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INTRODUCTION

CHAPTER 5
Electric Charges and Fields

5.1 Electric Charge

5.2 Conductors, Insulators, and Charging by Induction

5.3 Coulomb's Law

5.4 Electric Field

5.5 Calculating Electric Fields of Charge Distributions

5.6 Electric Field Lines

5.7 Electric Dipoles

Back when we were studying Newton’s laws, we identified several physical phenomena as
forces. We did so based on the effect they had on a physical object: Specifically, they caused the object to
accelerate. Later, when we studied impulse and momentum, we expanded this idea to identify a force as any

Figure 5.1 Electric charges exist all around us. They can cause objects to be repelled from each other or to be
attracted to each other. (credit: modification of work by Sean McGrath)
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physical phenomenon that changed the momentum of an object. In either case, the result is the same: We
recognize a force by the effect that it has on an object.

In Gravitation, we examined the force of gravity, which acts on all objects with mass. In this chapter, we begin
the study of the electric force, which acts on all objects with a property called charge. The electric force is much
stronger than gravity (in most systems where both appear), but it can be a force of attraction or a force of
repulsion, which leads to very different effects on objects. The electric force helps keep atoms together, so it is
of fundamental importance in matter. But it also governs most everyday interactions we deal with, from
chemical interactions to biological processes.

5.1 Electric Charge
Learning Objectives
By the end of this section, you will be able to:

• Describe the concept of electric charge
• Explain qualitatively the force electric charge creates

You are certainly familiar with electronic devices that you activate with the click of a switch, from computers to
cell phones to television. And you have certainly seen electricity in a flash of lightning during a heavy
thunderstorm. But you have also most likely experienced electrical effects in other ways, maybe without
realizing that an electric force was involved. Let’s take a look at some of these activities and see what we can
learn from them about electric charges and forces.

Discoveries
You have probably experienced the phenomenon of static electricity: When you first take clothes out of a
dryer, many (not all) of them tend to stick together; for some fabrics, they can be very difficult to separate.
Another example occurs if you take a woolen sweater off quickly—you can feel (and hear) the static electricity
pulling on your clothes, and perhaps even your hair. If you comb your hair on a dry day and then put the comb
close to a thin stream of water coming out of a faucet, you will find that the water stream bends toward (is
attracted to) the comb (Figure 5.2).

Figure 5.2 An electrically charged comb attracts a stream of water from a distance. Note that the water is not touching the comb. (credit:

Jane Whitney)

Suppose you bring the comb close to some small strips of paper; the strips of paper are attracted to the comb
and even cling to it (Figure 5.3). In the kitchen, quickly pull a length of plastic cling wrap off the roll; it will tend
to cling to most any nonmetallic material (such as plastic, glass, or food). If you rub a balloon on a wall for a few
seconds, it will stick to the wall. Probably the most annoying effect of static electricity is getting shocked by a
doorknob (or a friend) after shuffling your feet on some types of carpeting.
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Figure 5.3 After being used to comb hair, this comb attracts small strips of paper from a distance, without physical contact. Investigation

of this behavior helped lead to the concept of the electric force. (credit: Jane Whitney)

Many of these phenomena have been known for centuries. The ancient Greek philosopher Thales of Miletus
(624–546 BCE) recorded that when amber (a hard, translucent, fossilized resin from extinct trees) was
vigorously rubbed with a piece of fur, a force was created that caused the fur and the amber to be attracted to
each other (Figure 5.4). Additionally, he found that the rubbed amber would not only attract the fur, and the fur
attract the amber, but they both could affect other (nonmetallic) objects, even if not in contact with those
objects (Figure 5.5).

Figure 5.4 Borneo amber is mined in Sabah, Malaysia, from shale-sandstone-mudstone veins. When a piece of amber is rubbed with a

piece of fur, the amber gains more electrons, giving it a net negative charge. At the same time, the fur, having lost electrons, becomes

positively charged. (credit: “Sebakoamber”/Wikimedia Commons)
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Figure 5.5 When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for electrons

than another. (a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny fraction of the

charges are involved, and only a few of them are shown here. (b) When rubbed together, some negative charge is transferred to the amber,

leaving the cloth with a net positive charge. (c) When separated, the amber and cloth now have net charges, but the absolute value of the

net positive and negative charges will be equal.

