)(9.8 m/s?)

= = =0.39A.
/B (0.50m)(0.50 T)

Significance
This large magnetic field creates a significant force on a length of wire to counteract the weight of the wire.

@ EXAMPLE 11.5

Calculating Magnetic Force on a Current-Carrying Wire

Along, rigid wire lying along the y-axis carries a 5.0-A current flowing in the positive y-direction. (a) If a
constant magnetic field of magnitude 0.30 T is directed along the positive x-axis, what is the magnetic force
per unit length on the wire? (b) If a constant magnetic field of 0.30 T is directed 30 degrees from the +x-axis
towards the +y-axis, what is the magnetic force per unit length on the wire?

Strategy

The magnetic force on a current-carrying wire in a magnetic field is given by T?) =1 T X ]_3) For part a, since
the current and magnetic field are perpendicular in this problem, we can simplify the formula to give us the
magnitude and find the direction through the RHR-1. The angle 8 is 90 degrees, which means sinf = 1. Also,
the length can be divided over to the left-hand side to find the force per unit length. For part b, the current
times length is written in unit vector notation, as well as the magnetic field. After the cross product is taken,
the directionality is evident by the resulting unit vector.

Solution

a. We start with the general formula for the magnetic force on a wire. We are looking for the force per unit
length, so we divide by the length to bring it to the left-hand side. We also set sinf = 1. The solution
therefore is

F = IlBsinf
L = (5.0A)030T)
L = 15N/m.

Directionality: Point your fingers in the positive y-direction and curl your fingers in the positive
-
x-direction. Your thumb will point in the —K direction. Therefore, with directionality, the solution is
=

? = —1.5k N/m.

b. The current times length and the magnetic field are written in unit vector notation. Then, we take the cross
product to find the force:
- - ~ ~ ~
F = ITx B=(504)/] x (0.30Tcos (30°){ +0.30Tsin (30°) )
F/I = —1.30kN/m.
Significance
This large magnetic field creates a significant force on a small length of wire. As the angle of the magnetic field

becomes more closely aligned to the current in the wire, there is less of a force on it, as seen from comparing
partsaand b.




CHECK YOUR UNDERSTANDING 11.3

A straight, flexible length of copper wire is immersed in a magnetic field that is directed into the page. (a) If the
wire’s current runs in the +x-direction, which way will the wire bend? (b) Which way will the wire bend if the
current runs in the —x-direction?

@ EXAMPLE 11.6

Force on a Circular Wire

A circular current loop of radius R carrying a current I is placed in the xy-plane. A constant uniform magnetic
field cuts through the loop parallel to the y-axis (Figure 11.14). Find the magnetic force on the upper half of the
loop, the lower half of the loop, and the total force on the loop.
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Figure 11.14 A loop of wire carrying a current in a magnetic field.

Strategy
The magnetic force on the upper loop should be written in terms of the differential force acting on each
segment of the loop. If we integrate over each differential piece, we solve for the overall force on that section of
the loop. The force on the lower loop is found in a similar manner, and the total force is the addition of these
two forces.
Solution
A differential force on an arbitrary piece of wire located on the upper ring is:

dF = IBsinfdl.

where 6 is the angle between the magnetic field direction (+y) and the segment of wire. A differential segment
is located at the same radius, so using an arc-length formula, we have:

dl = Rdo
dF = IBRsin0dé.

In order to find the force on a segment, we integrate over the upper half of the circle, from O to z. This results
in:
T

F= IBR/ sinfd@ = I BR(—cosx + cos0) = 21 BR.
0
The lower half of the loop is integrated from = to zero, giving us:
0
F = IBR/ sinfdf = I BR(—cos0 + cosz) = =21 BR.
7

The net force is the sum of these forces, which is zero.



Significance
The total force on any closed loop in a uniform magnetic field is zero. Even though each piece of the loop has a

force acting on it, the net force on the system is zero. (Note that there is a net torque on the loop, which we
consider in the next section.)

11.5 Force and Torque on a Current Loop

Learning Objectives

By the end of this section, you will be able to:
e Evaluate the net force on a current loop in an external magnetic field
e Evaluate the net torque on a current loop in an external magnetic field
e Define the magnetic dipole moment of a current loop

Motors are the most common application of magnetic force on current-carrying wires. Motors contain loops of
wire in a magnetic field. When current is passed through the loops, the magnetic field exerts torque on the
loops, which rotates a shaft. Electrical energy is converted into mechanical work in the process. Once the loop’s
surface area is aligned with the magnetic field, the direction of current is reversed, so there is a continual
torque on the loop (Figure 11.15). This reversal of the current is done with commutators and brushes. The
commutator is set to reverse the current flow at set points to keep continual motion in the motor. A basic
commutator has three contact areas to avoid and dead spots where the loop would have zero instantaneous
torque at that point. The brushes press against the commutator, creating electrical contact between parts of
the commutator during the spinning motion.
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Figure 11.15 A simplified version of a dc electric motor. (a) The rectangular wire loop is placed in a magnetic field. The forces on the wires
closest to the magnetic poles (N and S) are opposite in direction as determined by the right-hand rule-1. Therefore, the loop has a net
torque and rotates to the position shown in (b). (b) The brushes now touch the commutator segments so that no current flows through the
loop. No torque acts on the loop, but the loop continues to spin from the initial velocity given to it in part (a). By the time the loop flips over,
current flows through the wires again but now in the opposite direction, and the process repeats as in part (a). This causes continual

rotation of the loop.

In a uniform magnetic field, a current-carrying loop of wire, such as a loop in a motor, experiences both forces
and torques on the loop. Figure 11.16 shows a rectangular loop of wire that carries a current I and has sides of

lengths a and b. The loop is in a uniform magnetic field: ﬁ = B,/]'\. The magnetic force on a straight current-

carrying wire of length /is given by I Y X ﬁ To find the net force on the loop, we have to apply this equation to
each of the four sides. The force on side 1 is

F| = IaBsin(90° — 6)i = IaBcos6i 11.14



where the direction has been determined with the RHR-1. The current in side 3 flows in the opposite direction
to that of side 1, so

F3 = —IaBsin(90° + 0)i = —IaBcos#i. 11.15
The currents in sides 2 and 4 are perpendicular to ﬁ and the forces on these sides are
F, = IbBk, F, = —IbBk. 11.16
We can now find the net force on the loop:
> - > > =
ZFnet =F +F, +F3; +F4 =0. 11.17

Although this result (ZF = 0) has been obtained for a rectangular loop, it is far more general and holds for
current-carrying loops of arbitrary shapes; that is, there is no net force on a current loop in a uniform
magnetic field.
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Figure 11.16 (a) A rectangular current loop in a uniform magnetic field is subjected to a net torque but not a net force. (b) A side view of

the coil.

To find the net torque on the current loop shown in Figure 11.16, we first consider F] and F3. Since they have
the same line of action and are equal and opposite, the sum of their torques about any axis is zero (see Fixed-
Axis Rotation). Thus, if there is any torque on the loop, it must be furnished by F, and F4. Let’s calculate the
torques around the axis that passes through point O of Figure 11.16 (a side view of the coil) and is
perpendicular to the plane of the page. The point Ois a distance x from side 2 and a distance (a — x) from side
4 of the loop. The moment arms of F, and F, are xsinf and (a — x) sinf, respectively, so the net torque on the
loop is

DY R=% +% +T+% = Fxsinbl - Fy(a— x)sin(0)i
= —IbBxsin6i — IbB(a — x)sinbi.

11.18

This simplifies to
% = —IABsin6i 11.19
where A = ab is the area of the loop.

Notice that this torque is independent of x; it is therefore independent of where point Ois located in the plane
of the current loop. Consequently, the loop experiences the same torque from the magnetic field about any axis
in the plane of the loop and parallel to the x-axis.

A closed-current loop is commonly referred to as a magnetic dipole and the term A is known as its magnetic
dipole moment y. Actually, the magnetic dipole moment is a vector that is defined as

i=IAdn 11.20



where 0 is a unit vector directed perpendicular to the plane of the loop (see Figure 11.16). The direction of i is
obtained with the RHR-2—if you curl the fingers of your right hand in the direction of current flow in the loop,
then your thumb points along fi. If the loop contains N turns of wire, then its magnetic dipole moment is given
by

i = NIAR. 11.21

In terms of the magnetic dipole moment, the torque on a current loop due to a uniform magnetic field can be
written simply as

- _ o =
T=H X B. 11.22

This equation holds for a current loop in a two-dimensional plane of arbitrary shape.

Using a calculation analogous to that found in Capacitance for an electric dipole, the potential energy of a
magnetic dipole is

U=-fiB. 11.23

@ EXAMPLE 11.7

Forces and Torques on Current-Carrying Loops

A circular current loop of radius 2.0 cm carries a current of 2.0 mA. (a) What is the magnitude of its magnetic
dipole moment? (b) If the dipole is oriented at 30 degrees to a uniform magnetic field of magnitude 0.50 T,
what is the magnitude of the torque it experiences and what is its potential energy?

Strategy

The dipole moment is defined by the current times the area of the loop. The area of the loop can be calculated
from the area of the circle. The torque on the loop and potential energy are calculated from identifying the
magnetic moment, magnetic field, and angle oriented in the field.

Solution

a. The magnetic moment u is calculated by the current times the area of the loop or .

u=1TA=20 x 1073 A)x(0.02m)?)=2.5 x 1070 A - m?

b. The torque and potential energy are calculated by identifying the magnetic moment, magnetic field, and
the angle between these two vectors. The calculations of these quantities are:

r = fi x B=uBsind = (2.5 x 107°A - m?) (0.50T)sin(30°) = 6.3 X 107'N-m
U = —H-B=—uBcosd =~ (2.5 x 107°A-m?) (0.50T) cos(30°) = —1.1 x 1076J.

13

Significance

The concept of magnetic moment at the atomic level is discussed in the next chapter. The concept of aligning
the magnetic moment with the magnetic field is the functionality of devices like magnetic motors, whereby
switching the external magnetic field results in a constant spinning of the loop as it tries to align with the field
to minimize its potential energy.

CHECK YOUR UNDERSTANDING 11.4

In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field?
(b) A maximum energy of the dipole?



11.6 The Hall Effect

Learning Objectives
By the end of this section, you will be able to:
e Explain a scenario where the magnetic and electric fields are crossed and their forces balance each other as
a charged particle moves through a velocity selector
e Compare how charge carriers move in a conductive material and explain how this relates to the Hall effect

In 1879, E.H. Hall devised an experiment that can be used to identify the sign of the predominant charge
carriers in a conducting material. From a historical perspective, this experiment was the first to demonstrate
that the charge carriers in most metals are negative.

@ INTERACTIVE

Visit this website (https://openstax.org/l/21halleffect) to find more information about the Hall effect.

We investigate the Hall effect by studying the motion of the free electrons along a metallic strip of width /in a
constant magnetic field (Figure 11.17). The electrons are moving from left to right, so the magnetic force they
experience pushes them to the bottom edge of the strip. This leaves an excess of positive charge at the top edge
of the strip, resulting in an electric field E directed from top to bottom. The charge concentration at both edges
builds up until the electric force on the electrons in one direction is balanced by the magnetic force on them in
the opposite direction. Equilibrium is reached when:

eE=ev;B 11.24

where eis the magnitude of the electron charge, v, is the drift speed of the electrons, and E is the magnitude of
the electric field created by the separated charge. Solving this for the drift speed results in

B = — 11.25

(b)

Figure 11.17 In the Hall effect, a potential difference between the top and bottom edges of the metal strip is produced when moving

charge carriers are deflected by the magnetic field. (a) Hall effect for negative charge carriers; (b) Hall effect for positive charge carriers.

A scenario where the electric and magnetic fields are perpendicular to one another is called a crossed-field
situation. If these fields produce equal and opposite forces on a charged particle with the velocity that equates
the forces, these particles are able to pass through an apparatus, called a velocity selector, undeflected. This
velocity is represented in Equation 11.26. Any other velocity of a charged particle sent into the same fields
would be deflected by the magnetic force or electric force.

Going back to the Hall effect, if the current in the strip is I, then from Current and Resistance, we know that

I =nev; A 11.26

where nis the number of charge carriers per volume and A is the cross-sectional area of the strip. Combining
the equations for v; and Iresults in



E
I =ne <—) A. 11.27

The field E is related to the potential difference Vbetween the edges of the strip by

178

The quantity Vis called the Hall potential and can be measured with a voltmeter. Finally, combining the

equations for Tand E gives us

1Bl
V_

= — 11.29
neA

where the upper edge of the strip in Figure 11.17 is positive with respect to the lower edge.

We can also combine Equation 11.24 and Equation 11.28 to get an expression for the Hall voltage in terms of
the magnetic field:

V = Bluy. 11.30

What if the charge carriers are positive, as in Figure 11.17? For the same current I, the magnitude of Vis still
given by Equation 11.29. However, the upper edge is now negative with respect to the lower edge. Therefore, by
simply measuring the sign of V, we can determine the sign of the majority charge carriers in a metal.

Hall potential measurements show that electrons are the dominant charge carriers in most metals. However,
Hall potentials indicate that for a few metals, such as tungsten, beryllium, and many semiconductors, the
majority of charge carriers are positive. It turns out that conduction by positive charge is caused by the
migration of missing electron sites (called holes) on ions. Conduction by holes is studied later in Condensed

Matter Physics.

The Hall effect can be used to measure magnetic fields. If a material with a known density of charge carriers n
is placed in a magnetic field and Vis measured, then the field can be determined from Equation 11.29. In
research laboratories where the fields of electromagnets used for precise measurements have to be extremely
steady, a “Hall probe” is commonly used as part of an electronic circuit that regulates the field.

@ EXAMPLE 11.8

Velocity Selector

An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and

6.0 x 103 N/C, respectively. (a) What must the velocity of the electron beam be to traverse the crossed fields
undeflected? If the electric field is turned off, (b) what is the acceleration of the electron beam and (c) what is
the radius of the circular motion that results?

Strategy

The electron beam is not deflected by either of the magnetic or electric fields if these forces are balanced.
Based on these balanced forces, we calculate the velocity of the beam. Without the electric field, only the
magnetic force is used in Newton’s second law to find the acceleration. Lastly, the radius of the path is based on
the resulting circular motion from the magnetic force.

Solution

a. The velocity of the unperturbed beam of electrons with crossed fields is calculated by Equation 11.25:
E 6x 10°N/C
=—" — "= =3 x 10%mss.

V] = — =
1T BT 2% 103T

b. The acceleration is calculated from the net force from the magnetic field, equal to mass times acceleration.



The magnitude of the acceleration is:

ma = quB
-19 6 -3
B :
g = B _ (16x10770Bx10 1m/s)(2><10 D _ 11 % 1015 m/s2.
m 9.1 x 10=31kg

c. The radius of the path comes from a balance of the circular and magnetic forces, or Equation 11.25:
mv (9.1 x 10731kg)(3 x 10° m/s)

=85 x 10°m.
gB (1.6 x 1071°C)2 x 10737T)

Significance
If electrons in the beam had velocities above or below the answer in part (a), those electrons would have a

stronger net force exerted by either the magnetic or electric field. Therefore, only those electrons at this
specific velocity would make it through.

@ EXAMPLE 11.9

The Hall Potential in a Silver Ribbon

Figure 11.18 shows a silver ribbon whose cross section is 1.0 cm by 0.20 cm. The ribbon carries a current of
100 A from left to right, and it lies in a uniform magnetic field of magnitude 1.5 T. Using a density value of
n=59 x 10?8 electrons per cubic meter for silver, find the Hall potential between the edges of the ribbon.

+ + [+ + + + +

| — - |

~~_~—10cm X 0.20 cm

Figure 11.18 Finding the Hall potential in a silver ribbon in a magnetic field is shown.

Strategy
Since the majority of charge carriers are electrons, the polarity of the Hall voltage is that indicated in the figure.
The value of the Hall voltage is calculated using Equation 11.29:
neA
Solution

When calculating the Hall voltage, we need to know the current through the material, the magnetic field, the
length, the number of charge carriers, and the area. Since all of these are given, the Hall voltage is calculated
as:

-2
y_ 1Bl _ (100 A)(1.5T) (1.0 x 107*m) 70 % 10-5V.
neA (5.9 x 10%%/m3) (1.6 x 1071°C) (2.0 x 10 m?)

Significance
As in this example, the Hall potential is generally very small, and careful experimentation with sensitive
equipment is required for its measurement.

CHECK YOUR UNDERSTANDING 11.5

A Hall probe consists of a copper strip, n = 8.5 X 1028 electrons per cubic meter, which is 2.0 cm wide and



0.10 cm thick. What is the magnetic field when I= 50 A and the Hall potential is (a) 4.0V and (b) 6.0uV?

11.7 Applications of Magnetic Forces and Fields

Learning Objectives

By the end of this section, you will be able to:
e Explain how a mass spectrometer works to separate charges
e Explain how a cyclotron works

Being able to manipulate and sort charged particles allows deeper experimentation to understand what matter
is made of. We first look at a mass spectrometer to see how we can separate ions by their charge-to-mass ratio.
Then we discuss cyclotrons as a method to accelerate charges to very high energies.

Mass Spectrometer

The mass spectrometer is a device that separates ions according to their charge-to-mass ratios. One
particular version, the Bainbridge mass spectrometer, is illustrated in Figure 11.19. Ions produced at a source
are first sent through a velocity selector, where the magnetic force is equally balanced with the electric force.
These ions all emerge with the same speed v = E/B since any ion with a different velocity is deflected
preferentially by either the electric or magnetic force, and ultimately blocked from the next stage. They then
enter a uniform magnetic field By where they travel in a circular path whose radius Ris given by Equation
11.3. The radius is measured by a particle detector located as shown in the figure.
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Figure 11.19 A schematic of the Bainbridge mass spectrometer, showing charged particles leaving a source, followed by a velocity
selector where the electric and magnetic forces are balanced, followed by a region of uniform magnetic field where the particle is ultimately
detected.

The relationship between the charge-to-mass ratio g/m and the radius R is determined by combining Equation
11.3 and Equation 11.25:

q E

m _ BBoR

11.31

Since most ions are singly charged (q =16 x 1071 C) , measured values of R can be used with this equation



to determine the mass of ions. With modern instruments, masses can be determined to one part in 108.

An interesting use of a spectrometer is as part of a system for detecting very small leaks in a research
apparatus. In low-temperature physics laboratories, a device known as a dilution refrigerator uses a mixture of
He-3, He-4, and other cryogens to reach temperatures well below 1 K. The performance of the refrigerator is
severely hampered if even a minute leak between its various components occurs. Consequently, before it is
cooled down to the desired temperature, the refrigerator is subjected to a leak test. A small quantity of gaseous
helium is injected into one of its compartments, while an adjacent, but supposedly isolated, compartment is
connected to a high-vacuum pump to which a mass spectrometer is attached. A heated filament ionizes any
helium atoms evacuated by the pump. The detection of these ions by the spectrometer then indicates a leak
between the two compartments of the dilution refrigerator.

In conjunction with gas chromatography, mass spectrometers are used widely to identify unknown
substances. While the gas chromatography portion breaks down the substance, the mass spectrometer
separates the resulting ionized molecules. This technique is used with fire debris to ascertain the cause, in law
enforcement to identify illegal drugs, in security to identify explosives, and in many medicinal applications.

Cyclotron

The cyclotron was developed by E.O. Lawrence to accelerate charged particles (usually protons, deuterons, or
alpha-particles) to large kinetic energies. These particles are then used for nuclear-collision experiments to
produce radioactive isotopes. A cyclotron is illustrated in Figure 11.20. The particles move between two flat,
semi-cylindrical metallic containers D1 and D2, called dees. The dees are enclosed in a larger metal container,
and the apparatus is placed between the poles of an electromagnet that provides a uniform magnetic field. Air
is removed from the large container so that the particles neither lose energy nor are deflected because of
collisions with air molecules. The dees are connected to a high-frequency voltage source that provides an
alternating electric field in the small region between them. Because the dees are made of metal, their interiors
are shielded from the electric field.
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Figure 11.20 The inside of a cyclotron. A uniform magnetic field is applied as circulating protons travel through the dees, gaining energy

as they traverse through the gap between the dees.

Suppose a positively charged particle is injected into the gap between the dees when D2 is at a positive
potential relative to D1. The particle is then accelerated across the gap and enters D1 after gaining kinetic
energy qV, where Vis the average potential difference the particle experiences between the dees. When the
particle is inside D1, only the uniform magnetic field ﬁ of the electromagnet acts on it, so the particle moves in
a circle of radius

mv

r=—
qgB

11.32

with a period of



_ 2zm

—_— q_B. 11.33

The period of the alternating voltage course is set at T, so while the particle is inside D1, moving along its
semicircular orbit in a time T/2, the polarity of the dees is reversed. When the particle reenters the gap, D1 is
positive with respect to D2, and the particle is again accelerated across the gap, thereby gaining a kinetic
energy qV. The particle then enters D2, circulates in a slightly larger circle, and emerges from D2 after
spending a time T/2 in this dee. This process repeats until the orbit of the particle reaches the boundary of the
dees. At that point, the particle (actually, a beam of particles) is extracted from the cyclotron and used for some
experimental purpose.

The operation of the cyclotron depends on the fact that, in a uniform magnetic field, a particle’s orbital period
is independent of its radius and its kinetic energy. Consequently, the period of the alternating voltage source
need only be set at the one value given by Equation 11.33. With that setting, the electric field accelerates
particles every time they are between the dees.