The English physicist William Gilbert (1544–1603) also studied this attractive force, using various substances.
He worked with amber, and, in addition, he experimented with rock crystal and various precious and semi-
precious gemstones. He also experimented with several metals. He found that the metals never exhibited this
force, whereas the minerals did. Moreover, although an electrified amber rod would attract a piece of fur, it
would repel another electrified amber rod; similarly, two electrified pieces of fur would repel each other.

This suggested there were two types of an electric property; this property eventually came to be called electric
charge. The difference between the two types of electric charge is in the directions of the electric forces that
each type of charge causes: These forces are repulsive when the same type of charge exists on two interacting
objects and attractive when the charges are of opposite types. The SI unit of electric charge is the coulomb (C),
after the French physicist Charles-Augustin de Coulomb (1736–1806).

The most peculiar aspect of this new force is that it does not require physical contact between the two objects
in order to cause an acceleration. This is an example of a so-called “long-range” force. (Or, as James Clerk
Maxwell later phrased it, “action at a distance.”) With the exception of gravity, all other forces we have
discussed so far act only when the two interacting objects actually touch.

The American physicist and statesman Benjamin Franklin found that he could concentrate charge in a
“Leyden jar,” which was essentially a glass jar with two sheets of metal foil, one inside and one outside, with
the glass between them (Figure 5.6). This created a large electric force between the two foil sheets.
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Figure 5.6 A Leyden jar (an early version of what is now called a capacitor) allowed experimenters to store large amounts of electric

charge. Benjamin Franklin used such a jar to demonstrate that lightning behaved exactly like the electricity he got from the equipment in his

laboratory.

Franklin pointed out that the observed behavior could be explained by supposing that one of the two types of
charge remained motionless, while the other type of charge flowed from one piece of foil to the other. He
further suggested that an excess of what he called this “electrical fluid” be called “positive electricity” and the
deficiency of it be called “negative electricity.” His suggestion, with some minor modifications, is the model we
use today. (With the experiments that he was able to do, this was a pure guess; he had no way of actually
determining the sign of the moving charge. Unfortunately, he guessed wrong; we now know that the charges
that flow are the ones Franklin labeled negative, and the positive charges remain largely motionless.
Fortunately, as we’ll see, it makes no practical or theoretical difference which choice we make, as long as we
stay consistent with our choice.)

Let’s list the specific observations that we have of this electric force:

• The force acts without physical contact between the two objects.
• The force can be either attractive or repulsive: If two interacting objects carry the same sign of charge, the

force is repulsive; if the charges are of opposite sign, the force is attractive. These interactions are referred
to as electrostatic repulsion and electrostatic attraction, respectively.

• Not all objects are affected by this force.
• The magnitude of the force decreases (rapidly) with increasing separation distance between the objects.

To be more precise, we find experimentally that the magnitude of the force decreases as the square of the
distance between the two interacting objects increases. Thus, for example, when the distance between two
interacting objects is doubled, the force between them decreases to one fourth what it was in the original
system. We can also observe that the surroundings of the charged objects affect the magnitude of the force.
However, we will explore this issue in a later chapter.
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Properties of Electric Charge
In addition to the existence of two types of charge, several other properties of charge have been discovered.

• Charge is quantized. This means that electric charge comes in discrete amounts, and there is a smallest
possible amount of charge that an object can have. In the SI system, this smallest amount is

. No free particle can have less charge than this, and, therefore, the charge on any
object—the charge on all objects—must be an integer multiple of this amount. All macroscopic, charged
objects have charge because electrons have either been added or taken away from them, resulting in a net
charge.

• The magnitude of the charge is independent of the type. Phrased another way, the smallest possible
positive charge (to four significant figures) is , and the smallest possible negative
charge is ; these values are exactly equal. This is simply how the laws of physics in our
universe turned out.

• Charge is conserved. Charge can neither be created nor destroyed; it can only be transferred from place
to place, from one object to another. Frequently, we speak of two charges “canceling”; this is verbal
shorthand. It means that if two objects that have equal and opposite charges are physically close to each
other, then the (oppositely directed) forces they apply on some other charged object cancel, for a net force
of zero. It is important that you understand that the charges on the objects by no means disappear,
however. The net charge of the universe is constant.

• Charge is conserved in closed systems. In principle, if a negative charge disappeared from your lab
bench and reappeared on the Moon, conservation of charge would still hold. However, this never happens.
If the total charge you have in your local system on your lab bench is changing, there will be a measurable
flow of charge into or out of the system. Again, charges can and do move around, and their effects can and
do cancel, but the net charge in your local environment (if closed) is conserved. The last two items are both
referred to as the law of conservation of charge.

The Source of Charges: The Structure of the Atom
Once it became clear that all matter was composed of particles that came to be called atoms, it also quickly
became clear that the constituents of the atom included both positively charged particles and negatively
charged particles. The next question was, what are the physical properties of those electrically charged
particles?

The negatively charged particle was the first one to be discovered. In 1897, the English physicist J. J. Thomson
was studying what was then known as cathode rays. Some years before, the English physicist William Crookes
had shown that these “rays” were negatively charged, but his experiments were unable to tell any more than
that. (The fact that they carried a negative electric charge was strong evidence that these were not rays at all,
but particles.) Thomson prepared a pure beam of these particles and sent them through crossed electric and
magnetic fields, and adjusted the various field strengths until the net deflection of the beam was zero. With this
experiment, he was able to determine the charge-to-mass ratio of the particle. This ratio showed that the mass
of the particle was much smaller than that of any other previously known particle—1837 times smaller, in fact.
Eventually, this particle came to be called the electron.

Since the atom as a whole is electrically neutral, the next question was to determine how the positive and
negative charges are distributed within the atom. Thomson himself imagined that his electrons were
embedded within a sort of positively charged paste, smeared out throughout the volume of the atom. However,
in 1908, the New Zealand physicist Ernest Rutherford showed that the positive charges of the atom existed
within a tiny core—called a nucleus—that took up only a very tiny fraction of the overall volume of the atom, but
held over 99% of the mass. (See Linear Momentum and Collisions.) In addition, he showed that the negatively
charged electrons perpetually orbited about this nucleus, forming a sort of electrically charged cloud that
surrounds the nucleus (Figure 5.7). Rutherford concluded that the nucleus was constructed of small, massive
particles that he named protons.
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Figure 5.7 This simplified model of a hydrogen atom shows a positively charged nucleus (consisting, in the case of hydrogen, of a single

proton), surrounded by an electron “cloud.” The charge of the electron cloud is equal (and opposite in sign) to the charge of the nucleus, but

the electron does not have a definite location in space; hence, its representation here is as a cloud. Normal macroscopic amounts of matter

contain immense numbers of atoms and molecules, and, hence, even greater numbers of individual negative and positive charges.

Since it was known that different atoms have different masses, and that ordinarily atoms are electrically
neutral, it was natural to suppose that different atoms have different numbers of protons in their nucleus, with
an equal number of negatively charged electrons orbiting about the positively charged nucleus, thus making
the atoms overall electrically neutral. However, it was soon discovered that although the lightest atom,
hydrogen, did indeed have a single proton as its nucleus, the next heaviest atom—helium—has twice the
number of protons (two), but four times the mass of hydrogen.

This mystery was resolved in 1932 by the English physicist James Chadwick, with the discovery of the
neutron. The neutron is, essentially, an electrically neutral twin of the proton, with no electric charge, but
(nearly) identical mass to the proton. The helium nucleus therefore has two neutrons along with its two
protons. (Later experiments were to show that although the neutron is electrically neutral overall, it does have
an internal charge structure. Furthermore, although the masses of the neutron and the proton are nearly
equal, they aren’t exactly equal: The neutron’s mass is very slightly larger than the mass of the proton. That
slight mass excess turned out to be of great importance. That, however, is a story that will have to wait until our
study of modern physics in Nuclear Physics.)