If the maximum orbital radius in the cyclotron is R, then from Equation 11.32, the maximum speed of a
circulating particle of mass m and charge q is

BR
Umax = q_ o 11.34
m

Thus, its kinetic energy when ejected from the cyclotron is

2 2 p2
! 2 _ O B°RT 11.35

~MUmax™ =

2 2m

The maximum kinetic energy attainable with this type of cyclotron is approximately 30 MeV. Above this
energy, relativistic effects become important, which causes the orbital period to increase with the radius. Up to
energies of several hundred MeV, the relativistic effects can be compensated for by making the magnetic field
gradually increase with the radius of the orbit. However, for higher energies, much more elaborate methods
must be used to accelerate particles.

Particles are accelerated to very high energies with either linear accelerators or synchrotrons. The linear
accelerator accelerates particles continuously with the electric field of an electromagnetic wave that travels
down a long evacuated tube. The Stanford Linear Accelerator (SLAC) is about 3.3 km long and accelerates
electrons and positrons (positively charged electrons) to energies of 50 GeV. The synchrotron is constructed so
that its bending magnetic field increases with particle speed in such a way that the particles stay in an orbit of
fixed radius. The world’s highest-energy synchrotron is located at CERN, which is on the Swiss-French border
near Geneva. CERN has been of recent interest with the verified discovery of the Higgs Boson (see Particle
Physics and Cosmology). This synchrotron can accelerate beams of approximately 1013 protons to energies of
about 103 GeV.

@ EXAMPLE 11.10

Accelerating Alpha-Particles in a Cyclotron

A cyclotron used to accelerate alpha-particles (m = 6.64 X 10727 kg, g =3.2 X 10~1°C) has a radius of 0.50
m and a magnetic field of 1.8 T. (a) What is the period of revolution of the alpha-particles? (b) What is their
maximum kinetic energy?

Strategy

a. The period of revolution is approximately the distance traveled in a circle divided by the speed. Identifying
that the magnetic force applied is the centripetal force, we can derive the period formula.

b. The kinetic energy can be found from the maximum speed of the beam, corresponding to the maximum
radius within the cyclotron.



Solution

a. By identifying the mass, charge, and magnetic field in the problem, we can calculate the period:
2om 27 (6.64 x 10727k
am _ 2% ( &) _73% 1075

T= = =
gB (32 x 10719C) (1.8T)

b. By identifying the charge, magnetic field, radius of path, and the mass, we can calculate the maximum
kinetic energy:
. PABR2 (32 x10719C)*(1.8T)2(0.50m)?

1 “12
— MUmax 2 = = =62 x 10712] = 39MeV.
2 2m 2(6.65 x 10~27kg)

CHECK YOUR UNDERSTANDING 11.6

A cyclotron is to be designed to accelerate protons to kinetic energies of 20 MeV using a magnetic field of 2.0 T.
What is the required radius of the cyclotron?



CHAPTER REVIEW
Key Terms

cosmic rays comprised of particles that originate
mainly from outside the solar system and reach
Earth

cyclotron device used to accelerate charged
particles to large kinetic energies

dees large metal containers used in cyclotrons that
serve contain a stream of charged particles as
their speed is increased

gauss G, unit of the magnetic field strength;
1G=107%T

Hall effect creation of voltage across a current-
carrying conductor by a magnetic field

helical motion superposition of circular motion
with a straight-line motion that is followed by a
charged particle moving in a region of magnetic
field at an angle to the field

magnetic dipole closed-current loop

magnetic dipole moment term JA of the magnetic
dipole, also called u

magnetic field lines continuous curves that show
the direction of a magnetic field; these lines point
in the same direction as a compass points, toward
the magnetic south pole of a bar magnet

magnetic force force applied to a charged particle
moving through a magnetic field

mass spectrometer device that separates ions
according to their charge-to-mass ratios

motor (dc) loop of wire in a magnetic field; when

Key Equations
Force on a charge in a magnetic field
Magnitude of magnetic force

Radius of a particle’s path in a magnetic field

Period of a particle’s motion in a magnetic field

. o . . =
Force on a current-carrying wire in a uniform magnetic field F =7

Magnetic dipole moment

Torque on a current loop

Energy of a magnetic dipole

current is passed through the loops, the magnetic
field exerts torque on the loops, which rotates a
shaft; electrical energy is converted into
mechanical work in the process

north magnetic pole currently where a compass
points to north, near the geographic North Pole;
this is the effective south pole of a bar magnet but
has flipped between the effective north and south
poles of a bar magnet multiple times over the age
of Earth

right-hand rule-1 using your right hand to
determine the direction of either the magnetic
force, velocity of a charged particle, or magnetic
field

south magnetic pole currently where a compass
points to the south, near the geographic South
Pole; this is the effective north pole of a bar
magnet but has flipped just like the north
magnetic pole

tesla SIunit for magnetic field: 1 T =1 N/A-m

velocity selector apparatus where the crossed
electric and magnetic fields produce equal and
opposite forces on a charged particle moving with
a specific velocity; this particle moves through
the velocity selector not affected by either field
while particles moving with different velocities
are deflected by the apparatus

f‘:qVXﬁ
F = quBsinf
r=%

2
T_%

- —

1 X B
H = NIAn
T=f xB



Drift velocity in crossed electric and magnetic fields
Hall potential
Hall potential in terms of drift velocity

Charge-to-mass ratio in a mass spectrometer

Maximum speed of a particle in a cyclotron

Summary

11.1 Magnetism and Its Historical
Discoveries

+ Magnets have two types of magnetic poles,
called the north magnetic pole and the south
magnetic pole. North magnetic poles are those
that are attracted toward Earth’s geographic
North Pole.

» Like poles repel and unlike poles attract.

« Discoveries of how magnets respond to currents
by Oersted and others created a framework that
led to the invention of modern electronic
devices, electric motors, and magnetic imaging
technology.

11.2 Magnetic Fields and Lines

« Charges moving across a magnetic field

experience a force determined by ﬁ‘ =qv X I_i
The force is perpendicular to the plane formed
by v and ﬁ

« The direction of the force on a moving charge is
given by the right hand rule 1 (RHR-1): Sweep
your fingers in a velocity, magnetic field plane.
Start by pointing them in the direction of
velocity and sweep towards the magnetic field.
Your thumb points in the direction of the
magnetic force for positive charges.

« Magnetic fields can be pictorially represented by
magnetic field lines, which have the following
properties:

1. The field is tangent to the magnetic field line.

2. Field strength is proportional to the line
density.

3. Field lines cannot cross.

4. Field lines form continuous, closed loops.

« Magnetic poles always occur in pairs of north
and south—it is not possible to isolate north and
south poles.

_ E
Vg = B
_ IBI
~ neA
V = Bly,
q _ E
m = BByR
_ 9BR
Umax = =

11.3 Motion of a Charged Particle in a

Magnetic Field

A magnetic force can supply centripetal force
and cause a charged particle to move in a
mvo

circular path of radius r = 4B

The period of circular motion for a charged
particle moving in a magnetic field
perpendicular to the plane of motion is
T = 2zm

=7
Helical motion results if the velocity of the
charged particle has a component parallel to the
magnetic field as well as a component

perpendicular to the magnetic field.

11.4 Magnetic Force on a Current-Carrying

Conductor

An electrical current produces a magnetic field
around the wire.

The directionality of the magnetic field
produced is determined by the right hand
rule-2, where your thumb points in the direction
of the current and your fingers wrap around the
wire in the direction of the magnetic field.

The magnetic force on current-carrying

— — -
conductorsis givenby F =11 X B where Iis

the current and /is the length of a wire in a
uniform magnetic field B.

11.5 Force and Torque on a Current Loop

The net force on a current-carrying loop of any
plane shape in a uniform magnetic field is zero.
The net torque T on a current-carrying loop of
any shape in a uniform magnetic field is
calculated using 7 = ﬁ X ﬁ where /i is the
magnetic dipole moment and ﬁ is the magnetic
field strength.

The magnetic dipole moment 4 is the product of




the number of turns of wire N, the current in the
loop I, and the area of the loop Aor i = NTAA.

11.6 The Hall Effect

« Perpendicular electric and magnetic fields exert
equal and opposite forces for a specific velocity
of entering particles, thereby acting as a velocity
selector. The velocity that passes through
undeflected is calculated by v = %.

« The Hall effect can be used to measure the sign
of the majority of charge carriers for metals. It

Conceptual Questions
11.2 Magnetic Fields and Lines

1. Discuss the similarities and differences between
the electrical force on a charge and the magnetic
force on a charge.

2. (a)Is it possible for the magnetic force on a
charge moving in a magnetic field to be zero? (b)
Is it possible for the electric force on a charge
moving in an electric field to be zero? (c) Is it
possible for the resultant of the electric and
magnetic forces on a charge moving
simultaneously through both fields to be zero?

11.3 Motion of a Charged Particle in a
Magnetic Field

3. Atagiven instant, an electron and a proton are
moving with the same velocity in a constant
magnetic field. Compare the magnetic forces on
these particles. Compare their accelerations.

4. Does increasing the magnitude of a uniform
magnetic field through which a charge is
traveling necessarily mean increasing the
magnetic force on the charge? Does changing the
direction of the field necessarily mean a change
in the force on the charge?

5. An electron passes through a magnetic field
without being deflected. What do you conclude
about the magnetic field?

6. If a charged particle moves in a straight line, can
you conclude that there is no magnetic field
present?

7. How could you determine which pole of an

Problems
11.2 Magnetic Fields and Lines

15. What is the direction of the magnetic force on a
positive charge that moves as shown in each of
the six cases?

can also be used to measure a magnetic field.

11.7 Applications of Magnetic Forces and
Fields

- A mass spectrometer is a device that separates
ions according to their charge-to-mass ratios by
first sending them through a velocity selector,
then a uniform magnetic field.

« Cyclotrons are used to accelerate charged
particles to large kinetic energies through
applied electric and magnetic fields.

electromagnet is north and which pole is south?

11.4 Magnetic Force on a Current-Carrying
Conductor

8. Describe the error that results from accidently
using your left rather than your right hand when
determining the direction of a magnetic force.

9. Considering the magnetic force law, are the
velocity and magnetic field always
perpendicular? Are the force and velocity always
perpendicular? What about the force and
magnetic field?

10. Why can a nearby magnet distort a cathode ray

tube television picture?

11. A magnetic field exerts a force on the moving
electrons in a current carrying wire. What
exerts the force on a wire?

12. There are regions where the magnetic field of
earth is almost perpendicular to the surface of
Earth. What difficulty does this cause in the use
of a compass?

11.6 The Hall Effect

13. Hall potentials are much larger for poor
conductors than for good conductors. Why?

11.7 Applications of Magnetic Forces and
Fields

14. Describe the primary function of the electric
field and the magnetic field in a cyclotron.



11 e« Chapter Review 509

g v E E
° ° ° * B, ‘ - ‘ ‘ -
B L ] L ] L ] L ] B
L ] L ] L ] L ]
—_— - ° @ @ @ —_— -
° ° ° °
' o o o ® Eout
v
(@ (b)

@ (b)

B
g X x %
x x x = F -
-_——————l_ -_—
* o x x x
x x x - (©)
- 18. Repeat previous exercise for a positive charge.
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16. Repeat previous exercise for a negative charge.

17. What is the direction of the velocity of a negative
charge that experiences the magnetic force F
shown in each of the three cases, assuming it
moves perpendicular to B?

<|

(©)

20. Repeat previous exercise for a negative charge.

21. (a) Aircraft sometimes acquire small static
charges. Suppose a supersonic jet has a
0.500-1C charge and flies due west at a speed of
660. m/s over Earth’s south magnetic pole,
where the 8.00 x 107> — T magnetic field
points straight down into the ground. What are
the direction and the magnitude of the magnetic




22.

23.

24.

force on the plane? (b) Discuss whether the
value obtained in part (a) implies this is a
significant or negligible effect.

(a) A cosmic ray proton moving toward Earth at
5.00 x 107 m/s experiences a magnetic force of
1.70 x 1070 N. What is the strength of the
magnetic field if there is a 45° angle between it
and the proton’s velocity? (b) Is the value
obtained in part a. consistent with the known
strength of Earth’s magnetic field on its surface?
Discuss.

An electron moving at 4.00 X 103m/sina
1.25-T magnetic field experiences a magnetic
force of 1.40 x 1071© N. What angle does the
velocity of the electron make with the magnetic
field? There are two answers.

(a) A physicist performing a sensitive
measurement wants to limit the magnetic force
on a moving charge in her equipment to less
than 1.00 x 10~!2 N. What is the greatest the
charge can be if it moves at a maximum speed
of 30.0 m/s in Earth’s field? (b) Discuss whether
it would be difficult to limit the charge to less
than the value found in (a) by comparing it with
typical static electricity and noting that static is
often absent.

11.3 Motion of a Charged Particle in a

Magnetic Field

25.

26.

27.

A cosmic-ray electron moves at 7.5 X 10%m/s
perpendicular to Earth’s magnetic field at an
altitude where the field strength is

1.0 x 107°T. What is the radius of the circular
path the electron follows?

(a) Viewers of Star Trek have heard of an
antimatter drive on the Starship Enterprise.
One possibility for such a futuristic energy
source is to store antimatter charged particles
in a vacuum chamber, circulating in a magnetic
field, and then extract them as needed.
Antimatter annihilates normal matter,
producing pure energy. What strength magnetic
field is needed to hold antiprotons, moving at
5.0 x 10’ m/s in a circular path 2.00 m in
radius? Antiprotons have the same mass as
protons but the opposite (negative) charge. (b) Is
this field strength obtainable with today’s
technology or is it a futuristic possibility?

(a) An oxygen-16 ion with a mass of

2.66 x 10720kg travels at 5.0 x 10°m/s
perpendicular to a 1.20-T magnetic field, which
makes it move in a circular arc with a 0.231-m

28.

29.

30.

31.

32.

radius. What positive charge is on the ion? (b)
What is the ratio of this charge to the charge of
an electron? (c) Discuss why the ratio found in
(b) should be an integer.

An electron in a TV CRT moves with a speed of
6.0 x 10° m/s, in a direction perpendicular to
Earth’s field, which has a strength of

5.0 x 1075T. (a) What strength electric field
must be applied perpendicular to the Earth’s
field to make the electron moves in a straight
line? (b) If this is done between plates separated
by 1.00 cm, what is the voltage applied? (Note
that TVs are usually surrounded by a
ferromagnetic material to shield against
external magnetic fields and avoid the need for
such a correction.)

(a) At what speed will a proton move in a
circular path of the same radius as the electron
in the previous exercise? (b) What would the
radius of the path be if the proton had the same
speed as the electron? (c) What would the radius
be if the proton had the same kinetic energy as
the electron? (d) The same momentum?

(a) What voltage will accelerate electrons to a
speed of 6.00 X 107 m/s? (b) Find the radius
of curvature of the path of a proton accelerated
through this potential in a 0.500-T field and
compare this with the radius of curvature of an
electron accelerated through the same
potential.

An alpha-particle (m =6.64 x 10727 kg,
q=32 X 1019 C) travels in a circular path of
radius 25 cm in a uniform magnetic field of
magnitude 1.5 T. (a) What is the speed of the
particle? (b) What is the kinetic energy in
electron-volts? (c) Through what potential
difference must the particle be accelerated in
order to give it this kinetic energy?

A particle of charge g and mass m is accelerated
from rest through a potential difference V, after
which it encounters a uniform magnetic field B.
If the particle moves in a plane perpendicular to
B, what is the radius of its circular orbit?

11.4 Magnetic Force on a Current-Carrying

Conductor

33.

What is the direction of the magnetic force on
the current in each of the six cases?
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34. What is the direction of a current that
experiences the magnetic force shown in each
of the three cases, assuming the current runs

perpendicular to I_i?

35.

36.
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What is the direction of the magnetic field that
produces the magnetic force shown on the
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currents in each of the three cases, assuming B
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(a) What is the force per meter on a lightning
bolt at the equator that carries 20,000 A
perpendicular to Earth’s 3.0 X 1075 T field? (b)
What is the direction of the force if the current
is straight up and Earth’s field direction is due
north, parallel to the ground?




37. (a) A dc power line for a light-rail system carries
1000 A at an angle of 30.0° to Earth’s
5.0 x 1075T field. What is the force on a 100-m
section of this line? (b) Discuss practical
concerns this presents, if any.

38. A wire carrying a 30.0-A current passes
between the poles of a strong magnet that is
perpendicular to its field and experiences a
2.16-N force on the 4.00 cm of wire in the field.
What is the average field strength?

11.5 Force and Torque on a Current Loop

39. (a) By how many percent is the torque of a
motor decreased if its permanent magnets lose
5.0% of their strength? (b) How many percent
would the current need to be increased to
return the torque to original values?

40. (a) What is the maximum torque on a 150-turn
square loop of wire 18.0 cm on a side that
carries a 50.0-A current in a 1.60-T field? (b)
What is the torque when 6is 10.9°?

41. Find the current through a loop needed to
create a maximum torque of 9.0 N - m. The loop
has 50 square turns that are 15.0 cm on a side
and is in a uniform 0.800-T magnetic field.

42. Calculate the magnetic field strength needed on
a 200-turn square loop 20.0 cm on a side to
create a maximum torque of 300 N - m if the
loop is carrying 25.0 A.

43. Since the equation for torque on a current-
carrying loop is T = NIABsin 6, the units of N -
m must equal units of A - m? T. Verify this.

44. (a) At what angle 0 is the torque on a current
loop 90.0% of maximum? (b) 50.0% of
maximum? (c) 10.0% of maximum?

45. A proton has a magnetic field due to its spin.
The field is similar to that created by a circular
current loop 0.65 X 10~ m in radius with a
current of 1.05 x 10*A. Find the maximum
torque on a proton in a 2.50-T field. (This is a
significant torque on a small particle.)

46. (a) A 200-turn circular loop of radius 50.0 cm is
vertical, with its axis on an east-west line. A
current of 100 A circulates clockwise in the loop
when viewed from the east. Earth’s field here is
due north, parallel to the ground, with a
strength of 3.0 X 1073 T. What are the direction
and magnitude of the torque on the loop? (b)
Does this device have any practical applications
as a motor?

47.

Repeat the previous problem, but with the loop
lying flat on the ground with its current
circulating counterclockwise (when viewed
from above) in a location where Earth’s field is
north, but at an angle 45.0° below the horizontal
and with a strength of 6.0 X 1075T.
N
/4 45°
} B /Y
w U E

11.6 The Hall Effect

48.

49.

50.

51.

A strip of copper is placed in a uniform
magnetic field of magnitude 2.5 T. The Hall
electric field is measured tobe 1.5 x 1073 V/m.
(a) What is the drift speed of the conduction
electrons? (b) Assuming thatn = 8.0 X 10%8
electrons per cubic meter and that the cross-
sectional area of the strip is 5.0 X 107%m2,
calculate the current in the strip. (c) What is the
Hall coefficient 1/nq?

The cross-sectional dimensions of the copper
strip shown are 2.0 cm by 2.0 mm. The strip
carries a current of 100 A, and it is placed in a
magnetic field of magnitude B= 1.5 T. What are
the value and polarity of the Hall potential in the
copper strip?

/

[
The magnitudes of the electric and magnetic
fields in a velocity selector are 1.8 x 10°V/m
and 0.080 T, respectively. (a) What speed must a
proton have to pass through the selector? (b)
Also calculate the speeds required for an alpha-
particle and a singly ionized s016 atom to pass
through the selector.
A charged particle moves through a velocity

2.0cm X 2.0 mm



52.

selector at constant velocity. In the selector, E =
1.0 X 10*N/C and B = 0.250 T. When the
electric field is turned off, the charged particle
travels in a circular path of radius 3.33 mm.
Determine the charge-to-mass ratio of the
particle.

A Hall probe gives a reading of 1.5pV for a
current of 2 A when it is placed in a magnetic
field of 1 T. What is the magnetic field in a
region where the reading is 2pV for 1.7 A of
current?

11.7 Applications of Magnetic Forces and

Fields

53.

54.

55.

A physicist is designing a cyclotron to accelerate
protons to one-tenth the speed of light. The
magnetic field will have a strength of 1.5 T.
Determine (a) the rotational period of the
circulating protons and (b) the maximum radius
of the protons’ orbit.

The strengths of the fields in the velocity
selector of a Bainbridge mass spectrometer are
B=0.500Tand E= 1.2 x 107 V/m, and the
strength of the magnetic field that separates the
ionsis B, = 0.750 T. A stream of singly charged
Liionsis found to bend in a circular arc of
radius 2.32 cm. What is the mass of the Li ions?
The magnetic field in a cyclotron is 1.25 T, and
the maximum orbital radius of the circulating
protons is 0.40 m. (a) What is the kinetic energy
of the protons when they are ejected from the

Additional Problems

58.

59.

60.

61.

Calculate the magnetic force on a hypothetical
particle of charge 1.0 X 10-19¢ moving with a
velocity of 6.0 X 10*im/s in a magnetic field of
1.2KT.

Repeat the previous problem with a new
magnetic field of (0.4f + 1.2§)T.

An electron is projected into a uniform
magnetic field (O.S’f + O.Sﬁ)T with a velocity of
(3.0 +4.0j) x 10° m/s. What is the magnetic
force on the electron?

The mass and charge of a water droplet are

1.0 x 10‘4g and 2.0 x 1078C, respectively. If
the droplet is given an initial horizontal velocity
of 5.0 x 10°im/s, what magnetic field will keep
it moving in this direction? Why must gravity be
considered here?

56.

57.

62.

cyclotron? (b) What is this energy in MeV? (c)
Through what potential difference would a
proton have to be accelerated to acquire this
kinetic energy? (d) What is the period of the
voltage source used to accelerate the protons?
(e) Repeat the calculations for alpha-particles.
A mass spectrometer is being used to separate
common oxygen-16 from the much rarer
oxygen-18, taken from a sample of old glacial
ice. (The relative abundance of these oxygen
isotopes is related to climatic temperature at
the time the ice was deposited.) The ratio of the
masses of these two ions is 16 to 18, the mass of
oxygen-16is 2.66 X 10_26kg, and they are
singly charged and travel at 5.00 X 10°m/sina
1.20-T magnetic field. What is the separation
between their paths when they hit a target after
traversing a semicircle?

(a) Triply charged uranium-235 and
uranium-238 ions are being separated in a
mass spectrometer. (The much rarer
uranium-235 is used as reactor fuel.) The
masses of the ions are 3.90 x 102 kg and
3.95 x 1072 kg, respectively, and they travel at
3.0 x 10°m/s in a 0.250-T field. What is the
separation between their paths when they hit a
target after traversing a semicircle? (b) Discuss
whether this distance between their paths
seems to be big enough to be practical in the
separation of uranium-235 from uranium-238.

Four different proton velocities are given. For
each case, determine the magnetic force on the
proton in terms of e, v, and By.




63.

64.

65.

66.

67.

68.

69.

70.

71.

An electron of kinetic energy 2000 eV passes
between parallel plates that are 1.0 cm apart
and kept at a potential difference of 300 V. What
is the strength of the uniform magnetic field B
that will allow the electron to travel undeflected
through the plates? Assume E and B are
perpendicular.

An alpha-particle (m =6.64 X 10‘27kg,
g=32 X 10_19C) moving with a velocity

V= (2.0§ - 4.0/12) x 10°m/s enters a region
where E = (5.0 — 2.03) x 10* V/m and

B = (1.0 + 4.0K) x 1072T. What is the initial
force on it?

An electron moving with a velocity

V= (4.0i+3.0j +20k) x 10°m/sentersa

region where there is a uniform electric field
and a uniform magnetic field. The magnetic
field is given by

B = (1.0i —2.0j +4.0k) x 1072T.If the
electron travels through a region without being
deflected, what is the electric field?

At a particular instant, an electron is traveling
west to east with a kinetic energy of 10 keV.
Earth’s magnetic field has a horizontal
component of 1.8 X 1075 T north and a vertical
component of 5.0 X 1075T down. (a) What is
the path of the electron? (b) What is the radius
of curvature of the path?

What is the (a) path of a proton and (b) the
magnetic force on the proton that is traveling
west to east with a kinetic energy of 10 keV in
Earth’s magnetic field that has a horizontal
component of 1.8 x 107 T north and a vertical
component of 5.0 x 10™° T down?

What magnetic field is required in order to
confine a proton moving with a speed of

4.0 x 10°m/s to a circular orbit of radius 10
cm?

An electron and a proton move with the same
speed in a plane perpendicular to a uniform
magnetic field. Compare the radii and periods
of their orbits.

A proton and an alpha-particle have the same
kinetic energy and both move in a plane
perpendicular to a uniform magnetic field.
Compare the periods of their orbits.

A singly charged ion takes 2.0 x 107 3sto
complete eight revolutions in a uniform
magnetic field of magnitude 2.0 x 1072T.
What is the mass of the ion?

72.

75.

76.

77.

78.

79.

A particle moving downward at a speed of

6.0 x 10°m/s enters a uniform magnetic field
that is horizontal and directed from east to west.
(a) If the particle is deflected initially to the
north in a circular arc, is its charge positive or
negative? (b) If B=0.25 T and the charge-to-
mass ratio (g/m) of the particle is

4.0 x 107C/kg, what is the radius of the path?
(c) What is the speed of the particle after it has
moved in the field for 1.0 x 107>s? for 2.0 s?

. A proton, deuteron, and an alpha-particle are all

accelerated from rest through the same
potential difference. They then enter the same
magnetic field, moving perpendicular to it.
Compute the ratios of the radii of their circular
paths. Assume that my = 2m, and mq = 4m,,.

. A singly charged ion is moving in a uniform

magnetic field of 7.5 X 1072T completes 10
revolutions in 3.47 x 107%s. Identify the ion.
Two particles have the same linear momentum,
but particle A has four times the charge of
particle B. If both particles move in a plane
perpendicular to a uniform magnetic field, what
is the ratio R4/Rp of the radii of their circular
orbits?

A uniform magnetic field of magnitude B is
directed parallel to the z-axis. A proton enters
the field with a velocity

V= (4‘/]'\ + 3/12) x 10°m/s and travels in a helical
path with a radius of 5.0 cm. (a) What is the
value of B? (b) What is the time required for one
trip around the helix? (c) Where is the proton
5.0 x 107 7s after entering the field?

An electron moving along the +x -axis at

5.0 x 10°m/s enters a magnetic field that
makes a 75° angle with the x-axis of magnitude
0.20 T. Calculate the (a) pitch and (b) radius of
the trajectory.

(a) A 0.750-m-long section of cable carrying
current to a car starter motor makes an angle of
60° with Earth’s 5.5 x 1077 T field. What is the
current when the wire experiences a force of
7.0 x 1073N? (b) If you run the wire between
the poles of a strong horseshoe magnet,
subjecting 5.00 cm of it to a 1.75-T field, what
force is exerted on this segment of wire?

(a) What is the angle between a wire carrying an
8.00-A current and the 1.20-T field it is in if 50.0
cm of the wire experiences a magnetic force of
2.40 N? (b) What is the force on the wire if it is
rotated to make an angle of 90° with the field?



80.

81.

82.

83.

84.

A 1.0-m-long segment of wire lies along the
x-axis and carries a current of 2.0 A in the
positive x-direction. Around the wire is the
magnetic field of (3.0§ X 4.0§) x 1073T. Find

the magnetic force on this segment.

A 5.0-m section of a long, straight wire carries a
current of 10 A while in a uniform magnetic
field of magnitude 8.0 x 1073T. Calculate the
magnitude of the force on the section if the
angle between the field and the direction of the
current is (a) 45°; (b) 90°; (c) 0°; or (d) 180°.

An electromagnet produces a magnetic field of
magnitude 1.5 T throughout a cylindrical region
of radius 6.0 cm. A straight wire carrying a
current of 25 A passes through the field as
shown in the accompanying figure. What is the
magnetic force on the wire?

|+—12.0 cm —]|

25 A

=

The current loop shown in the accompanying
figure lies in the plane of the page, as does the
magnetic field. Determine the net force and the
net torque on the loopif I=10Aand B=1.5T.

AB
| = 10A
.-—
8.0cm / /
_/ ‘ 60°
—_—
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A circular coil of radius 5.0 cm is wound with
five turns and carries a current of 5.0 A. If the
coil is placed in a uniform magnetic field of
strength 5.0 T, what is the maximum torque on
it?

85.

86.

87.

88.

89.

90.

91.

A circular coil of wire of radius 5.0 cm has 20
turns and carries a current of 2.0 A. The coil lies
in a magnetic field of magnitude 0.50 T that is
directed parallel to the plane of the coil. (a)
What is the magnetic dipole moment of the coil?
(b) What is the torque on the coil?
A current-carrying coil in a magnetic field
experiences a torque that is 75% of the
maximum possible torque. What is the angle
between the magnetic field and the normal to
the plane of the coil?
A 4.0-cm by 6.0-cm rectangular current loop
carries a current of 10 A. What is the magnetic
dipole moment of the loop?
A circular coil with 200 turns has a radius of 2.0
cm. (a) What current through the coil results in
a magnetic dipole moment of 3.0 Am2? (b) What
is the maximum torque that the coil will
experience in a uniform field of strength
5.0 x 107212 (c) If the angle between p and B
is 45°, what is the magnitude of the torque on
the coil? (d) What is the magnetic potential
energy of coil for this orientation?
The current through a circular wire loop of
radius 10 cm is 5.0 A. (a) Calculate the magnetic
dipole moment of the loop. (b) What is the
torque on the loop if it is in a uniform 0.20-T
magnetic field such that y and B are directed at
30° to each other? (c) For this position, what is
the potential energy of the dipole?
A wire of length 1.0 m is wound into a single-
turn planar loop. The loop carries a current of
5.0 A, and it is placed in a uniform magnetic
field of strength 0.25 T. (a) What is the
maximum torque that the loop will experience if
it is square? (b) If it is circular? (c) At what angle
relative to Bwould the normal to the circular
coil have to be oriented so that the torque on it
would be the same as the maximum torque on
the square coil?
Consider an electron rotating in a circular orbit
of radius r. Show that the magnitudes of the
magnetic dipole moment p and the angular
momentum L of the electron are related by:

U e

L 2m




92.

93.

924.

95.

96.

The Hall effect is to be used to find the sign of
charge carriers in a semiconductor sample. The
probe is placed between the poles of a magnet
so that magnetic field is pointed up. A current is
passed through a rectangular sample placed
horizontally. As current is passed through the
sample in the east direction, the north side of
the sample is found to be at a higher potential
than the south side. Decide if the number
density of charge carriers is positively or
negatively charged.

The density of charge carriers for copper is
8.47 x 1028 electrons per cubic meter. What
will be the Hall voltage reading from a probe
made up of

3cm X 2cm X 1ecm (L X W X T) copper
plate when a current of 1.5 A is passed through
it in a magnetic field of 2.5 T perpendicular to
the3cm X 2 cm.

The Hall effect is to be used to find the density
of charge carriers in an unknown material. A
Hall voltage 40 pV for 3-A current is observed
in a 3-T magnetic field for a rectangular sample
with length 2 cm, width 1.5 cm, and height 0.4
cm. Determine the density of the charge
carriers.

Show that the Hall voltage across wires made of
the same material, carrying identical currents,
and subjected to the same magnetic field is
inversely proportional to their diameters. (Hint:
Consider how drift velocity depends on wire
diameter.)

A velocity selector in a mass spectrometer uses
a 0.100-T magnetic field. (a) What electric field
strength is needed to select a speed of

4.0 x 10°m/s? (b) What is the voltage between
the plates if they are separated by 1.00 cm?

Challenge Problems

102. A particle of charge +q and mass m moves with

velocity V¢ pointed in the +y-direction as it
crosses the x-axis at x= R at a particular time.
There is a negative charge —Q fixed at the
origin, and there exists a uniform magnetic
field ﬁo pointed in the +z-direction. It is found
that the particle describes a circle of radius R
about -Q. Find ﬁo in terms of the given
quantities.

97.

98.

99.

100.

101.

103.

Find the radius of curvature of the path of a
25.0-MeV proton moving perpendicularly to the
1.20-T field of a cyclotron.
Unreasonable results To construct a non-
mechanical water meter, a 0.500-T magnetic
field is placed across the supply water pipe to a
home and the Hall voltage is recorded. (a) Find
the flow rate through a 3.00-cm-diameter pipe
if the Hall voltage is 60.0 mV. (b) What would the
Hall voltage be for the same flow rate through a
10.0-cm-diameter pipe with the same field
applied?
Unreasonable results A charged particle
having mass 6.64 X 10727 kg (that of a helium
atom) moving at 8.70 X 10° m/s perpendicular
to a 1.50-T magnetic field travels in a circular
path of radius 16.0 mm. (a) What is the charge
of the particle? (b) What is unreasonable about
this result? (¢) Which assumptions are
responsible?
Unreasonable results An inventor wants to
generate 120-V power by moving a 1.00-m-
long wire perpendicular to Earth’s
5.00 x 1075 T field. (a) Find the speed with
which the wire must move. (b) What is
unreasonable about this result? (c) Which
assumption is responsible?
Unreasonable results Frustrated by the small
Hall voltage obtained in blood flow
measurements, a medical physicist decides to
increase the applied magnetic field strength to
get a 0.500-V output for blood moving at 30.0
cm/s in a 1.50-cm-diameter vessel. (a) What
magnetic field strength is needed? (b) What is
unreasonable about this result? (c) Which
premise is responsible?

A proton of speed v=6 X 10° m/s enters a
region of uniform magnetic field of B=0.5T at
an angle of ¢ = 30° to the magnetic field. In the
region of magnetic field proton describes a
helical path with radius R and pitch p (distance
between loops). Find R and p.



104. A particle’s path is bent when it passes through

aregion of non-zero magnetic field although
its speed remains unchanged. This is very
useful for “beam steering” in particle
accelerators. Consider a proton of speed

4 x 10°m/s entering a region of uniform
magnetic field 0.2 T over a 5-cm-wide region.
Magnetic field is perpendicular to the velocity
of the particle. By how much angle will the path
of the proton be bent? (Hint: The particle
comes out tangent to a circle.)
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107. The accompanied figure shows an

arrangement for measuring mass of ions by an
instrument called the mass spectrometer. An
ion of mass m and charge +q is produced
essentially at rest in source S, a chamber in
which a gas discharge is taking place. The ion
is accelerated by a potential difference Ve
and allowed to enter a region of constant
magnetic field ﬁo. In the uniform magnetic
field region, the ion moves in a semicircular
path striking a photographic plate at a distance

x from the entry point. Derive a formula for
mass m in terms of By, q, Vacc, and x.
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105. In aregion a non-uniform magnetic field exists :
such that By =0, By =0, and B; = ax, Viace ,
where a is a constant. At some time t, a wire of | P
length L is carrying a current Iis located along *'____'
the x-axis from origin to x = L. Find the i
maghnetic force on the wire at this instant in Source
time. 108. A wire is made into a circular shape of radius R

106. A copper rod of mass m and length L is hung from and pivoted along a central support. The two ends
the ceiling using two springs of spring constant k. A of the wire are touching a brush that is connected
uniform magnetic field of magnitude By pointing to a dc power source. The structure is between the
perpendicular to the rod and spring (coming into poles of a magnet such that we can assume there is
the page in the figure) exists in a region of space a uniform magnetic field on the wire. In terms of a
covering a length w of the copper rod. The ends of coordinate system with origin at the center of the
the rod are then connected by flexible copper wire ring, magnetic field is By = By, By = B; =0, and
across the terminals of a battery of voltage V. the ring rotates about the z-axis. Find the torque
Determine the change in the length of the springs on the ring when it is not in the xz-plane.
when a current I runs through the copper rod in the
direction shown in figure. (Ignore any force by the
flexible wire.)
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109. Along-rigid wire lies along the x-axis and
carries a current of 2.5 A in the positive
x-direction. Around the wire is the magnetic
field ﬁ =2.0i + 5.0x2/j\, with x in meters and B
in millitesla. Calculate the magnetic force on
the segment of wire between x=2.0 m and x =
4.0 m.
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110. A circular loop of wire of area 10 cm? carries a
current of 25 A. At a particular instant, the
loop lies in the xy-plane and is subjected to a
magnetic field
B = (20i +6.0] +8.0Kk) x 107 T.As
viewed from above the xy-plane, the current is
circulating clockwise. (a) What is the magnetic
dipole moment of the current loop? (b) At this
instant, what is the magnetic torque on the
loop?

Access for free at openstax.org.




CHAPTER 12 S
Sources of Magnetic Fields

Figure 12.1 An external hard drive attached to a computer works by magnetically encoding information that can be
stored or retrieved quickly. A key idea in the development of digital devices is the ability to produce and use
maghnetic fields in this way. (credit: modification of work by “Miss Karen”/Flickr)

Chapter Outline

12.1 The Biot-Savart Law

12.2 Magnetic Field Due to a Thin Straight Wire

12.3 Magnetic Force between Two Parallel Currents

12.4 Magnetic Field of a Current Loop

12.5 Ampére’s Law

12.6 Solenoids and Toroids

12.7 Magnetism in Matter

INTRODUCTION In the preceding chapter, we saw that a moving charged particle produces a magnetic field.
This connection between electricity and magnetism is exploited in electromagnetic devices, such as a
computer hard drive. In fact, it is the underlying principle behind most of the technology in modern society,
including telephones, television, computers, and the internet.

In this chapter, we examine how magnetic fields are created by arbitrary distributions of electric current, using
the Biot-Savart law. Then we look at how current-carrying wires create magnetic fields and deduce the forces



that arise between two current-carrying wires due to these magnetic fields. We also study the torques
produced by the magnetic fields of current loops. We then generalize these results to an important law of
electromagnetism, called Ampére’s law.

We examine some devices that produce magnetic fields from currents in geometries based on loops, known as
solenoids and toroids. Finally, we look at how materials behave in magnetic fields and categorize materials
based on their responses to magnetic fields.

12.1 The Biot-Savart Law

Learning Objectives
By the end of this section, you will be able to:
e Explain how to derive a magnetic field from an arbitrary current in a line segment
e Calculate magnetic field from the Biot-Savart law in specific geometries, such as a current in a line and a
current in a circular arc

We have seen that mass produces a gravitational field and also interacts with that field. Charge produces an
electric field and also interacts with that field. Since moving charge (that is, current) interacts with a magnetic
field, we might expect that it also creates that field—and it does.

The equation used to calculate the magnetic field produced by a current is known as the Biot-Savart law. It is
an empirical law named in honor of two scientists who investigated the interaction between a straight,
current-carrying wire and a permanent magnet. This law enables us to calculate the magnitude and direction
of the magnetic field produced by a current in a wire. The Biot-Savart law states that at any point P (Figure

12.2), the magnetic field dﬁ due to an element df of a current-carrying wire is given by

-
-> Ho Idl x t
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4z r2
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Figure 12.2 A current element IdT produces a magnetic field at point P given by the Biot-Savart law.

The constant y( is known as the permeability of free space and is exactly
po =4 x 107T- m/A 12.2

N

in the SI system. The infinitesimal wire segment d1 is in the same direction as the current I (assumed positive),
- -

ris the distance from d1 to Pand T is a unit vector that points from d1 to P, as shown in the figure.

The direction of dﬁ is determined by applying the right-hand rule to the vector product d_f X T.The
-
magnitude of dB is

_uo Idlsind

dB =
4 r2

12.3

where 6 is the angle between a’_f and F. Notice that if @ = 0, then dﬁ = 6 The field produced by a current
- -
element Idl has no component parallel to d1.



The magnetic field due to a finite length of current-carrying wire is found by integrating Equation 12.3 along
the wire, giving us the usual form of the Biot-Savart law.

Biot-Savart law

- -
The magnetic field B due to an element d1 of a current-carrying wire is given by

g Ho Idl x ¢

47 2 ’ 12.4

wire

Since this is a vector integral, contributions from different current elements may not point in the same
direction. Consequently, the integral is often difficult to evaluate, even for fairly simple geometries. The
following strategy may be helpful.

@ PROBLEM-SOLVING STRATEGY

Solving Biot-Savart Problems
To solve Biot-Savart law problems, the following steps are helpful:

1. Identify that the Biot-Savart law is the chosen method to solve the given problem. If there is symmetry in
the problem comparing ﬁ and d_f, Ampeére’s law may be the preferred method to solve the question.

2. Draw the current element length d_f and the unit vector T, noting that dY points in the direction of the
current and T points from the current element toward the point where the field is desired.

3. Calculate the cross product dT X T. The resultant vector gives the direction of the magnetic field
according to the Biot-Savart law.

4. Use Equation 12.4 and substitute all given quantities into the expression to solve for the magnetic field.
Note all variables that remain constant over the entire length of the wire may be factored out of the
integration.

5. Use the right-hand rule to verify the direction of the magnetic field produced from the current or to write
down the direction of the magnetic field if only the magnitude was solved for in the previous part.

@ EXAMPLE 12.1

Calculating Magnetic Fields of Short Current Segments

A short wire of length 1.0 cm carries a current of 2.0 A in the vertical direction (Figure 12.3). The rest of the
wire is shielded so it does not add to the magnetic field produced by the wire. Calculate the magnetic field at
point P, which is 1 meter from the wire in the x-direction.

Figure 12.3 A small line segment carries a current I'in the vertical direction. What is the magnetic field at a distance x from the segment?



Strategy

We can determine the magnetic field at point P using the Biot-Savart law. Since the current segment is much
smaller than the distance x, we can drop the integral from the expression. The integration is converted back
into a summation, but only for small dI, which we now write as Al. Another way to think about it is that each of
the radius values is nearly the same, no matter where the current element is on the line segment, if Al is small
compared to x. The angle @ is calculated using a tangent function. Using the numbers given, we can calculate
the magnetic field at P.

Solution
The angle between A_f and T is calculated from trigonometry, knowing the distances ] and x from the problem:

1m
0 =tan~! = 89.4°,
an (0.01 m)

The magnetic field at point Pis calculated by the Biot-Savart law:

- Ho IAlsind — (1 x 10_7T-m/A)<2A(0'01 m)sin(89.4°)
(1 m)?

- =20 x 107°T.
4z r >

From the right-hand rule and the Biot-Savart law, the field is directed into the page.

Significance
This approximation is only good if the length of the line segment is very small compared to the distance from

the current element to the point. If not, the integral form of the Biot-Savart law must be used over the entire
line segment to calculate the magnetic field.

CHECK YOUR UNDERSTANDING 12.1

Using Example 12.1, at what distance would P have to be to measure a magnetic field half of the given answer?

@ EXAMPLE 12.2

Calculating Magnetic Field of a Circular Arc of Wire

A wire carries a current Iin a circular arc with radius R swept through an arbitrary angle 8 (Figure 12.4).
Calculate the magnetic field at the center of this arc at point P.

5
Figure 12.4 A wire segment carrying a current I. The path d1 and radial direction T are indicated.

Strategy

We can determine the magnetic field at point P using the Biot-Savart law. The radial and path length directions
are always at a right angle, so the cross product turns into multiplication. We also know that the distance along
the path dlis related to the radius times the angle 6 (in radians). Then we can pull all constants out of the
integration and solve for the magnetic field.

Solution
The Biot-Savart law starts with the following equation:



-
> Idl x T
p=t0 [ 20
4 r2
wire
As we integrate along the arc, all the contributions to the magnetic field are in the same direction (out of the
page), so we can work with the magnitude of the field. The cross product turns into multiplication because the
path dland the radial direction are perpendicular. We can also substitute the arc length formula, dI = rd®:

_ Ho Irdo

4 r2
wire

B

The current and radius can be pulled out of the integral because they are the same regardless of where we are
on the path. This leaves only the integral over the angle,

_ Hol
drr
wire

B

The angle varies on the wire from 0 to 8; hence, the result is

Ho 16
B= .
4zr

Significance

The direction of the magnetic field at point Pis determined by the right-hand rule, as shown in the previous
chapter. If there are other wires in the diagram along with the arc, and you are asked to find the net magnetic
field, find each contribution from a wire or arc and add the results by superposition of vectors. Make sure to
pay attention to the direction of each contribution. Also note that in a symmetric situation, like a straight or
circular wire, contributions from opposite sides of point P cancel each other.

CHECK YOUR UNDERSTANDING 12.2

The wire loop forms a full circle of radius R and current I. What is the magnitude of the magnetic field at the
center?

12.2 Magnetic Field Due to a Thin Straight Wire

Learning Objectives
By the end of this section, you will be able to:
e Explain how the Biot-Savart law is used to determine the magnetic field due to a thin, straight wire.
e Determine the dependence of the magnetic field from a thin, straight wire based on the distance from it and
the current flowing in the wire.
e Sketch the magnetic field created from a thin, straight wire by using the second right-hand rule.

How much current is needed to produce a significant magnetic field, perhaps as strong as Earth’s field?
Surveyors will tell you that overhead electric power lines create magnetic fields that interfere with their
compass readings. Indeed, when Oersted discovered in 1820 that a current in a wire affected a compass
needle, he was not dealing with extremely large currents. How does the shape of wires carrying current affect
the shape of the magnetic field created? We noted in Chapter 28 that a current loop created a magnetic field
similar to that of a bar magnet, but what about a straight wire? We can use the Biot-Savart law to answer all of
these questions, including determining the magnetic field of a long straight wire.

Figure 12.5 shows a section of an infinitely long, straight wire that carries a current I. What is the magnetic
field at a point P, located a distance R from the wire?
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Figure 12.5 A section of a thin, straight current-carrying wire. The independent variable 6 has the limits 8; and 6, .

Let’s begin by considering the magnetic field due to the current element I dX located at the position x. Using
the right-hand rule 1 from the previous chapter, dX X T points out of the page for any element along the wire.
At point P, therefore, the magnetic fields due to all current elements have the same direction. This means that
we can calculate the net field there by evaluating the scalar sum of the contributions of the elements. With

|d§ X T| = (dx)(1) sin 0, we have from the Biot-Savart law

B Ho Isin Odx
= ar 2 12.5

wire

The wire is symmetrical about point O, so we can set the limits of the integration from zero to infinity and
double the answer, rather than integrate from negative infinity to positive infinity. Based on the picture and
geometry, we can write expressions for rand sin 6 in terms of x and R, namely:

vV x2 + R?

R
V x2+R2

Substituting these expressions into Equation 12.5, the magnetic field integration becomes

r

sinf =

[o]
gt / R—dxm. 12.6
2 0 (x2 + RZ)
Evaluating the integral yields
2]
po ol * 12.7

" 2zR (x2 +R2)1/2 0 '

Substituting the limits gives us the solution

1
B= ;OR‘ 12.8
T

The magnetic field lines of the infinite wire are circular and centered at the wire (Figure 12.6), and they are
identical in every plane perpendicular to the wire. Since the field decreases with distance from the wire, the
spacing of the field lines must increase correspondingly with distance. The direction of this magnetic field may
be found with a second form of the right-hand rule (illustrated in Figure 12.6). If you hold the wire with your
right hand so that your thumb points along the current, then your fingers wrap around the wire in the same

=

sense as B.



12.2 « Magnetic Field Due to a Thin Straight Wire
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Figure 12.6 Some magnetic field lines of an infinite wire. The direction of fl can be found with a form of the right-hand rule.

The direction of the field lines can be observed experimentally by placing several small compass needles on a
circle near the wire, as illustrated in Figure 12.7. When there is no current in the wire, the needles align with
Earth’s magnetic field. However, when a large current is sent through the wire, the compass needles all point
tangent to the circle. Iron filings sprinkled on a horizontal surface also delineate the field lines, as shown in

Figure 12.7.
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Figure 12.7 The shape of the magnetic field lines of a long wire can be seen using (a) small compass needles and (b) iron filings.

@ EXAMPLE 12.3

Calculating Magnetic Field Due to Three Wires

Three wires sit at the corners of a square, all carrying currents of 2 amps into the page as shown in Figure 12.8.
Calculate the magnitude of the magnetic field at the other corner of the square, point P, if the length of each
side of the square is 1 cm.

Figure 12.8 Three wires have current flowing into the page. The magnetic field is determined at the fourth corner of the square.

525



Strategy

The magnetic field due to each wire at the desired point is calculated. The diagonal distance is calculated using
the Pythagorean theorem. Next, the direction of each magnetic field’s contribution is determined by drawing a
circle centered at the point of the wire and out toward the desired point. The direction of the magnetic field
contribution from that wire is tangential to the curve. Lastly, working with these vectors, the resultant is
calculated.

Solution
Wires 1 and 3 both have the same magnitude of magnetic field contribution at point P:

pol  (4r x 107'T-m/A)2A)

4 x 107°T.
27R 22(0.01 m) x 10

By =Bz =

Wire 2 has a longer distance and a magnetic field contribution at point P of:

pol _ (4r x 107'T-m/A)2A) _

107°T.
27R 272(0.01414 m) 3 x 10

By =

The vectors for each of these magnetic field contributions are shown.

The magnetic field in the x-direction has contributions from wire 3 and the x-component of wire 2:
Bnetx = —4 X 10T —2.83 x 10T cos(45°) = -6 x 107°T.

The y-component is similarly the contributions from wire 1 and the y-component of wire 2:
Bnety = —4 x 107°T —2.83 x 107 Tsin(45°) = =6 x 107T.

Therefore, the net magnetic field is the resultant of these two components:

+ B2

- 2
Bnet - B net y

net x

Buet = /(=6 x 10°5T) + (=6 x 10-°T)’
Bnet =8 x 107°T.

Significance

The geometry in this problem results in the magnetic field contributions in the x- and y-directions having the
same magnitude. This is not necessarily the case if the currents were different values or if the wires were
located in different positions. Regardless of the numerical results, working on the components of the vectors
will yield the resulting magnetic field at the point in need.

CHECK YOUR UNDERSTANDING 12.3

Using Example 12.3, keeping the currents the same in wires 1 and 3, what should the current be in wire 2 to
counteract the magnetic fields from wires 1 and 3 so that there is no net magnetic field at point P?



12.3 Magnetic Force between Two Parallel Currents

Learning Objectives
By the end of this section, you will be able to:
e Explain how parallel wires carrying currents can attract or repel each other
e Define the ampere and describe how it is related to current-carrying wires
e Calculate the force of attraction or repulsion between two current-carrying wires

You might expect that two current-carrying wires generate significant forces between them, since ordinary
currents produce magnetic fields and these fields exert significant forces on ordinary currents. But you might
not expect that the force between wires is used to define the ampere. It might also surprise you to learn that
this force has something to do with why large circuit breakers burn up when they attempt to interrupt large
currents.

The force between two long, straight, and parallel conductors separated by a distance rcan be found by
applying what we have developed in the preceding sections. Figure 12.9 shows the wires, their currents, the
field created by one wire, and the consequent force the other wire experiences from the created field. Let us
consider the field produced by wire 1 and the force it exerts on wire 2 (call the force F;). The field due to I ata
distance ris

1
B, = Ho°L 12.9
2rr
—-— f —— -—
— 3

(@ (b)
Figure 12.9 (a) The magnetic field produced by a long straight conductor is perpendicular to a parallel conductor, as indicated by right-
hand rule (RHR)-2. (b) A view from above of the two wires shown in (a), with one magnetic field line shown for wire 1. RHR-1 shows that the
force between the parallel conductors is attractive when the currents are in the same direction. A similar analysis shows that the force is

repulsive between currents in opposite directions.

This field is uniform from the wire 1 and perpendicular to it, so the force F; it exerts on a length I of wire 2 is
given by F = IlBsin 8 with sin § = 1:

F, = LIB;. 12.10
The forces on the wires are equal in magnitude, so we just write F for the magnitude of F,. (Note that

- -
F, = —F,.) Since the wires are very long, it is convenient to think in terms of F/I, the force per unit length.
Substituting the expression for By into Equation 12.10 and rearranging terms gives

F_mhibh
/ 2ar

12.11

The ratio F/lis the force per unit length between two parallel currents I; and I, separated by a distance r. The
force is attractive if the currents are in the same direction and repulsive if they are in opposite directions.

This force is responsible for the pinch effect in electric arcs and other plasmas. The force exists whether the



currents are in wires or not. It is only apparent if the overall charge density is zero; otherwise, the Coulomb
repulsion overwhelms the magnetic attraction. In an electric arc, where charges are moving parallel to one
another, an attractive force squeezes currents into a smaller tube. In large circuit breakers, such as those used
in neighborhood power distribution systems, the pinch effect can concentrate an arc between plates of a
switch trying to break a large current, burn holes, and even ignite the equipment. Another example of the
pinch effect is found in the solar plasma, where jets of ionized material, such as solar flares, are shaped by
magnetic forces.

The definition of the ampere is based on the force between current-carrying wires. Note that for long, parallel
wires separated by 1 meter with each carrying 1 ampere, the force per meter is
F (47 x 1077T - m/A) (1 A)

i =2 x 1077 N/m. 12.12
I 2x)(1 m) m

Since g is exactly 4z X 10~7 T - m/A by definition, and because 1 T = 1 N/(A - m), the force per meter is
exactly2 x 10~7 N/m. This is the basis of the definition of the ampere.

Infinite-length wires are impractical, so in practice, a current balance is constructed with coils of wire
separated by a few centimeters. Force is measured to determine current. This also provides us with a method
for measuring the coulomb. We measure the charge that flows for a current of one ampere in one second. That
is,1 C =1 A - s. For both the ampere and the coulomb, the method of measuring force between conductors is
the most accurate in practice.

@ EXAMPLE 12.4

Calculating Forces on Wires

Two wires, both carrying current out of the page, have a current of magnitude 5.0 mA. The first wire is located
at (0.0 cm, 3.0 cm) while the other wire is located at (4.0 cm, 0.0 cm) as shown in Figure 12.10. What is the
magnetic force per unit length of the first wire on the second and the second wire on the first?

A
3cm e

o »
4 cm

Figure 12.10 Two current-carrying wires at given locations with currents out of the page.

Strategy

Each wire produces a magnetic field felt by the other wire. The distance along the hypotenuse of the triangle
between the wires is the radial distance used in the calculation to determine the force per unit length. Since
both wires have currents flowing in the same direction, the direction of the force is toward each other.

Solution
The distance between the wires results from finding the hypotenuse of a triangle:

r=1/G0em? +@0em)? =50cm.
The force per unit length can then be calculated using the known currents in the wires:

4z x 1077T-m/A) (5 x 1073A)°
F_ (4 ) ( ) =1 x 10710 N/m.
l 2r)(5 x 1072m)

The force from the first wire pulls the second wire. The angle between the radius and the x-axis is



3
0 =tan~! <%> = 36.9°,

The unit vector for this is calculated by
—c0s(36.9°)i + sin(36.9°)j = —0.81 + 0.6].

Therefore, the force per unit length from wire one on wire 2 is

-

F A ~ A A~
T =0x 10719 N/m) x (-0.81 +0.6j) = (-8 x 1071i+6 x 10711§) N/m.
The force per unit length from wire 2 on wire 1 is the negative of the previous answer:
F
T =@x 10713-6 x 1071 5)N/m.
Significance
These wires produced magnetic fields of equal magnitude but opposite directions at each other’s locations.

Whether the fields are identical or not, the forces that the wires exert on each other are always equal in
magnitude and opposite in direction (Newton’s third law).

) CHECK YOUR UNDERSTANDING 12.4

Two wires, both carrying current out of the page, have a current of magnitude 2.0 mA and 3.0 mA, respectively.
The first wire is located at (0.0 cm, 5.0 cm) while the other wire is located at (12.0 cm, 0.0 cm). What is the
magnitude of the magnetic force per unit length of the first wire on the second and the second wire on the first?

12.4 Magnetic Field of a Current Loop

Learning Objectives
By the end of this section, you will be able to:
e Explain how the Biot-Savart law is used to determine the magnetic field due to a current in a loop of wire at
a point along a line perpendicular to the plane of the loop.
e Determine the magnetic field of an arc of current.

The circular loop of Figure 12.11 has a radius R, carries a current [, and lies in the xz-plane. What is the
magnetic field due to the current at an arbitrary point P along the axis of the loop?
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Figure 12.11 Determining the magnetic field at point Palong the axis of a current-carrying loop of wire.

We can use the Biot-Savart law to find the magnetic field due to a current. We first consider arbitrary segments
on opposite sides of the loop to qualitatively show by the vector results that the net magnetic field direction is
along the central axis from the loop. From there, we can use the Biot-Savart law to derive the expression for
magnetic field.

Let Pbe a distance y from the center of the loop. From the right-hand rule, the magnetic field dﬁ at P, produced
- -

by the current element I d1, is directed at an angle 6 above the y-axis as shown. Since dl is parallel along the

x-axis and T is in the yz-plane, the two vectors are perpendicular, so we have

_uo Idlsinz/l2  uy Idl

gp=to L&A ko T4
dr r? 4 y? + R?

12.13

where we have used r? = y2 + RZ.

/ /
Now consider the magnetic field dﬁ due to the current element I df , which is directly opposite 1 dT on the
’
loop. The magnitude of dﬁ is also given by Equation 12.13, but it is directed at an angle 6 below the y-axis. The
-2 >/
components of dB and dB perpendicular to the y-axis therefore cancel, and in calculating the net magnetic

field, only the components along the y-axis need to be considered. The components perpendicular to the axis
of the loop sum to zero in pairs. Hence at point P:

S A _¢y01 cos 0dl
B—,]/dBcose—.]‘m /y2+R2' 12.14

loop loop

For all elements d_f on the wire, y, R, and cos 0 are constant and are related by
R

Nyl

cos 0 =

Now from Equation 12.14, the magnetic field at Pis



2 4 Ho IR / MOIR2 2
47r(y2 +R2)3/2 2()’2 +R2)3/2 12.15

loop
where we have used / dl = 2z R. As discussed in the previous chapter, the closed current loop is a magnetic

loop

dipole of moment ji = I Af. For this example, A = 7R? and fi = J, so the magnetic field at P can also be
written as

. 2
B= % 12.16
27(y% + R?%)
By setting y = 0 in Equation 12.16, we obtain the magnetic field at the center of the loop:
= ol
B=—j. 12.17
2R
This equation becomes B = ugnl/(2R) for a flat coil of nloops per length. It can also be expressed as
B= 08 12.18
27R3

If we consider y > R in Equation 12.16, the expression reduces to an expression known as the magnetic field
from a dipole:

12.19

The calculation of the magnetic field due to the circular current loop at points off-axis requires rather complex
mathematics, so we’ll just look at the results. The magnetic field lines are shaped as shown in Figure 12.12.
Notice that one field line follows the axis of the loop. This is the field line we just found. Also, very close to the
wire, the field lines are almost circular, like the lines of a long straight wire.

|
Y

Figure 12.12 Sketch of the magnetic field lines of a circular current loop.

@ EXAMPLE 12.5

Magnetic Field between Two Loops

Two loops of wire carry the same current of 10 mA, but flow in opposite directions as seen in Figure 12.13. One
loop is measured to have a radius of R = 50 cm while the other loop has a radius of 2R = 100 cm. The distance
from the first loop to the point where the magnetic field is measured is 0.25 m, and the distance from that
point to the second loop is 0.75 m. What is the magnitude of the net magnetic field at point P?
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Figure 12.13 Two loops of different radii have the same current but flowing in opposite directions. The magnetic field at point Pis

measured to be zero.

Strategy

The magnetic field at point P has been determined in Equation 12.15. Since the currents are flowing in
opposite directions, the net magnetic field is the difference between the two fields generated by the coils. Using
the given quantities in the problem, the net magnetic field is then calculated.

Solution

Solving for the net magnetic field using Equation 12.15 and the given quantities in the problem yields

HolR, > Ho IRy
B = 32 32
2(y12+R?) 2(y22+Ry?)
p = Wrx 1077 T-m/A)(0.010 A)0.5 M2 (4a x 1077 T-m/A)(0.010 A)(1.0 m)?
2((0.25 m)2+(0.5 m)2y>"? 2((0.75 m)2+(1.0 m)2y>"?
B = 5.77 x 107°T to the right.

Significance

Helmholtz coils typically have loops with equal radii with current flowing in the same direction to have a
strong uniform field at the midpoint between the loops. A similar application of the magnetic field distribution
created by Helmholtz coils is found in a magnetic bottle that can temporarily trap charged particles. See
Magnetic Forces and Fields for a discussion on this.

) CHECK YOUR UNDERSTANDING 12.5

Using Example 12.5, at what distance would you have to move the first coil to have zero measurable magnetic
field at point P?

12.5 Ampere’s Law

Learning Objectives

By the end of this section, you will be able to:
e Explain how Ampeére’s law relates the magnetic field produced by a current to the value of the current
e Calculate the magnetic field from a long straight wire, either thin or thick, by Ampere’s law



A fundamental property of a static magnetic field is that, unlike an electrostatic field, it is not conservative. A
conservative vector field is one whose line integral between two end points is the same regardless of the path
chosen. Magnetic fields do not have such a property. Instead, there is a relationship between the magnetic field

-
and its source, electric current. It is expressed in terms of the line integral of B and is known as Ampére’s law.
This law can also be derived directly from the Biot-Savart law. We now consider that derivation for the special
case of an infinite, straight wire.

Figure 12.14 shows an arbitrary plane perpendicular to an infinite, straight wire whose current Iis directed
out of the page. The magnetic field lines are circles directed counterclockwise and centered on the wire. To

begin, let’s consider ﬁ . dT over the closed paths M and N. Notice that one path (M) encloses the wire,

whereas the other (N) does not. Since the field lines are circular, ﬁ . d_f is the product of B and the projection of
-
dl onto the circle passing through d1. If the radius of this particular circle is r, the projection is rd6, and

B.dl = Brdo.

o

N

Ampere paths /\f

@ (b)
Figure 12.14 The current I of a long, straight wire is directed out of the page. The integral 7{[19 equals 2z and O, respectively, for paths M

and N.

—_
With B given by Equation 12.9,

-> -> I I
%B-dlz}{(ﬂ) rdo =" & q0. 12.20
2xr 2

For path M, which circulates around the wire, j{ df =2z and
M

5> o
B-dl = pyl. 12.21
M

Path N, on the other hand, circulates through both positive (counterclockwise) and negative (clockwise) d@ (see

Figure 12.14), and since it is closed, ;I{ df = 0. Thus for path N,
N

}z{ B.-dl=o0. 12.22
N



The extension of this result to the general case is Ampere’s law.

Ampeére’s law
Over an arbitrary closed path,

- -
B-dl = puyl 12.23

where Iis the total current passing through any open surface S whose perimeter is the path of integration.
Only currents inside the path of integration need be considered.

To determine whether a specific current I is positive or negative, curl the fingers of your right hand in the
direction of the path of integration, as shown in Figure 12.14. If I passes through Sin the same direction as
your extended thumb, Iis positive; if I passes through Sin the direction opposite to your extended thumb, it is
negative.

@ PROBLEM-SOLVING STRATEGY

Ampére’s Law
To calculate the magnetic field created from current in wire(s), use the following steps:

1. Identify the symmetry of the current in the wire(s). If there is no symmetry, use the Biot-Savart law to
determine the magnetic field.

Determine the direction of the magnetic field created by the wire(s) by right-hand rule 2.

Chose a path loop where the magnetic field is either constant or zero.

Calculate the current inside the loop.

a roebd

Calculate the line integral }2{ ﬁ . d_f around the closed loop.

- - >
6. Equate %B - d1 with pg Iepe and solve for B.

@ EXAMPLE 12.6

Using Ampére’s Law to Calculate the Magnetic Field Due to a Wire

Use Ampere’s law to calculate the magnetic field due to a steady current Iin an infinitely long, thin, straight
wire as shown in Figure 12.15.
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Figure 12.15 The possible components of the magnetic field B due to a current I, which is directed out of the page. The radial component

is zero because the angle between the magnetic field and the path is at a right angle.

Strategy

Consider an arbitrary plane perpendicular to the wire, with the current directed out of the page. The possible
magnetic field components in this plane, B, and By, are shown at arbitrary points on a circle of radius r
centered on the wire. Since the field is cylindrically symmetric, neither B, nor By varies with the position on
this circle. Also from symmetry, the radial lines, if they exist, must be directed either all inward or all outward
from the wire. This means, however, that there must be a net magnetic flux across an arbitrary cylinder

-> -
concentric with the wire. The radial component of the magnetic field must be zero because B, - dl = 0.
Therefore, we can apply Ampere’s law to the circular path as shown.

Solution

Over this path ﬁ is constant and parallel to df, SO
= -
Y{B -dl = By %dl = By(2xr).

ByQrr) = upl.

Thus Ampere’s law reduces to

>
Finally, since By is the only component of B, we can drop the subscript and write
1
B=H"
2zr
This agrees with the Biot-Savart calculation above.
Significance

Ampeére’s law works well if you have a path to integrate over which ﬁ . d_f has results that are easy to simplify.
For the infinite wire, this works easily with a path that is circular around the wire so that the magnetic field
factors out of the integration. If the path dependence looks complicated, you can always go back to the Biot-
Savart law and use that to find the magnetic field.




@ EXAMPLE 12.7

Calculating the Magnetic Field of a Thick Wire with Ampére’s Law

The radius of the long, straight wire of Figure 12.16 is a, and the wire carries a current I that is distributed
uniformly over its cross-section. Find the magnetic field both inside and outside the wire.

(a) (b)
Figure 12.16 (a) A model of a current-carrying wire of radius a and current I. (b) A cross-section of the same wire showing the radius a

and the Ampére’s loop of radius r.

Strategy

This problem has the same geometry as Example 12.6, but the enclosed current changes as we move the
integration path from outside the wire to inside the wire, where it doesn’t capture the entire current enclosed
(see Figure 12.16).

Solution
For any circular path of radius rthat is centered on the wire,

%ﬁ~d?=j1§8dl=B}l{dl=B(2nr).

From Ampere’s law, this equals the total current passing through any surface bounded by the path of
integration.

Consider first a circular path that is inside the wire (r < a) such as that shown in part (a) of Figure 12.16. We
need the current I passing through the area enclosed by the path. It’s equal to the current density Jtimes the
area enclosed. Since the current is uniform, the current density inside the path equals the current density in
the whole wire, which is 10/77:(12. Therefore the current I passing through the area enclosed by the path is

71'7‘2 7'2

I=""1y=—1I.
7[(12 0 a2 0

We can consider this ratio because the current density Jis constant over the area of the wire. Therefore, the
current density of a part of the wire is equal to the current density in the whole area. Using Ampere’s law, we
obtain

72
BQar) = o <—2> I,
a

and the magnetic field inside the wire is

Outside the wire, the situation is identical to that of the infinite thin wire of the previous example; that is,



1
B= Ho0 (r > a).
2rr

The variation of Bwith ris shown in Figure 12.17.
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Figure 12.17 Variation of the magnetic field produced by a current Iy in a long, straight wire of radius a.

Significance

The results show that as the radial distance increases inside the thick wire, the magnetic field increases from
zero to a familiar value of the magnetic field of a thin wire. Outside the wire, the field drops off regardless of
whether it was a thick or thin wire.

This result is similar to how Gauss’s law for electrical charges behaves inside a uniform charge distribution,
except that Gauss’s law for electrical charges has a uniform volume distribution of charge, whereas Ampere’s
law here has a uniform area of current distribution. Also, the drop-off outside the thick wire is similar to how
an electric field drops off outside of a linear charge distribution, since the two cases have the same geometry
and neither case depends on the configuration of charges or currents once the loop is outside the distribution.

@ EXAMPLE 12.8

Using Ampére’s Law with Arbitrary Paths

- -
Use Ampere’s law to evaluate j{ B - dl for the current configurations and paths in Figure 12.18.



b (~Lof
J \ ) b}

7TA
5A

3A

(©
Figure 12.18 Current configurations and paths for Example 12.8.
Strategy

Ampere’s law states that }I{ ﬁ . d_f = ug I where Iis the total current passing through the enclosed loop. The

quickest way to evaluate the integral is to calculate y I by finding the net current through the loop. Positive
currents flow with your right-hand thumb if your fingers wrap around in the direction of the loop. This will tell
us the sign of the answer.

Solution
(a) The current going downward through the loop equals the current going out of the loop, so the net current is

zero. Thus, jl{ﬁ . dT =0.

(b) The only current to consider in this problem is 2A because it is the only current inside the loop. The right-
hand rule shows us the current going downward through the loop is in the positive direction. Therefore, the

= -
answeris}z{B-dl = jp(2A) =251 x 107°T - m.

(c) The right-hand rule shows us the current going downward through the loop is in the positive direction.
There are 7A + 5SA = 12A of current going downward and —3 A going upward. Therefore, the total current is 9

Aandffﬁ-d'l’: HoOA) = 1.13 x 10T - m.

Significance

If the currents all wrapped around so that the same current went into the loop and out of the loop, the net
current would be zero and no magnetic field would be present. This is why wires are very close to each other in
an electrical cord. The currents flowing toward a device and away from a device in a wire equal zero total
current flow through an Ampére loop around these wires. Therefore, no stray magnetic fields can be present
from cords carrying current.

CHECK YOUR UNDERSTANDING 12.6

Consider using Ampére’s law to calculate the magnetic fields of a finite straight wire and of a circular loop of
wire. Why is it not useful for these calculations?



12.6 Solenoids and Toroids

Learning Objectives
By the end of this section, you will be able to:
e Establish a relationship for how the magnetic field of a solenoid varies with distance and current by using
both the Biot-Savart law and Ampere’s law
e Establish a relationship for how the magnetic field of a toroid varies with distance and current by using
Ampere’s law

Two of the most common and useful electromagnetic devices are called solenoids and toroids. In one form or
another, they are part of numerous instruments, both large and small. In this section, we examine the
magnetic field typical of these devices.

Solenoids

Along wire wound in the form of a helical coil is known as a solenoid. Solenoids are commonly used in
experimental research requiring magnetic fields. A solenoid is generally easy to wind, and near its center, its
magnetic field is quite uniform and directly proportional to the current in the wire.

Figure 12.19 shows a solenoid consisting of N turns of wire tightly wound over a length L. A current Iis flowing
along the wire of the solenoid. The number of turns per unit length is N/L; therefore, the number of turns in an
infinitesimal length dy are (IN/L)dy turns. This produces a current

NI

We first calculate the magnetic field at the point P of Figure 12.19. This point is on the central axis of the
solenoid. We are basically cutting the solenoid into thin slices that are dy thick and treating each as a current

loop. Thus, dIis the current through each slice. The magnetic field dﬁ due to the current dl'in dy can be found
with the help of Equation 12.15 and Equation 12.24:

poR*dl </401R2NJ¢> dy
329 7
2(y2 +R2) 2L (y2 +R2)

dB =

30 12.25

-
where we used Equation 12.24 to replace dI. The resultant field at Pis found by integrating dB along the entire
length of the solenoid. It’s easiest to evaluate this integral by changing the independent variable from yto 6.
From inspection of Figure 12.19, we have:

y

m‘ 12.26
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Figure 12.19 (a) A solenoid is a long wire wound in the shape of a helix. (b) The magnetic field at the point P on the axis of the solenoid is

the net field due to all of the current loops.

Taking the differential of both sides of this equation, we obtain

2
cosfdo = [-—2 + —1 dy
2
02+R2? 24 R2
_ R2dy
02+R2)Y?

5
When this is substituted into the equation for dB, we have

)
IN .. IN 0
B= ﬂ%L j/cos&d0= #%L (sinfy —sinby)j, 12.27
01

which is the magnetic field along the central axis of a finite solenoid.

Of special interest is the infinitely long solenoid, for which L — . From a practical point of view, the infinite
solenoid is one whose length is much larger than its radius (L > R). In this case, 8] = _T” and 6, = % Then
from Equation 12.27, the magnetic field along the central axis of an infinite solenoid is

M()INA ﬂoIN/,\

B= 31 [sin(a/2) = sin(-a/2)] = =]

or



B = uynij, 12.28

>
where nis the number of turns per unit length. You can find the direction of B with a right-hand rule: Curl your
fingers in the direction of the current, and your thumb points along the magnetic field in the interior of the
solenoid.

We now use these properties, along with Ampére’s law, to calculate the magnitude of the magnetic field at any
>
location inside the infinite solenoid. Consider the closed path of Figure 12.20. Along segment 1, B is uniform

and parallel to the path. Along segments 2 and 4, ﬁ is perpendicular to part of the path and vanishes over the
rest of it. Therefore, segments 2 and 4 do not contribute to the line integral in Ampeére’s law. Along segment 3,
ﬁ = 0 because the magnetic field is zero outside the solenoid. If you consider an Ampére’s law loop outside of
the solenoid, the current flows in opposite directions on different segments of wire. Therefore, there is no
enclosed current and no magnetic field according to Ampere’s law. Thus, there is no contribution to the line
integral from segment 3. As a result, we find

}{f;.df:/ﬁ.df:m. 12.29
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Figure 12.20 The path of integration used in Ampére’s law to evaluate the magnetic field of an infinite solenoid.

The solenoid has n turns per unit length, so the current that passes through the surface enclosed by the path is
nll. Therefore, from Ampere’s law,

Bl = ponlI

and
B = uonl 12.30

within the solenoid. This agrees with what we found earlier for B on the central axis of the solenoid. Here,
however, the location of segment 1 is arbitrary, so we have found that this equation gives the magnetic field
everywhere inside the infinite solenoid.

When a patient undergoes a magnetic resonance imaging (MRI) scan, the person lies down on a table that is
moved into the center of a large solenoid that can generate very large magnetic fields. The solenoid is capable
of these high fields from high currents flowing through superconducting wires. The large magnetic field is
used to change the spin of protons in the patient’s body. The time it takes for the spins to align or relax (return
to original orientation) is a signature of different tissues that can be analyzed to see if the structures of the
tissues is normal (Figure 12.21).
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Figure 12.21 Inan MRI machine, a large magnetic field is generated by the cylindrical solenoid surrounding the patient. (credit: Liz West)

@ EXAMPLE 12.9

Magnetic Field Inside a Solenoid

A solenoid has 300 turns wound around a cylinder of diameter 1.20 cm and length 14.0 cm. If the current
through the coils is 0.410 A, what is the magnitude of the magnetic field inside and near the middle of the
solenoid?

Strategy

We are given the number of turns and the length of the solenoid so we can find the number of turns per unit
length. Therefore, the magnetic field inside and near the middle of the solenoid is given by Equation 12.30.
Outside the solenoid, the magnetic field is zero.

Solution

The number of turns per unit length is

_ 300 turns
"= 0140m

The magnetic field produced inside the solenoid is

B pond = (4 x 1077T - m/A)(2.14 x 103 turns/m)(0.410 A)
B 1.10 x 1073T.

=2.14 x 103turns/m.

Significance
This solution is valid only if the length of the solenoid is reasonably large compared with its diameter. This
example is a case where this is valid.

&) CHECK YOUR UNDERSTANDING 12.7

What is the ratio of the magnetic field produced from using a finite formula over the infinite approximation for
an angle 6 of (a) 85°? (b) 89°? The solenoid has 1000 turns in 50 cm with a current of 1.0 A flowing through the
coils

Toroids

A toroid is a donut-shaped coil closely wound with one continuous wire, as illustrated in part (a) of Figure
12.22. If the toroid has Nwindings and the current in the wire is I, what is the magnetic field both inside and

Access for free at openstax.org.



outside the toroid?

(©) (d)

Figure 12.22 (a) A toroid is a coil wound into a donut-shaped object. (b) A loosely wound toroid does not have cylindrical symmetry. (c) In

a tightly wound toroid, cylindrical symmetry is a very good approximation. (d) Several paths of integration for Ampere’s law.

We begin by assuming cylindrical symmetry around the axis OO'’. Actually, this assumption is not precisely
correct, for as part (b) of Figure 12.22 shows, the view of the toroidal coil varies from point to point (for
example, P, P>, and P3) on a circular path centered around OO’. However, if the toroid is tightly wound, all
points on the circle become essentially equivalent [part (c) of Figure 12.22], and cylindrical symmetry is an
accurate approximation.

With this symmetry, the magnetic field must be tangent to and constant in magnitude along any circular path
centered on OO'. This allows us to write for each of the paths Dy, D,, and D3 shown in part (d) of Figure 12.22,

- -
?{B -dl = BQar). 12.31
Ampeére’s law relates this integral to the net current passing through any surface bounded by the path of
integration. For a path that is external to the toroid, either no current passes through the enclosing surface

(path Dy), or the current passing through the surface in one direction is exactly balanced by the current
passing through it in the opposite direction (path D3). In either case, there is no net current passing through

the surface, so
7{ BQ2#r)=0

B =0 (outside the toroid). 12.32

and

The turns of a toroid form a helix, rather than circular loops. As a result, there is a small field external to the
coil; however, the derivation above holds if the coils were circular.

For a circular path within the toroid (path D,), the current in the wire cuts the surface Ntimes, resulting in a
net current NIthrough the surface. We now find with Ampere’s law,

BQRar) = ug NI



and

_ HoNI
T 2ar

B (within the toroid). 12.33

The magnetic field is directed in the counterclockwise direction for the windings shown. When the current in
the coils is reversed, the direction of the magnetic field also reverses.

The magnetic field inside a toroid is not uniform, as it varies inversely with the distance r from the axis OO'.
However, if the central radius R (the radius midway between the inner and outer radii of the toroid) is much
larger than the cross-sectional diameter of the coils r, the variation is fairly small, and the magnitude of the
magnetic field may be calculated by Equation 12.33 where r = R.

12.7 Magnetism in Matter

Learning Objectives
By the end of this section, you will be able to:
e Classify magnetic materials as paramagnetic, diamagnetic, or ferromagnetic, based on their response to a
magnetic field
e Sketch how magnetic dipoles align with the magnetic field in each type of substance
¢ Define hysteresis and magnetic susceptibility, which determines the type of magnetic material

Why are certain materials magnetic and others not? And why do certain substances become magnetized by a
field, whereas others are unaffected? To answer such questions, we need an understanding of magnetism on a
microscopic level.

Within an atom, every electron travels in an orbit and spins on an internal axis. Both types of motion produce
current loops and therefore magnetic dipoles. For a particular atom, the net magnetic dipole moment is the
vector sum of the magnetic dipole moments. Values of y for several types of atoms are given in Table 12.1.
Notice that some atoms have a zero net dipole moment and that the magnitudes of the nonvanishing moments
are typically 10723 A - m2.

Atom Magnetic Moment (10_24 A- mz)

H 9.27
He 0

Li 9.27
0 13.9
Na 9.27
S 13.9

Table 12.1 Magnetic Moments of Some Atoms
A handful of matter has approximately 10%° atoms and ions, each with its magnetic dipole moment. If no
external magnetic field is present, the magnetic dipoles are randomly oriented—as many are pointed up as
down, as many are pointed east as west, and so on. Consequently, the net magnetic dipole moment of the
sample is zero. However, if the sample is placed in a magnetic field, these dipoles tend to align with the field
(see Equation 12.14), and this alignment determines how the sample responds to the field. On the basis of this
response, a material is said to be either paramagnetic, ferromagnetic, or diamagnetic.

In a paramagnetic material, only a small fraction (roughly one-third) of the magnetic dipoles are aligned with



the applied field. Since each dipole produces its own magnetic field, this alignment contributes an extra
magnetic field, which enhances the applied field. When a ferromagnetic material is placed in a magnetic
field, its magnetic dipoles also become aligned; furthermore, they become locked together so that a permanent
magnetization results, even when the field is turned off or reversed. This permanent magnetization happens in
ferromagnetic materials but not paramagnetic materials. Diamagnetic materials are composed of atoms that
have no net magnetic dipole moment. However, when a diamagnetic material is placed in a magnetic field, a
magnetic dipole moment is directed opposite to the applied field and therefore produces a magnetic field that
opposes the applied field. We now consider each type of material in greater detail.

Paramagnetic Materials

For simplicity, we assume our sample is a long, cylindrical piece that completely fills the interior of a long,
tightly wound solenoid. When there is no current in the solenoid, the magnetic dipoles in the sample are
randomly oriented and produce no net magnetic field. With a solenoid current, the magnetic field due to the
solenoid exerts a torque on the dipoles that tends to align them with the field. In competition with the aligning
torque are thermal collisions that tend to randomize the orientations of the dipoles. The relative importance of
these two competing processes can be estimated by comparing the energies involved. From Equation 12.14,
the energy difference between a magnetic dipole aligned with and against a magnetic fieldis Ug = 2uB. If
u=93x 10724 A - m? (the value of atomic hydrogen) and B=1.0 T, then

Up =19 x 1072].
At a room temperature of 27 °C, the thermal energy per atom is
Ur ~ kT = (138 x 1072J/K)(300K) = 4.1 x 10727,

which is about 220 times greater than U g. Clearly, energy exchanges in thermal collisions can seriously
interfere with the alignment of the magnetic dipoles. As a result, only a small fraction of the dipoles is aligned
at any instant.

The four sketches of Figure 12.23 furnish a simple model of this alignment process. In part (a), before the field
of the solenoid (not shown) containing the paramagnetic sample is applied, the magnetic dipoles are randomly
oriented and there is no net magnetic dipole moment associated with the material. With the introduction of
the field, a partial alignment of the dipoles takes place, as depicted in part (b). The component of the net
magnetic dipole moment that is perpendicular to the field vanishes. We may then represent the sample by part
(c), which shows a collection of magnetic dipoles completely aligned with the field. By treating these dipoles as
current loops, we can picture the dipole alignment as equivalent to a current around the surface of the
material, as in part (d). This fictitious surface current produces its own magnetic field, which enhances the
field of the solenoid.
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Figure 12.23 The alignment process in a paramagnetic material filling a solenoid (not shown). (a) Without an applied field, the magnetic
dipoles are randomly oriented. (b) With a field, partial alignment occurs. (c) An equivalent representation of part (b). (d) The internal

currents cancel, leaving an effective surface current that produces a magnetic field similar to that of a finite solenoid.
-
We can express the total magnetic field B in the material as
-> - -
B =By + B, 12.34

where I_io is the field due to the current I in the solenoid and ﬁm is the field due to the surface current I,
- -
around the sample. Now B, is usually proportional to By, a fact we express by

I_im = ){ﬁO, 12.35

where y is a dimensionless quantity called the magnetic susceptibility. Values of y for some paramagnetic
materials are given in Table 12.2. Since the alignment of magnetic dipoles is so weak, y is very small for
paramagnetic materials. By combining Equation 12.34 and Equation 12.35, we obtain:

B =B, + 4By = (1 + )By. 12.36
For a sample within an infinite solenoid, this becomes
B=(1+ y)upnl. 12.37

This expression tells us that the insertion of a paramagnetic material into a solenoid increases the field by a
factor of (1 + y). However, since y is so small, the field isn’t enhanced very much.

The quantity
u=~U0+ yug. 12.38
is called the magnetic permeability of a material. In terms of u, Equation 12.37 can be written as
B = unl 12.39

for the filled solenoid.



Paramagnetic Materials X Diamagnetic Materials x

Aluminum 2.2 x 107 | Bismuth -1.7 x 107
Calcium 1.4 x 107 | carbon (diamond) -2.2 x 107
Chromium 3.1 x 1074 Copper -9.7 x 1076
Magnesium 12 x 107 | Lead -1.8 x 107
Oxygen gas (1 atm) 1.8 x 107 | Mercury —2.8 x 107
Oxygen liquid (90 K) 3.5 x 1073 Hydrogen gas (1 atm) -22 % 107°
Tungsten 6.8 x 107 Nitrogen gas (1 atm) -6.7 x 107°
Air (1 atm) 3.6 x 1077 | water -9.1 x 1076

Table 12.2 Magnetic Susceptibilities *Note: Unless otherwise specified, values given are for room
temperature.

Diamagnetic Materials

A magnetic field always induces a magnetic dipole in an atom. This induced dipole points opposite to the
applied field, so its magnetic field is also directed opposite to the applied field. In paramagnetic and
ferromagnetic materials, the induced magnetic dipole is masked by much stronger permanent magnetic
dipoles of the atoms. However, in diamagnetic materials, whose atoms have no permanent magnetic dipole
moments, the effect of the induced dipole is observable.

We can now describe the magnetic effects of diamagnetic materials with the same model developed for
paramagnetic materials. In this case, however, the fictitious surface current flows opposite to the solenoid
current, and the magnetic susceptibility y is negative. Values of y for some diamagnetic materials are also
given in Table 12.2.

INTERACTIVE

Water is a common diamagnetic material. Animals are mostly composed of water. Experiments have been
performed on frogs (https://openstax.org/1/21frogs) and mice (https://openstax.org/l/21mice) in diverging
magnetic fields. The water molecules are repelled from the applied magnetic field against gravity until the
animal reaches an equilibrium. The result is that the animal is levitated by the magnetic field.

Ferromagnetic Materials

Common magnets are made of a ferromagnetic material such as iron or one of its alloys. Experiments reveal
that a ferromagnetic material consists of tiny regions known as magnetic domains. Their volumes typically
range from 10712 t0 1078 m?3, and they contain about 10'7 to 102! atoms. Within a domain, the magnetic
dipoles are rigidly aligned in the same direction by coupling among the atoms. This coupling, which is due to
quantum mechanical effects, is so strong that even thermal agitation at room temperature cannot break it. The
result is that each domain has a net dipole moment. Some materials have weaker coupling and are
ferromagnetic only at lower temperatures.

If the domains in a ferromagnetic sample are randomly oriented, as shown in Figure 12.24, the sample has no
net magnetic dipole moment and is said to be unmagnetized. Suppose that we fill the volume of a solenoid with

N
an unmagnetized ferromagnetic sample. When the magnetic field By of the solenoid is turned on, the dipole



moments of the domains rotate so that they align somewhat with the field, as depicted in Figure 12.24. In
addition, the aligned domains tend to increase in size at the expense of unaligned ones. The net effect of these
two processes is the creation of a net magnetic dipole moment for the ferromagnet that is directed along the
applied magnetic field. This net magnetic dipole moment is much larger than that of a paramagnetic sample,
and the domains, with their large numbers of atoms, do not become misaligned by thermal agitation.
Consequently, the field due to the alignment of the domains is quite large.

(@) (b) (©

Figure 12.24 (a) Domains are randomly oriented in an unmagnetized ferromagnetic sample such as iron. The arrows represent the

orientations of the magnetic dipoles within the domains. (b) In an applied magnetic field, the domains align somewhat with the field. (c)
The domains of a single crystal of nickel. The white lines show the boundaries of the domains. These lines are produced by iron oxide

powder sprinkled on the crystal.

Besides iron, only four elements contain the magnetic domains needed to exhibit ferromagnetic behavior:
cobalt, nickel, gadolinium, and dysprosium. Many alloys of these elements are also ferromagnetic.
Ferromagnetic materials can be described using Equation 12.34 through Equation 12.39, the paramagnetic
equations. However, the value of y for ferromagnetic material is usually on the order of 103 to 10*, and it also
depends on the history of the magnetic field to which the material has been subject. A typical plot of B (the
total field in the material) versus By (the applied field) for an initially unmagnetized piece of iron is shown in
Figure 12.25. Some sample numbers are (1) for By = 1.0 X 10_4T, B=060T,and

x=(060/; o5 10-4) — 1 & 6.0 x 10%; (2) for By = 6.0 x 107*T, B=1.5T, and

x=(15/g0x10-4) -1~ 25 X% 103.
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Figure 12.25 (a) The magnetic field B in annealed iron as a function of the applied field By.

When B is varied over a range of positive and negative values, Bis found to behave as shown in Figure 12.26.
Note that the same By (corresponding to the same current in the solenoid) can produce different values of Bin
the material. The magnetic field B produced in a ferromagnetic material by an applied field By depends on the
magnetic history of the material. This effect is called hysteresis, and the curve of Figure 12.26 is called a
hysteresis loop. Notice that B does not disappear when By = 0 (i.e., when the current in the solenoid is turned
off). The iron stays magnetized, which means that it has become a permanent magnet.
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Bi

Figure 12.26 A typical hysteresis loop for a ferromagnet. When the material is first magnetized, it follows a curve from 0 to a. When By is

reversed, it takes the path shown from ato b. If B is reversed again, the material follows the curve from b to a.

Like the paramagnetic sample of Figure 12.23, the partial alignment of the domains in a ferromagnet is
equivalent to a current flowing around the surface. A bar magnet can therefore be pictured as a tightly wound
solenoid with a large current circulating through its coils (the surface current). You can see in Figure 12.27 that
this model fits quite well. The fields of the bar magnet and the finite solenoid are strikingly similar. The figure
also shows how the poles of the bar magnet are identified. To form closed loops, the field lines outside the
magnet leave the north (N) pole and enter the south (S) pole, whereas inside the magnet, they leave S and enter

| |

S S
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Figure 12.27 Comparison of the magnetic fields of a finite solenoid and a bar magnet.

Ferromagnetic materials are found in computer hard disk drives and permanent data storage devices (Figure
12.28). A material used in your hard disk drives is called a spin valve, which has alternating layers of
ferromagnetic (aligning with the external magnetic field) and antiferromagnetic (each atom is aligned opposite
to the next) metals. It was observed that a significant change in resistance was discovered based on whether an
applied magnetic field was on the spin valve or not. This large change in resistance creates a quick and
consistent way for recording or reading information by an applied current.
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Figure 12.28 The inside of a hard disk drive. The silver disk contains the information, whereas the thin stylus on top of the disk reads and

writes information to the disk.

@ EXAMPLE 12.10

Iron Core in a Coil

Along coil is tightly wound around an iron cylinder whose magnetization curve is shown in Figure 12.25. (a) If
n = 20 turns per centimeter, what is the applied field By when Iy = 0.20 A? (b) What is the net magnetic field
for this same current? (c) What is the magnetic susceptibility in this case?

Strategy

(a) The magnetic field of a solenoid is calculated using Equation 12.28. (b) The graph is read to determine the
net magnetic field for this same current. (c) The magnetic susceptibility is calculated using Equation 12.37.

Solution

a. The applied field By of the coil is
By = pgnly = (@4n X 1077T- m/A)(2000/m)(0.20 A)

By = 5.0 x 107*T.

b. From inspection of the magnetization curve of Figure 12.25, we see that, for this value of By, B=1.4T.
Notice that the internal field of the aligned atoms is much larger than the externally applied field.

c. The magnetic susceptibility is calculated to be
B 14T

3
y=—-1=——"—/¥¥—-1=28 x 10°.
By 50 x 1074T
Significance
Ferromagnetic materials have susceptibilities in the range of 103 which compares well to our results here.
Paramagnetic materials have fractional susceptibilities, so their applied field of the coil is much greater than
the magnetic field generated by the material.

CHECK YOUR UNDERSTANDING 12.8

Repeat the calculations from the previous example for Iy = 0.040 A.



CHAPTER REVIEW
Key Terms

Ampeére’s law physical law that states that the line
integral of the magnetic field around an electric
current is proportional to the current

Biot-Savart law an equation giving the magnetic
field at a point produced by a current-carrying
wire

diamagnetic materials their magnetic dipoles
align oppositely to an applied magnetic field;
when the field is removed, the material is
unmagnetized

ferromagnetic materials contain groups of
dipoles, called domains, that align with the
applied magnetic field; when this field is
removed, the material is still magnetized

hysteresis property of ferromagnets that is seen
when a material’'s magnetic field is examined
versus the applied magnetic field; a loop is
created resulting from sweeping the applied field
forward and reverse

magnetic domains groups of magnetic dipoles that

Key Equations

are all aligned in the same direction and are
coupled together quantum mechanically

magnetic susceptibility ratio of the magnetic field
in the material over the applied field at that time;
positive susceptibilities are either paramagnetic
or ferromagnetic (aligned with the field) and
negative susceptibilities are diamagnetic (aligned
oppositely with the field)

paramagnetic materials their magnetic dipoles
align partially in the same direction as the
applied magnetic field; when this field is
removed, the material is unmagnetized

permeability of free space 1, measure of the
ability of a material, in this case free space, to
support a magnetic field

solenoid thin wire wound into a coil that produces
a magnetic field when an electric current is
passed through it

toroid donut-shaped coil closely wound around
that is one continuous wire

Permeability of free space

Contribution to magnetic field
from a current element

Biot—Savart law

Magnetic field due to a
long straight wire

Force between two parallel currents

Magnetic field of a current loop

Ampére’s law

Magnetic field strength
inside a solenoid

Magnetic field strength inside a toroid

Ho =4z x 1077T - m/A

_ Mo 1dising
dB= 4r 2

g o
H Idl X r

B
4r r2
wire
_ kol
B= 27zR
F _ #ohl
I = 2ar

1
B= ”ZLR (at center of loop)

- -
y{B-cﬂ:yOI

B = ugnl

o NT
2rzr

B =




Magnetic permeability u=~U0+ ug

Magnetic field of a solenoid

filled with paramagnetic material B = unl

Summary
12.1 The Biot-Savart Law

« The magnetic field created by a current-
carrying wire is found by the Biot-Savart law.

A
« The current element Idl produces a magnetic
field a distance r away.

12.2 Magnetic Field Due to a Thin Straight
Wire

» The strength of the magnetic field created by
current in a long straight wire is given by

B= % (long straight wire) where Iis the
current, Ris the shortest distance to the wire,
and the constant yy = 4z X 1077 T - m/s is the
permeability of free space.

« The direction of the magnetic field created by a
long straight wire is given by right-hand rule 2
(RHR-2): Point the thumb of the right hand in
the direction of current, and the fingers curl in
the direction of the magnetic field loops created
by it.

12.3 Magnetic Force between Two Parallel
Currents

« The force between two parallel currents I; and

I, separated by a distance r, has a magnitude
Holy Iy
2zr
« The force is attractive if the currents are in the
same direction, repulsive if they are in opposite

directions.

per unit length given by % =

12.4 Magnetic Field of a Current Loop

« The magnetic field strength at the center of a
circular loop is given by

1
B= I;LR (at center of loop), where Ris the
radius of the loop. RHR-2 gives the direction of
the field about the loop.

12.5 Ampére’s Law

« The magnetic field created by current following
any path is the sum (or integral) of the fields due
to segments along the path (magnitude and

direction as for a straight wire), resulting in a
general relationship between current and field
known as Ampére’s law.

Ampere’s law can be used to determine the
magnetic field from a thin wire or thick wire by a
geometrically convenient path of integration.
The results are consistent with the Biot-Savart
law.

12.6 Solenoids and Toroids

The magnetic field strength inside a solenoid is
B = pugnl (inside a solenoid)

where n is the number of loops per unit length

of the solenoid. The field inside is very uniform

in magnitude and direction.

The magnetic field strength inside a toroid is
UoNT

B= (within the toroid)
2xr

where Nis the number of windings. The field
inside a toroid is not uniform and varies with
the distance as 1/r.

12.7 Magnetism in Matter

Materials are classified as paramagnetic,
diamagnetic, or ferromagnetic, depending on
how they behave in an applied magnetic field.
Paramagnetic materials have partial alignment
of their magnetic dipoles with an applied
magnetic field. This is a positive magnetic
susceptibility. Only a surface current remains,
creating a solenoid-like magnetic field.
Diamagnetic materials exhibit induced dipoles
opposite to an applied magnetic field. This is a
negative magnetic susceptibility.
Ferromagnetic materials have groups of dipoles,
called domains, which align with the applied
magnetic field. However, when the field is
removed, the ferromagnetic material remains
magnetized, unlike paramagnetic materials.
This magnetization of the material versus the
applied field effect is called hysteresis.



Conceptual Questions
12.1 The Biot-Savart Law

1. For calculating magnetic fields, what are the
advantages and disadvantages of the Biot-Savart
law?

2. Describe the magnetic field due to the current in
two wires connected to the two terminals of a
source of emf and twisted tightly around each
other.

3. How can you decide if a wire is infinite?

4. Identical currents are carried in two circular
loops; however, one loop has twice the diameter
as the other loop. Compare the magnetic fields
created by the loops at the center of each loop.

12.2 Magnetic Field Due to a Thin Straight
Wire

5. How would you orient two long, straight, current-
carrying wires so that there is no net magnetic
force between them? (Hint: What orientation
would lead to one wire not experiencing a
magnetic field from the other?)

12.3 Magnetic Force between Two Parallel
Currents

6. Compare and contrast the electric field of an
infinite line of charge and the magnetic field of
an infinite line of current.

-
7. Is B constant in magnitude for points that lie on a
magnetic field line?

Problems
12.1 The Biot-Savart Law

16. A 10-A current flows through the wire shown. What

is the magnitude of the magnetic field due to a

0.5-mm segment of wire as measured at (a) point A

and (b) point B?
A 4cm B

3cm

17. Ten amps flow through a square loop where
each side is 20 cm in length. At each corner of
the loop is a 0.01-cm segment that connects the
longer wires as shown. Calculate the magnitude
of the magnetic field at the center of the loop.
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12.4 Magnetic Field of a Current Loop

8. Is the magnetic field of a current loop uniform?
9. What happens to the length of a suspended
spring when a current passes through it?
10. Two concentric circular wires with different
diameters carry currents in the same direction.
Describe the force on the inner wire.

12.5 Ampeére’s Law

11. Is Ampere’s law valid for all closed paths? Why
isn’t it normally useful for calculating a
magnetic field?

12.6 Solenoids and Toroids

12. Is the magnetic field inside a toroid completely
uniform? Almost uniform?

13. Explain why ﬁ = (O inside a long, hollow copper
pipe that is carrying an electric current parallel

o
to the axis. Is B = 0 outside the pipe?

12.7 Magnetism in Matter

14. A diamagnetic material is brought close to a
permanent magnet. What happens to the
material?

15. If you cut a bar magnet into two pieces, will you
end up with one magnet with an isolated north
pole and another magnet with an isolated south
pole? Explain your answer.

18. What is the magnetic field at P due to the
current [in the wire shown?
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a \R.
P P
19. The accompanying figure shows a current loop
consisting of two concentric circular arcs and

two perpendicular radial lines. Determine the
magnetic field at point P.

12.2 Magnetic Field Due to a Thin Straight
Wire

20. Find the magnetic field at the center C of the

. i 22. Atypical current in a lightning bolt is 10* A.
rectangular loop of wire shown in the

Estimate the magnetic field 1 m from the bolt.

ai:companymg ﬁgure.ﬂ N 23. The magnitude of the magnetic field 50 cm from
r i i along, thin, straight wire is 8.0 pT. What is the
current through the long wire?
24. Atransmission line strung 7.0 m above the
| .C b ground carries a current of 500 A. What is the
| magnetic field on the ground directly below the
wire? Compare your answer with the magnetic
field of Earth.
- 25. Along, straight, horizontal wire carries a left-to-
! right current of 20 A. If the wire is placed in a
21. Two long wires, one of which has a semicircular uniform magnetic field of magnitude
bend of radius R, are positioned as shown in the 4.0 x 1077T that is directed vertically
accompanying figure. If both wires carry a downward, what is the resultant magnitude of
current I, how far apart must their parallel the magnetic field 20 cm above the wire? 20 cm
sections be so that the net magnetic field at P is below the wire?
zero? Does the current in the straight wire flow 26. The two long, parallel wires shown in the
up or down? accompanying figure carry currents in the same

direction. If I{ = 10 A and I, = 20 A, what is
the magnetic field at point P?

27. The accompanying figure shows two long, straight,
horizontal wires that are parallel and a distance 2a
apart. If both wires carry current Iin the same
direction, (a) what is the magnetic field at P; ? (b)
P?
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28.

29.

a
<1 e
Pl
a
1 I
2a
B B
P,

Repeat the calculations of the preceding
problem with the direction of the current in the
lower wire reversed.

Consider the area between the wires of the
preceding problem. At what distance from the
top wire is the net magnetic field a minimum?
Assume that the currents are equal and flow in
opposite directions.

12.3 Magnetic Force between Two Parallel

Currents

30.

31.

32.

Two long, straight wires are parallel and 25 cm
apart. (a) If each wire carries a current of 50 A in
the same direction, what is the magnetic force
per meter exerted on each wire? (b) Does the
force pull the wires together or push them

apart? (c) What happens if the currents flow in
opposite directions?

Two long, straight wires are parallel and 10 cm
apart. One carries a current of 2.0 A, the other a
current of 5.0 A. (a) If the two currents flow in
opposite directions, what is the magnitude and
direction of the force per unit length of one wire
on the other? (b) What is the magnitude and
direction of the force per unit length if the
currents flow in the same direction?

Two long, parallel wires are hung by cords of
length 5.0 cm, as shown in the accompanying
figure. Each wire has a mass per unit length of 30
g/m, and they carry the same current in opposite
directions. What is the current if the cords hang at
6.0° with respect to the vertical?

33.

34.
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A circuit with current I has two long parallel
wire sections that carry current in opposite
directions. Find magnetic field at a point Pnear
these wires that is a distance a from one wire
and b from the other wire as shown in the
figure.

? P
|

|

|

|

|

|

The infinite, straight wire shown in the
accompanying figure carries a current I;. The
rectangular loop, whose long sides are parallel
to the wire, carries a current I,. What are the
magnitude and direction of the force on the
rectangular loop due to the magnetic field of the
wire?

—b—
A . |
——

12.4 Magnetic Field of a Current Loop

35.

36.

When the current through a circular loop is 6.0
A, the magnetic field at its center is

2.0 x 107*T. What is the radius of the loop?
How many turns must be wound on a flat,
circular coil of radius 20 cm in order to produce
a magnetic field of magnitude 4.0 X 107 Tat




556 12 e« Chapter Review

the center of the coil when the current through L 5A 2A 6 A
itis 0.85 A? !/ Ss

37. Aflat, circular loop has 20 turns. The radius of ! L% 2A ’E T L
the loop is 10.0 cm and the current through the i k-» ig ™
wire is 0.50 A. Determine the magnitude of the \ ; ‘\ A
magnetic field at the center of the loop. T w4 / R alala 'R

38. Acircular loop of radius R carries a current I. At / T /

what distance along the axis of the loop is the
magnetic field one-half its value at the center of
the loop?

39. Two flat, circular coils, each with a radius R and
wound with N turns, are mounted along the
same axis so that they are parallel a distance d
apart. What is the magnetic field at the
midpoint of the common axis if a current I flows
in the same direction through each coil?

40. For the coils in the preceding problem, what is
the magnetic field at the center of either coil?

12.5 Ampére’s Law

41. A current Iflows around the rectangular loop
shown in the accompanying figure. Evaluate

7{ ﬁ . d_f for the paths A, B, C, and D.

I -
\ !’—L ."\C
r \ \" 4
-
A I 1
. . 1 1
=! i I
\ I T~
LY ' I ~
£ ¥ 1 \\D
X A

~ 1

l"l--l'

42. Evaluate j{ ﬁ . dT for each of the cases shown in the
43. The coil whose lengthwise cross section is shown in
the accompanying figure carries a current I and has

N evenly spaced turns distributed along the length

1. Evaluate 7{ I_i . dT for the paths indicated.

accompanying figure.

- — . -—
Ve . oi ° o . . io oi
1 1
oo ]
P - P o - L] ‘ Y
! o - -y : : :
1 1
I % x x ix Wi B % ®
! I.__-___JID ' :.___.q__al
1 1
- — - -

44. A superconducting wire of diameter 0.25 cm
carries a current of 1000 A. What is the
magnetic field just outside the wire?

45. Along, straight wire of radius R carries a
current I that is distributed uniformly over the
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cross-section of the wire. At what distance from
the axis of the wire is the magnitude of the
magnetic field a maximum?

46. The accompanying figure shows a cross-section
of a long, hollow, cylindrical conductor of inner
radius r1 = 3.0 cm and outer radius
rp = 5.0 cm. A 50-A current distributed
uniformly over the cross-section flows into the
page. Calculate the magnetic field at
r=20cm, r=40cm, andr = 6.0 cm.

47. Along, solid, cylindrical conductor of radius 3.0
cm carries a current of 50 A distributed
uniformly over its cross-section. Plot the
magnetic field as a function of the radial
distance rfrom the center of the conductor.

48. A portion of a long, cylindrical coaxial cable is
shown in the accompanying figure. A current [
flows down the center conductor, and this current
is returned in the outer conductor. Determine the
magnetic field in the regions (a) r < rq, (b)
rp>2r>ry,(©r3 >2r>ry,and(d)r > r3.
Assume that the current is distributed uniformly
over the cross sections of the two parts of the cable.

“/

12.6 Solenoids and Toroids

49. A solenoid is wound with 2000 turns per meter.

50.

51.

52.
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When the current is 5.2 A, what is the magnetic
field within the solenoid?

A solenoid has 12 turns per centimeter. What
current will produce a magnetic field of

2.0 X 1072T within the solenoid?

If a current is 2.0 A, how many turns per
centimeter must be wound on a solenoid in
order to produce a magnetic field of

2.0 x 1073T within it?

A solenoid is 40 cm long, has a diameter of 3.0
cm, and is wound with 500 turns. If the current
through the windings is 4.0 A, what is the
magnetic field at a point on the axis of the
solenoid that is (a) at the center of the solenoid,
(b) 10.0 cm from one end of the solenoid, and (c)
5.0 cm from one end of the solenoid? (d)
Compare these answers with the infinite-
solenoid case.




53.

54.

(@)

1.5cm
DEm—

10cm

-

40 cm

Ocm

(©)
Determine the magnetic field on the central axis
at the opening of a semi-infinite solenoid. (That
is, take the opening to be at x = 0 and the other
end to be at

x:OO‘)

By how much is the approximation B = pgnl in
error at the center of a solenoid thatis 15.0 cm
long, has a diameter of 4.0 cm, is wrapped with

55.

56.

57.

nturns per meter, and carries a current I?

A solenoid with 25 turns per centimeter carries
a current I. An electron moves within the
solenoid in a circle that has a radius of 2.0 cm
and is perpendicular to the axis of the solenoid.
If the speed of the electron is 2.0 X 107 m/s,
what is I?

A toroid has 250 turns of wire and carries a
current of 20 A. Its inner and outer radii are 8.0
and 9.0 cm. What are the values of its magnetic
field atr = 8.1, 8.5, and 8.9 cm?

A toroid with a square cross section 3.0 cm X
3.0 cm has an inner radius of 25.0 cm. It is
wound with 500 turns of wire, and it carries a
current of 2.0 A. What is the strength of the
magnetic field at the center of the square cross
section?

12.7 Magnetism in Matter

58.

59.

60.

61.

62.

63.

64.

The magnetic field in the core of an air-filled
solenoid is 1.50 T. By how much will this
magnetic field decrease if the air is pumped out
of the core while the current is held constant?

A solenoid has a ferromagnetic core, n = 1000
turns per meter, and I= 5.0 A. If Binside the
solenoid is 2.0 T, what is y for the core material?
A 20-A current flows through a solenoid with
2000 turns per meter. What is the magnetic field
inside the solenoid if its core is (a) a vacuum
and (b) filled with liquid oxygen at 90 K?

The magnetic dipole moment of the iron atom is
about2.1 x 10723 A - m2. (a) Calculate the
maximum magnetic dipole moment of a
domain consisting of 10'? iron atoms. (b) What
current would have to flow through a single
circular loop of wire of diameter 1.0 cm to
produce this magnetic dipole moment?
Suppose you wish to produce a 1.2-T magnetic
field in a toroid with an iron core for which

¥ =40 X 103. The toroid has a mean radius of
15 cm and is wound with 500 turns. What
current is required?

A current of 1.5 A flows through the windings of
a large, thin toroid with 200 turns per meter and
aradius of 1 meter. If the toroid is filled with
iron for which y = 3.0 X 103, what is the
magnetic field within it?

A solenoid with an iron core is 25 cm long and is
wrapped with 100 turns of wire. When the
current through the solenoid is 10 A, the
magnetic field inside it is 2.0 T. For this current,
what is the permeability of the iron? If the
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current is turned off and then restored to 10 A, T?
will the magnetic field necessarily return to 2.0

Additional Problems

65. Three long, straight, parallel wires, all carrying 20 68. Current flows along a thin, infinite sheet as

A, are positioned as shown in the accompanying shown in the accompanying figure. The current

figure. What is the magnitude of the magnetic field per unit length along the sheet is Jin amperes

at the point P? per meter. (a) Use the Biot-Savart law to show
20A that B = pgJ/2 on either side of the sheet. What

is the direction of ﬁ on each side? (b) Now use
Ampere’s law to calculate the field.

69. (a) Use the result of the previous problem to
calculate the magnetic field between, above, and
below the pair of infinite sheets shown in the

e I N accompanying figure. (b) Repeat your

20 A [« 10 cm - 20 A calculations if the direction of the current in the

lower sheet is reversed.

66. A current Iflows around a wire bent into the
shape of a square of side a. What is the /
magnetic field at the point P that is a distance z /
\ j
above the center of the square (see the —

accompanying figure)? HY/ /
e P \

70. We often assume that the magnetic field is
uniform in a region and zero everywhere else.
/ Show that in reality it is impossible for a
magnetic field to drop abruptly to zero, as
illustrated in the accompanying figure. (Hint:
Apply Ampere’s law over the path shown.)

/

—

67. The accompanying figure shows a long, straight wire
carrying a current of 10 A. What is the magnetic
force on an electron at the instant it is 20 cm from
the wire, traveling parallel to the wire with a speed of Y
2.0 x 10°m/s? Describe qualitatively the
subsequent motion of the electron.

Elale

| -
o8]




71.

72.

73.

74.

75.

76.

How is the fractional change in the strength of
the magnetic field across the face of the toroid
related to the fractional change in the radial
distance from the axis of the toroid?

Show that the expression for the magnetic field
of a toroid reduces to that for the field of an
infinite solenoid in the limit that the central
radius goes to infinity.

A toroid with an inner radius of 20 cm and an
outer radius of 22 cm is tightly wound with one
layer of wire that has a diameter of 0.25 mm. (a)
How many turns are there on the toroid? (b) If
the current through the toroid windings is 2.0 A,
what is the strength of the magnetic field at the
center of the toroid?

A wire element has dT, Idf = JAdI = Jdv,
where A and dv are the cross-sectional area and
volume of the element, respectively. Use this,
the Biot-Savart law, and J = nev to show that
the magnetic field of a moving point charge q is
given by:

= H) qvXT

B= % ! 2

A reasonably uniform magnetic field over a
limited region of space can be produced with
the Helmholtz coil, which consists of two
parallel coils centered on the same axis. The
coils are connected so that they carry the same
current I. Each coil has Nturns and radius R,
which is also the distance between the coils. (a)
Find the magnetic field at any point on the
z-axis shown in the accompanying figure. (b)
Show that dB/dz and 42 B/ 422 are both zero at z
= 0. (These vanishing derivatives demonstrate
that the magnetic field varies only slightly near
z=0.)

[}
I
|
|
|
[
I
|

A charge of 4.0 pC is distributed uniformly
around a thin ring of insulating material. The
ring has a radius of 0.20 m and rotates at

2.0 x 10*rev/min around the axis that passes
through its center and is perpendicular to the
plane of the ring. What is the magnetic field at
the center of the ring?

77.

78.

79.

80.

A thin, nonconducting disk of radius Ris free to
rotate around the axis that passes through its
center and is perpendicular to the face of the
disk. The disk is charged uniformly with a total
charge q. If the disk rotates at a constant
angular velocity o, what is the magnetic field at
its center?

Consider the disk in the previous problem.
Calculate the magnetic field at a point on its
central axis that is a distance y above the disk.
Consider the axial magnetic field

By, = ug IR?/2(y* + R?)*? of the circular
current loop shown below. (a) Evaluate

a
/ By dy. Also show that

a
a

lim
a—o00 J —a

Bydy = ugl. (b) Can you deduce this

limit without evaluating the integral? (Hint: See
the accompanying figure.)

S |
'
8

The current density in the long, cylindrical wire
shown in the accompanying figure varies with
distance rfrom the center of the wire according
to J = cr, where cis a constant. (a) What is the
current through the wire? (b) What is the
magnetic field produced by this current for

r < R?Forr > R?




81. Along, straight, cylindrical conductor contains

82.

a cylindrical cavity whose axis is displaced by a
from the axis of the conductor, as shown in the
accompanying figure. The current density in the
conductor is given byj = Joﬁ, where Jj is a
constant and K is along the axis of the
conductor. Calculate the magnetic field at an
arbitrary point P in the cavity by superimposing
the field of a solid cylindrical conductor with
radius R; and current densityj onto the field of
a solid cylindrical conductor with radius Ry and
current density —j . Then use the fact that the
appropriate azimuthal unit vectors can be
expressedas; =k X Fyand@, =k X 75 to
show that everywhere inside the cavity the
magnetic field is given by the constant

B= %yoJOk X a,wherea =r; —rp and

r| = r 7 is the position of Prelative to the
center of the conductor and ry = ry 75 is the
position of Prelative to the center of the cavity.

Between the two ends of a horseshoe magnet
the field is uniform as shown in the diagram. As
you move out to outside edges, the field bends.
Show by Ampere’s law that the field must bend
and thereby the field weakens due to these

bends.
B-field

S

83.

84.

85.

86.

Show that the magnetic field of a thin wire and
that of a current loop are zero if you are
infinitely far away.

An Ampere loop is chosen as shown by dashed
lines for a parallel constant magnetic field as

shown by solid arrows. Calculate I_i . dT for each

side of the loop then find the entire 75 ﬁ . dT.

Can you think of an Ampére loop that would
make the problem easier? Do those results

match these?

A A A A

A very long, thick cylindrical wire of radius R
carries a current density J that varies across its
cross-section. The magnitude of the current
density at a point a distance r from the center of
the wire is given by J = Jo &, where Jg isa
constant. Find the magnetic field (a) at a point
outside the wire and (b) at a point inside the
wire. Write your answer in terms of the net
current I through the wire.

A very long, cylindrical wire of radius a has a
circular hole of radius bin it at a distance d
from the center. The wire carries a uniform
current of magnitude I through it. The direction
of the current in the figure is out of the paper.
Find the magnetic field (a) at a point at the edge
of the hole closest to the center of the thick wire,
(b) at an arbitrary point inside the hole, and (c)
at an arbitrary point outside the wire. (Hint:
Think of the hole as a sum of two wires carrying
current in the opposite directions.)
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87.
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Magnetic field inside a torus. Consider a torus of
rectangular cross-section with inner radius a
and outer radius b. Nturns of an insulated thin
wire are wound evenly on the torus tightly all
around the torus and connected to a battery
producing a steady current I'in the wire.
Assume that the current on the top and bottom
surfaces in the figure is radial, and the current
on the inner and outer radii surfaces is vertical.
Find the magnetic field inside the torus as a
function of radial distance r from the axis.

Challenge Problems

89.

The accompanying figure shows a flat, infinitely
long sheet of width a that carries a current I
uniformly distributed across it. Find the magnetic
field at the point P, which is in the plane of the
sheet and at a distance x from one edge. Test your
result for the limit a — 0.

Access for free at openstax.org.

88. Two long coaxial copper tubes, each of length L,

are connected to a battery of voltage V. The
inner tube has inner radius a and outer radius
b, and the outer tube has inner radius c and
outer radius d. The tubes are then disconnected
from the battery and rotated in the same
direction at angular speed of w radians per
second about their common axis. Find the
magnetic field (a) at a point inside the space
enclosed by the inner tube r < a, and (b) ata
point between the tubes b < r < ¢, and (c) at a
point outside the tubes r > d. (Hint: Think of
copper tubes as a capacitor and find the charge
density based on the voltage applied, QO = VC,

_ 271'60L
C= In(c/b) )

90. A hypothetical current flowing in the z-direction

-4 2\ 2 1 -
creates the field B = C [(x/y ) i+ (1/y) J] in
the rectangular region of the xy-plane shown in
the accompanying figure. Use Ampere’s law to

find the current through the rectangle.
Zz




12 ¢« Chapter Review 563

91. Anonconducting hard rubber circular disk of
radius Ris painted with a uniform surface
charge density o. It is rotated about its axis with
angular speed w. (a) Find the magnetic field
produced at a point on the axis a distance h
meters from the center of the disk. (b) Find the
numerical value of magnitude of the magnetic
field when o = 1C/m2, R=20cm, h=2cm,
and @ = 400 rad/sec, and compare it with the
magnitude of magnetic field of Earth, which is
about 1/2 Gauss.




CHAPTER 13 . .
Electromagnetic Induction

Figure 13.1 The black strip found on the back of credit cards and driver’s licenses is a very thin layer of magnetic
material with information stored on it. Reading and writing the information on the credit card is done with a swiping
motion. The physical reason why this is necessary is called electromagnetic induction and is discussed in this
chapter. (credit: modification of work by Jane Whitney)

Chapter Outline

13.1 Faraday’s Law

13.2 Lenz's Law

13.3 Motional Emf

13.4 Induced Electric Fields

13.5 Eddy Currents

13.6 Electric Generators and Back Emf

13.7 Applications of Electromagnetic Induction

INTRODUCTION We have been considering electric fields created by fixed charge distributions and magnetic
fields produced by constant currents, but electromagnetic phenomena are not restricted to these stationary
situations. Most of the interesting applications of electromagnetism are, in fact, time-dependent. To
investigate some of these applications, we now remove the time-independent assumption that we have been
making and allow the fields to vary with time. In this and the next several chapters, you will see a wonderful



symmetry in the behavior exhibited by time-varying electric and magnetic fields. Mathematically, this
symmetry is expressed by an additional term in Ampere’s law and by another key equation of
electromagnetism called Faraday’s law. We also discuss how moving a wire through a magnetic field produces
an emf or voltage. Lastly, we describe applications of these principles, such as the card reader shown above.

13.1 Faraday’s Law

Learning Objectives
By the end of this section, you will be able to:
o Determine the magnetic flux through a surface, knowing the strength of the magnetic field, the surface areq,
and the angle between the normal to the surface and the magnetic field
e Use Faraday’s law to determine the magnitude of induced emf in a closed loop due to changing magnetic
flux through the loop

The first productive experiments concerning the effects of time-varying magnetic fields were performed by
Michael Faraday in 1831. One of his early experiments is represented in Figure 13.2. An emf is induced when
the magnetic field in the coil is changed by pushing a bar magnet into or out of the coil. Emfs of opposite signs
are produced by motion in opposite directions, and the directions of emfs are also reversed by reversing poles.
The same results are produced if the coil is moved rather than the magnet—it is the relative motion that is
important. The faster the motion, the greater the emf, and there is no emf when the magnet is stationary
relative to the coil.

Galvanometer

o
NI

Stationary

s ' N

S

@ (b) © ) (e
Figure 13.2 Movement of a magnet relative to a coil produces emfs as shown (a—d). The same emfs are produced if the coil is moved
relative to the magnet. This short-lived emf is only present during the motion. The greater the speed, the greater the magnitude of the emf,

and the emf is zero when there is no motion, as shown in (e).

Faraday also discovered that a similar effect can be produced using two circuits—a changing current in one
circuit induces a current in a second, nearby circuit. For example, when the switch is closed in circuit 1 of
Figure 13.3(a), the ammeter needle of circuit 2 momentarily deflects, indicating that a short-lived current
surge has been induced in that circuit. The ammeter needle quickly returns to its original position, where it
remains. However, if the switch of circuit 1 is now suddenly opened, another short-lived current surge in the
direction opposite from before is observed in circuit 2.



(b)

Figure 13.3 (a) Closing the switch of circuit 1 produces a short-lived current surge in circuit 2. (b) If the switch remains closed, no current

is observed in circuit 2. (c) Opening the switch again produces a short-lived current in circuit 2 but in the opposite direction from before.

Faraday realized that in both experiments, a current flowed in the circuit containing the ammeter only when
the magnetic field in the region occupied by that circuit was changing. As the magnet of the figure was moved,
the strength of its magnetic field at the loop changed; and when the current in circuit 1 was turned on or off,
the strength of its magnetic field at circuit 2 changed. Faraday was eventually able to interpret these and all
other experiments involving magnetic fields that vary with time in terms of the following law:

Faraday’s Law

The emf € induced is the negative change in the magnetic flux ®y, per unit time. Any change in the
magnetic field or change in orientation of the area of the coil with respect to the magnetic field induces a
voltage (emf).

The magnetic flux is a measurement of the amount of magnetic field lines through a given surface area, as
seen in Figure 13.4. This definition is similar to the electric flux studied earlier. This means that if we have

qamz/l'i-ﬁdA, 131
S

then the induced emf or the voltage generated by a conductor or coil moving in a magnetic field is

d a2 ddy,
S

The negative sign describes the direction in which the induced emf drives current around a circuit. However,

that direction is most easily determined with a rule known as Lenz’s law, which we will discuss shortly.

Magnetic

/////////fieldﬁ

7

ﬁ%/

Figure 13.4 The magnetic flux is the amount of magnetic field lines cutting through a surface area A defined by the unit area vector fi. If

N



the angle between the unit area i and magnetic field vector ﬁ are parallel or antiparallel, as shown in the diagram, the magnetic flux is the

highest possible value given the values of area and magnetic field.

Part (a) of Figure 13.5 depicts a circuit and an arbitrary surface S that it bounds. Notice that Sis an open
surface. It can be shown that any open surface bounded by the circuit in question can be used to evaluate ®y,.
For example, @y, is the same for the various surfaces .S, .57, ... of part (b) of the figure.

Sz

S3

(@ (b)
Figure 13.5 (a) A circuit bounding an arbitrary open surface S. The planar area bounded by the circuit is not part of S. (b) Three arbitrary

open surfaces bounded by the same circuit. The value of @y, is the same for all these surfaces.
The SI unit for magnetic flux is the weber (Wh),
1Wb=1T-m?.

Occasionally, the magnetic field unit is expressed as webers per square meter (Wb/mz) instead of teslas, based
on this definition. In many practical applications, the circuit of interest consists of a number N of tightly wound
turns (see Figure 13.6). Each turn experiences the same magnetic flux. Therefore, the net magnetic flux
through the circuits is N times the flux through one turn, and Faraday’s law is written as

d dd
t(NdDm) =-N—2. 13.3

ST di

@ EXAMPLE 13.1

A Square Coil in a Changing Magnetic Field

The square coil of Figure 13.6 has sides / = 0.25 m long and is tightly wound with N = 200 turns of wire. The
resistance of the coil is R = 5.0 Q. The coil is placed in a spatially uniform magnetic field that is directed
perpendicular to the face of the coil and whose magnitude is decreasing at a rate d B/dt = —0.040 T/s. (a) What
is the magnitude of the emf induced in the coil? (b) What is the magnitude of the current circulating through
the coil?
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Figure 13.6 A square coil with N turns of wire with uniform magnetic field ﬁ directed in the downward direction, perpendicular to the coil.

Strategy

The area vector, or fi direction, is perpendicular to area covering the loop. We will choose this to be pointing
downward so that I_i is parallel to fi and that the flux turns into multiplication of magnetic field times area. The
area of the loop is not changing in time, so it can be factored out of the time derivative, leaving the magnetic
field as the only quantity varying in time. Lastly, we can apply Ohm’s law once we know the induced emf to find
the current in the loop.

Solution

a. The flux through one turn is
®,, = BA = B>,

so we can calculate the magnitude of the emf from Faraday’s law. The sign of the emf will be discussed in
the next section, on Lenz’s law:

—_|_nd®Pm | _ A2 dB
le] —| N=G |—Nl dr

= (200)(0.25 m)?(0.040 T/s) = 0.50 V.

b. The magnitude of the current induced in the coil is
0.50V
I=<=""""2010A.

R 5.0Q
Significance
If the area of the loop were changing in time, we would not be able to pull it out of the time derivative. Since the
loop is a closed path, the result of this current would be a small amount of heating of the wires until the
magnetic field stops changing. This may increase the area of the loop slightly as the wires are heated.

) CHECK YOUR UNDERSTANDING 13.1

A closely wound coil has a radius of 4.0 cm, 50 turns, and a total resistance of 40 Q. At what rate must a
magnetic field perpendicular to the face of the coil change in order to produce Joule heating in the coil at a rate
of 2.0 mW?




13.2 Lenz's Law

Learning Objectives

By the end of this section, you will be able to:
e Use Lenz’s law to determine the direction of induced emf whenever a magnetic flux changes
e Use Faraday’s law with Lenz’s law to determine the induced emf in a coil and in a solenoid

The direction in which the induced emf drives current around a wire loop can be found through the negative
sign. However, it is usually easier to determine this direction with Lenz’s law, named in honor of its discoverer,
Heinrich Lenz (1804-1865). (Faraday also discovered this law, independently of Lenz.) We state Lenz’s law as
follows:

Lenz’s Law

The direction of the induced emf drives current around a wire loop to always oppose the change in
magnetic flux that causes the emf.

Lenz’s law can also be considered in terms of conservation of energy. If pushing a magnet into a coil causes
current, the energy in that current must have come from somewhere. If the induced current causes a magnetic
field opposing the increase in field of the magnet we pushed in, then the situation is clear. We pushed a magnet
against a field and did work on the system, and that showed up as current. If it were not the case that the
induced field opposes the change in the flux, the magnet would be pulled in produce a current without
anything having done work. Electric potential energy would have been created, violating the conservation of
energy.

To determine an induced emf €, you first calculate the magnetic flux @y, and then obtain d®p,/dt. The
magnitude of € is given by € = |d®y,/dt| . Finally, you can apply Lenz’s law to determine the sense of €. This
will be developed through examples that illustrate the following problem-solving strategy.

@ PROBLEM-SOLVING STRATEGY

Lenz’s Law
To use Lenz’s law to determine the directions of induced magnetic fields, currents, and emfs:

1. Make a sketch of the situation for use in visualizing and recording directions.

2. Determine the direction of the applied magnetic field ﬁ

3. Determine whether its magnetic flux is increasing or decreasing.

4. Now determine the direction of the induced magnetic field ﬁ The induced magnetic field tries to reinforce
a magnetic flux that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced
magnetic field adds or subtracts to the applied magnetic field, depending on the change in magnetic flux.

5. Useright-hand rule 2 (RHR-2; see Magnetic Forces and Fields) to determine the direction of the induced

>
current I that is responsible for the induced magnetic field B.
6. The direction (or polarity) of the induced emf can now drive a conventional current in this direction.

Let’s apply Lenz’s law to the system of Figure 13.7(a). We designate the “front” of the closed conducting loop as
the region containing the approaching bar magnet, and the “back” of the loop as the other region. As the north
pole of the magnet moves toward the loop, the flux through the loop due to the field of the magnet increases
because the strength of field lines directed from the front to the back of the loop is increasing. A current is
therefore induced in the loop. By Lenz’s law, the direction of the induced current must be such that its own
magnetic field is directed in a way to oppose the changing flux caused by the field of the approaching magnet.
Hence, the induced current circulates so that its magnetic field lines through the loop are directed from the
back to the front of the loop. By RHR-2, place your thumb pointing against the magnetic field lines, which is
toward the bar magnet. Your fingers wrap in a counterclockwise direction as viewed from the bar magnet.



Alternatively, we can determine the direction of the induced current by treating the current loop as an
electromagnet that opposes the approach of the north pole of the bar magnet. This occurs when the induced
current flows as shown, for then the face of the loop nearer the approaching magnet is also a north pole.

(a) (b)
Figure 13.7 The change in magnetic flux caused by the approaching magnet induces a current in the loop. (a) An approaching north pole
induces a counterclockwise current with respect to the bar magnet. (b) An approaching south pole induces a clockwise current with respect

to the bar magnet.

Part (b) of the figure shows the south pole of a magnet moving toward a conducting loop. In this case, the flux
through the loop due to the field of the magnet increases because the number of field lines directed from the
back to the front of the loop is increasing. To oppose this change, a current is induced in the loop whose field
lines through the loop are directed from the front to the back. Equivalently, we can say that the current flows in
a direction so that the face of the loop nearer the approaching magnet is a south pole, which then repels the
approaching south pole of the magnet. By RHR-2, your thumb points away from the bar magnet. Your fingers
wrap in a clockwise fashion, which is the direction of the induced current.

Another example illustrating the use of Lenz’s law is shown in Figure 13.8. When the switch is opened, the
decrease in current through the solenoid causes a decrease in magnetic flux through its coils, which induces
an emf in the solenoid. This emf must oppose the change (the termination of the current) causing it.
Consequently, the induced emf has the polarity shown and drives in the direction of the original current. This
may generate an arc across the terminals of the switch as it is opened.

+ —
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Figure 13.8 (a) A solenoid connected to a source of emf. (b) Opening switch S terminates the current, which in turn induces an emf in the
solenoid. (c) A potential difference between the ends of the sharply pointed rods is produced by inducing an emf in a coil. This potential

difference is large enough to produce an arc between the sharp points.

) CHECK YOUR UNDERSTANDING 13.2

Find the direction of the induced current in the wire loop shown below as the magnet enters, passes through,
and leaves the loop.




CHECK YOUR UNDERSTANDING 13.3

Verify the directions of the induced currents in Figure 13.3.

@ EXAMPLE 13.2

A Circular Coil in a Changing Magnetic Field

A magnetic field ﬁ is directed outward perpendicular to the plane of a circular coil of radius r = 0.50 m (Figure
13.9). The field is cylindrically symmetrical with respect to the center of the coil, and its magnitude decays

—1 L. ..
exponentially according to B = (1.5T )e_(s'05 ) where Bis in teslas and tis in seconds. (a) Calculate the emf
induced in the coil at the times ¢} = 0,7, = 5.0 X 10~2 s, and 3 = 1.0 s. (b) Determine the current in the coil
at these three times if its resistance is 10 Q.
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Figure 13.9 Acircular coil in a decreasing magnetic field.

Strategy
Since the magnetic field is perpendicular to the plane of the coil and constant over each spot in the coil, the dot

product of the magnetic field ﬁ and normal to the area unit vector i turns into a multiplication. The magnetic
field can be pulled out of the integration, leaving the flux as the product of the magnetic field times area. We
need to take the time derivative of the exponential function to calculate the emf using Faraday’s law. Then we
use Ohm'’s law to calculate the current.

Solution

a. Since ﬁ is perpendicular to the plane of the coil, the magnetic flux is given by

@, = Brr? = (1.5¢73% T)7(0.50 m)2
= 1.2e~505" Dt wp,

From Faraday’s law, the magnitude of the induced emf is

dim - ‘%(I.Ze‘“")s_l)’ Wh)| = 6,08y,

E =

>
Since B is directed out of the page and is decreasing, the induced current must flow counterclockwise



when viewed from above so that the magnetic field it produces through the coil also points out of the page.

For all three times, the sense of € is counterclockwise; its magnitudes are
e(t))=60V; e(tr)=47V; €(t3) =0.040V.

b. From Ohm’s law, the respective currents are
t
I(tl) _ &) _ 60V =0.60A;

R 10Q
I() = I =047A;
and
0.040 V 3
(1) =00 0 x 10

Significance
An emf voltage is created by a changing magnetic flux over time. If we know how the magnetic field varies with
time over a constant area, we can take its time derivative to calculate the induced emf.

@ EXAMPLE 13.3

Changing Magnetic Field Inside a Solenoid

The current through the windings of a solenoid with » = 2000 turns per meter is changing at a rate

dI/dt = 3.0 A/s. (See Sources of Magnetic Fields for a discussion of solenoids.) The solenoid is 50-cm long and
has a cross-sectional diameter of 3.0 cm. A small coil consisting of N = 20 closely wound turns wrapped in a
circle of diameter 1.0 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular
to the central axis of the solenoid. Assuming that the infinite-solenoid approximation is valid at the location of
the small coil, determine the magnitude of the emf induced in the coil.

Strategy

The magnetic field in the middle of the solenoid is a uniform value of ygnl. This field is producing a maximum
magnetic flux through the coil as it is directed along the length of the solenoid. Therefore, the magnetic flux
through the coil is the product of the solenoid’s magnetic field times the area of the coil. Faraday’s law involves
a time derivative of the magnetic flux. The only quantity varying in time is the current, the rest can be pulled
out of the time derivative. Lastly, we include the number of turns in the coil to determine the induced emfin
the coil.

Solution
Since the field of the solenoid is given by B = ugnl, the flux through each turn of the small coil is

d2
q)m = MOnT <”T> .

where d is the diameter of the coil. Now from Faraday’s law, the magnitude of the emf induced in the coil is

— |n9%m | _ xd® dI
€ _|N dt |—‘Ny0n 4 dt

=20 (47 x 1077 T - m/s) (2000m™) M@-O Als)

=12 x 1075 V.

Significance
When the current is turned on in a vertical solenoid, as shown in Figure 13.10, the ring has an induced emf

from the solenoid’s changing magnetic flux that opposes the change. The result is that the ring is fired
vertically into the air.
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Figure 13.10 The jumping ring. When a current is turned on in the vertical solenoid, a current is induced in the metal ring. The stray field

produced by the solenoid causes the ring to jump off the solenoid.

@ INTERACTIVE

Visit this website (https://openstax.org/l/21mitjumpring) for a demonstration of the jumping ring from MIT.

13.3 Motional Emf

Learning Objectives

By the end of this section, you will be able to:
e Determine the magnitude of an induced emf in a wire moving at a constant speed through a magnetic field
e Discuss examples that use motional emf, such as a rail gun and a tethered satellite

Magnetic flux depends on three factors: the strength of the magnetic field, the area through which the field
lines pass, and the orientation of the field with the surface area. If any of these quantities varies, a
corresponding variation in magnetic flux occurs. So far, we’ve only considered flux changes due to a changing
field. Now we look at another possibility: a changing area through which the field lines pass including a change
in the orientation of the area.

Two examples of this type of flux change are represented in Figure 13.11. In part (a), the flux through the
rectangular loop increases as it moves into the magnetic field, and in part (b), the flux through the rotating coil
varies with the angle 6.

Access for free at openstax.org.
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Figure 13.11 (a) Magnetic flux changes as a loop moves into a magnetic field; (b) magnetic flux changes as a loop rotates in a magnetic
field.

It’s interesting to note that what we perceive as the cause of a particular flux change actually depends on the
frame of reference we choose. For example, if you are at rest relative to the moving coils of Figure 13.11, you
would see the flux vary because of a changing magnetic field—in part (a), the field moves from left to right in
your reference frame, and in part (b), the field is rotating. It is often possible to describe a flux change through
a coil that is moving in one particular reference frame in terms of a changing magnetic field in a second frame,
where the coil is stationary. However, reference-frame questions related to magnetic flux are beyond the level
of this textbook. We’ll avoid such complexities by always working in a frame at rest relative to the laboratory
and explain flux variations as due to either a changing field or a changing area.

Now let’s look at a conducting rod pulled in a circuit, changing magnetic flux. The area enclosed by the circuit
‘MNOP’ of Figure 13.12 is Ix and is perpendicular to the magnetic field, so we can simplify the integration of
Equation 13.1 into a multiplication of magnetic field and area. The magnetic flux through the open surface is
therefore

&, = Blx. 13.4

Since Band /are constant and the velocity of the rod is v = dx/dt, we can now restate Faraday’s law, Equation
13.2, for the magnitude of the emf in terms of the moving conducting rod as

dd,, i
T Ta dr v

The current induced in the circuit is the emf divided by the resistance or
_ Blv
z

Furthermore, the direction of the induced emf satisfies Lenz’s law, as you can verify by inspection of the figure.

1

This calculation of motionally induced emf is not restricted to a rod moving on conducting rails. With

I_*L =qv X l_?: as the starting point, it can be shown that € = —d®p,/dt holds for any change in flux caused by the
motion of a conductor. We saw in Faraday’s Law that the emf induced by a time-varying magnetic field obeys
this same relationship, which is Faraday’s law. Thus Faraday’s law holds for all flux changes, whether they are
produced by a changing magnetic field, by motion, or by a combination of the two.
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Figure 13.12 A conducting rod is pushed to the right at constant velocity. The resulting change in the magnetic flux induces a current in

the circuit.

=

From an energy perspective, F, produces power F,v, and the resistor dissipates power I 2 R. Since the rod is
moving at constant velocity, the applied force F, must balance the magnetic force Fy,, = Il B on the rod when
it is carrying the induced current I. Thus the power produced is

BI 12 B2 1?
Fao=1IIBo= -2 .1pp="2"_ 13.6
R R
The power dissipated is
) Biv\%  2B.?
R R

In satisfying the principle of energy conservation, the produced and dissipated powers are equal.

This principle can be seen in the operation of a rail gun. A rail gun is an electromagnetic projectile launcher
that uses an apparatus similar to Figure 13.12 and is shown in schematic form in Figure 13.13. The conducting
rod is replaced with a projectile or weapon to be fired. So far, we’ve only heard about how motion causes an
emf. In a rail gun, the optimal shutting off/ramping down of a magnetic field decreases the flux in between the
rails, causing a current to flow in the rod (armature) that holds the projectile. This current through the
armature experiences a magnetic force and is propelled forward. Rail guns, however, are not used widely in the
military due to the high cost of production and high currents: Nearly one million amps is required to produce
enough energy for a rail gun to be an effective weapon.

Armature Rails

Magnetic field interacts with current
in armature, generating force

Projectile

Armature and projectile
accelerated forward
by magnetic force

Current

<

agnetic field generated
y current in rails

o

Figure 13.13 Current through two rails drives a conductive projectile forward by the magnetic force created.

We can calculate a motionally induced emf with Faraday’s law even when an actual closed circuit is not
present. We simply imagine an enclosed area whose boundary includes the moving conductor, calculate @y,



and then find the emf from Faraday’s law. For example, we can let the moving rod of Figure 13.14 be one side
of the imaginary rectangular area represented by the dashed lines. The area of the rectangle is Ix, so the
magnetic flux through it is ®, = Blx. Differentiating this equation, we obtain

do dx
— = BI— = Blu, 13.8
dt dt
which is identical to the potential difference between the ends of the rod that we determined earlier.
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Figure 13.14 With the imaginary rectangle shown, we can use Faraday’s law to calculate the induced emf in the moving rod.

Motional emfs in Earth’s weak magnetic field are not ordinarily very large, or we would notice voltage along
metal rods, such as a screwdriver, during ordinary motions. For example, a simple calculation of the motional
emf of a 1.0-m rod moving at 3.0 m/s perpendicular to the Earth’s field gives

emf = B£v = (5.0 x 107> T)(1.0m)(3.0 m/s) = 150uV.

This small value is consistent with experience. There is a spectacular exception, however. In 1992 and 1996,
attempts were made with the space shuttle to create large motional emfs. The tethered satellite was to be let
out on a 20-km length of wire, as shown in Figure 13.15, to create a 5-kV emf by moving at orbital speed
through Earth’s field. This emf could be used to convert some of the shuttle’s kinetic and potential energy into
electrical energy if a complete circuit could be made. To complete the circuit, the stationary ionosphere was to
supply a return path through which current could flow. (The ionosphere is the rarefied and partially ionized
atmosphere at orbital altitudes. It conducts because of the ionization. The ionosphere serves the same function
as the stationary rails and connecting resistor in Figure 13.13, without which there would not be a complete
circuit.) Drag on the current in the cable due to the magnetic force F = IZ Bsin 6 does the work that reduces
the shuttle’s kinetic and potential energy, and allows it to be converted into electrical energy. Both tests were
unsuccessful. In the first, the cable hung up and could only be extended a couple of hundred meters; in the
second, the cable broke when almost fully extended. Example 13.4 indicates feasibility in principle.
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Figure 13.15 Motional emf as electrical power conversion for the space shuttle was the motivation for the tethered satellite experiment.
A 5-kV emf was predicted to be induced in the 20-km tether while moving at orbital speed in Earth’s magnetic field. The circuit is

completed by a return path through the stationary ionosphere.

@ EXAMPLE 13.4

Calculating the Large Motional Emf of an Object in Orbit
Calculate the motional emf induced along a 20.0-km conductor moving at an orbital speed of 7.80 km/s
perpendicular to Earth’s 5.00 X 1075T magnetic field.

Strategy
This is a great example of using the equation motional € = Bfv.

Solution
Entering the given values into € = BZv gives
e =Bfv
=(5.00 x 107 T)(2.00 x 10* m)(7.80 x 10° m/s)
=7.80 x 103 V.
Significance
The value obtained is greater than the 5-kV measured voltage for the shuttle experiment, since the actual

orbital motion of the tether is not perpendicular to Earth’s field. The 7.80-kV value is the maximum emf
obtained when € = 90° and so sin § = 1.

@ EXAMPLE 13.5

A Metal Rod Rotating in a Magnetic Field
Part (a) of Figure 13.16 shows a metal rod OS that is rotating in a horizontal plane around point O. The rod

slides along a wire that forms a circular arc PST of radius r. The system is in a constant magnetic field ﬁ that is
directed out of the page. (a) If you rotate the rod at a constant angular velocity w, what is the current Iin the
closed loop OPSO? Assume that the resistor R furnishes all of the resistance in the closed loop. (b) Calculate the
work per unit time that you do while rotating the rod and show that it is equal to the power dissipated in the
resistor.
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Figure 13.16 (a) The end of a rotating metal rod slides along a circular wire in a horizontal plane. (b) The induced current in the rod. (c)

The magnetic force on an infinitesimal current segment.

Strategy

The magnetic flux is the magnetic field times the area of the quarter circle or A = r20/2. When finding the emf
through Faraday’s law, all variables are constant in time but 8, withw = df/dt. To calculate the work per unit
time, we know this is related to the torque times the angular velocity. The torque is calculated by knowing the
force on a rod and integrating it over the length of the rod.

Solution
2
a. From geometry, the area of the loop OPSOis A = % Hence, the magnetic flux through the loop is
2
r 0
&, = BA= BT'

Differentiating with respect to time and using w = df/dt, we have

’ d®p, l Brlw
e=|——|= .
dt 2
When divided by the resistance R of the loop, this yields for the magnitude of the induced current
€ Brlw
"~ R 2R’

As @ increases, so does the flux through the loop due to ﬁ To counteract this increase, the magnetic field
due to the induced current must be directed into the page in the region enclosed by the loop. Therefore, as
part (b) of Figure 13.16 illustrates, the current circulates clockwise.

b. Yourotate the rod by exerting a torque on it. Since the rod rotates at constant angular velocity, this torque
is equal and opposite to the torque exerted on the current in the rod by the original magnetic field. The
magnetic force on the infinitesimal segment of length dx shown in part (c) of Figure 13.16 is d Fy, = I Bdx,

so the magnetic torque on this segment is
dtym = x - dFy = IBxdx.

The net magnetic torque on the rod is then

r r 1
Tm=/ drm=IB/ xdx = —IBr?.
0 0 2

The torque 7 that you exert on the rod is equal and opposite to 7, and the work that you do when the rod
rotates through an angle df is dW = ©df. Hence, the work per unit time that you do on the rod is

dw  do 1 do 1 [ Br? B rtw?

= -1 % = —( s w) Blo="""_

a Tdr 2 a2\ 2R 4R

where we have substituted for I. The power dissipated in the resisteris P = I 2 R, which can be written as

Brle 2 B2rta?
2R 4R




Therefore, we see that
aw
P=—.
dt

Hence, the power dissipated in the resistor is equal to the work per unit time done in rotating the rod.
Significance
An alternative way of looking at the induced emf from Faraday’s law is to integrate in space instead of time.
The solution, however, would be the same. The motional emfis

le| = /Budl.

The velocity can be written as the angular velocity times the radius and the differential length written as dr.

Therefore,
/ 1
lel = B/vdr = Ba)/rdr= EBa)lz,
0

which is the same solution as before.

@ EXAMPLE 13.6

A Rectangular Coil Rotating in a Magnetic Field

= A
A rectangular coil of area A and N turns is placed in a uniform magnetic field B = Bj, as shown in Figure
13.17. The coil is rotated about the z-axis through its center at a constant angular velocity w. Obtain an
expression for the induced emf in the coil.

Figure 13.17 A rectangular coil rotating in a uniform magnetic field.

Strategy

According to the diagram, the angle between the perpendicular to the surface (#) and the magnetic field (I_i) is

0. The dot product of B4 simplifies to only the cos 8 component of the magnetic field, namely where the
magnetic field projects onto the unit area vector 7. The magnitude of the magnetic field and the area of the



loop are fixed over time, which makes the integration simplify quickly. The induced emf is written out using
Faraday’s law.

Solution

>
When the coil is in a position such that its normal vector i makes an angle 8 with the magnetic field B, the
magnetic flux through a single turn of the coil is

<I>m=/1_§-ﬁdA=BAcost9.
S

From Faraday’s law, the emf induced in the coil is

N d®p,

£=- :NBAsinOﬁ.
dt

The constant angular velocity is w = df/dt. The angle 0 represents the time evolution of the angular velocity or
wt. This is changes the function to time space rather than 8. The induced emf therefore varies sinusoidally
with time according to

€ = gq sin wt,
where g = NBAw.
Significance
If the magnetic field strength or area of the loop were also changing over time, these variables wouldn’t be able

to be pulled out of the time derivative to simply the solution as shown. This example is the basis for an electric
generator, as we will give a full discussion in Applications of Newton’s Law.

CHECK YOUR UNDERSTANDING 13.4

Shown below is a rod of length I that is rotated counterclockwise around the axis through O by the torque due

>
to m§ Assuming that the rod is in a uniform magnetic field B, what is the emf induced between the ends of the
rod when its angular velocity is @? Which end of the rod is at a higher potential?

B
x x x X x
x x x 0O x x
x x x X x
x® S x *® ® ®
mg
x x x x x

CHECK YOUR UNDERSTANDING 13.5

Arod of length 10 cm moves at a speed of 10 m/s perpendicularly through a 1.5-T magnetic field. What is the
potential difference between the ends of the rod?



13.4 Induced Electric Fields

Learning Objectives
By the end of this section, you will be able to:
e Connect the relationship between an induced emf from Faraday's law to an electric field, thereby showing
that a changing magnetic flux creates an electric field
e Solve for the electric field based on a changing magnetic flux in time

The fact that emfs are induced in circuits implies that work is being done on the conduction electrons in the
wires. What can possibly be the source of this work? We know that it’s neither a battery nor a magnetic field,
for a battery does not have to be present in a circuit where current is induced, and magnetic fields never do

S

work on moving charges. The answer is that the source of the work is an electric field E that is induced in the
-

wires. The work done by E in moving a unit charge completely around a circuit is the induced emf €; that is,

e=§z{fi-d'l', 13.9

where }{ represents the line integral around the circuit. Faraday’s law can be written in terms of the induced

electric field as

dod
%ﬁ-cﬁ:——m. 13.10
dt

There is an important distinction between the electric field induced by a changing magnetic field and the
electrostatic field produced by a fixed charge distribution. Specifically, the induced electric field is
nonconservative because it does net work in moving a charge over a closed path, whereas the electrostatic
field is conservative and does no net work over a closed path. Hence, electric potential can be associated with
the electrostatic field, but not with the induced field. The following equations represent the distinction
between the two types of electric field:

j]{ I_*fd_f # 0 (induced);

13.11
- -
7{ E-dl = 0 (electrostatic).
Our results can be summarized by combining these equations:
dd
e=?§l'<f-d'l'=—d—tm. 13.12

@ EXAMPLE 13.7

Induced Electric Field in a Circular Coil

What is the induced electric field in the circular coil of Example 13.2 (and Figure 13.9) at the three times
indicated?

Strategy

Using cylindrical symmetry, the electric field integral simplifies into the electric field times the circumference
of a circle. Since we already know the induced emf, we can connect these two expressions by Faraday’s law to
solve for the induced electric field.

Solution

The induced electric field in the coil is constant in magnitude over the cylindrical surface, similar to how
>

Ampere’s law problems with cylinders are solved. Since E is tangent to the coil,



> o
%E-d =?{Edl:27rrE.

When combined with Equation 13.12, this gives
e
E=—.
2xr

5
The direction of ¢ is counterclockwise, and E circulates in the same direction around the coil. The values of E
are

E@t) = 00V __ —19V/m;

27 (0.50 m)
— 47V — .
_ _0040V_ _

Significance

When the magnetic flux through a circuit changes, a nonconservative electric field is induced, which drives
current through the circuit. But what happens if d B/dt # 0 in free space where there isn’t a conducting path?
The answer is that this case can be treated as if a conducting path were present; that is, nonconservative
electric fields are induced wherever d B/dt # 0, whether or not there is a conducting path present.

These nonconservative electric fields always satisfy Equation 13.12. For example, if the circular coil of Figure
13.9 were removed, an electric field in free space at r = 0.50 m would still be directed counterclockwise, and
its magnitude would stillbe 1.9 V/m at¢t =0, 1.5 V/m at¢t = 5.0 X 10~2 s, etc. The existence of induced electric
fields is certainly not restricted to wires in circuits.

@ EXAMPLE 13.8

Electric Field Induced by the Changing Magnetic Field of a Solenoid

Part (a) of Figure 13.18 shows a long solenoid with radius R and n turns per unit length; its current decreases
with time according to I = Ipe™* . What is the magnitude of the induced electric field at a point a distance r
from the central axis of the solenoid (a) when » > R and (b) when r < R [see part (b) of Figure 13.18]. (¢c) What
is the direction of the induced field at both locations? Assume that the infinite-solenoid approximation is valid
throughout the regions of interest.
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(a) (b)
Figure 13.18 (a) The current in a long solenoid is decreasing exponentially. (b) A cross-sectional view of the solenoid from its left end. The

cross-section shown is near the middle of the solenoid. An electric field is induced both inside and outside the solenoid.

Strategy

Using the formula for the magnetic field inside an infinite solenoid and Faraday’s law, we calculate the induced
emf. Since we have cylindrical symmetry, the electric field integral reduces to the electric field times the
circumference of the integration path. Then we solve for the electric field.

Solution

a. The magnetic field is confined to the interior of the solenoid where
B = pgnl = pynlye ™.
Thus, the magnetic flux through a circular path whose radius ris greater than R, the solenoid radius, is
@y, = BA = ponlynR*e™™.

N
The induced field E is