Thus, in 1932, the picture of the atom was of a small, massive nucleus constructed of a combination of protons
and neutrons, surrounded by a collection of electrons whose combined motion formed a sort of negatively
charged “cloud” around the nucleus (Figure 5.8). In an electrically neutral atom, the total negative charge of
the collection of electrons is equal to the total positive charge in the nucleus. The very low-mass electrons can
be more or less easily removed or added to an atom, changing the net charge on the atom (though without
changing its type). An atom that has had the charge altered in this way is called an ion. Positive ions have had
electrons removed, whereas negative ions have had excess electrons added. We also use this term to describe
molecules that are not electrically neutral.
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Figure 5.8 The nucleus of a carbon atom is composed of six protons and six neutrons. As in hydrogen, the surrounding six electrons do

not have definite locations and so can be considered to be a sort of cloud surrounding the nucleus.

The story of the atom does not stop there, however. In the latter part of the twentieth century, many more
subatomic particles were discovered in the nucleus of the atom: pions, neutrinos, and quarks, among others.
With the exception of the photon, none of these particles are directly relevant to the study of
electromagnetism, so we defer further discussion of them until the chapter on particle physics (Particle
Physics and Cosmology).

A Note on Terminology
As noted previously, electric charge is a property that an object can have. This is similar to how an object can
have a property that we call mass, a property that we call density, a property that we call temperature, and so
on. Technically, we should always say something like, “Suppose we have a particle that carries a charge of

” However, it is very common to say instead, “Suppose we have a charge.” Similarly, we often say
something like, “Six charges are located at the vertices of a regular hexagon.” A charge is not a particle; rather,
it is a property of a particle. Nevertheless, this terminology is extremely common (and is frequently used in
this book, as it is everywhere else). So, keep in the back of your mind what we really mean when we refer to a
“charge.”

5.2 Conductors, Insulators, and Charging by Induction
Learning Objectives
By the end of this section, you will be able to:

• Explain what a conductor is
• Explain what an insulator is
• List the differences and similarities between conductors and insulators
• Describe the process of charging by induction

In the preceding section, we said that scientists were able to create electric charge only on nonmetallic
materials and never on metals. To understand why this is the case, you have to understand more about the
nature and structure of atoms. In this section, we discuss how and why electric charges do—or do not—move
through materials (Figure 5.9). A more complete description is given in a later chapter.
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Figure 5.9 This power adapter uses metal wires and connectors to conduct electricity from the wall socket to a laptop computer. The

conducting wires allow electrons to move freely through the cables, which are shielded by rubber and plastic. These materials act as

insulators that don’t allow electric charge to escape outward. (credit: modification of work by “Evan-Amos”/Wikimedia Commons)

Conductors and Insulators
As discussed in the previous section, electrons surround the tiny nucleus in the form of a (comparatively) vast
cloud of negative charge. However, this cloud does have a definite structure to it. Let’s consider an atom of the
most commonly used conductor, copper.

For reasons that will become clear in Atomic Structure, there is an outermost electron that is only loosely
bound to the atom’s nucleus. It can be easily dislodged; it then moves to a neighboring atom. In a large mass of
copper atoms (such as a copper wire or a sheet of copper), these vast numbers of outermost electrons (one per
atom) wander from atom to atom, and are the electrons that do the moving when electricity flows. These
wandering, or “free,” electrons are called conduction electrons, and copper is therefore an excellent
conductor (of electric charge). All conducting elements have a similar arrangement of their electrons, with one
or two conduction electrons. This includes most metals.

Insulators, in contrast, are made from materials that lack conduction electrons; charge flows only with great
difficulty, if at all. Even if excess charge is added to an insulating material, it cannot move, remaining
indefinitely in place. This is why insulating materials exhibit the electrical attraction and repulsion forces
described earlier, whereas conductors do not; any excess charge placed on a conductor would instantly flow
away (due to mutual repulsion from existing charges), leaving no excess charge around to create forces. Charge
cannot flow along or through an insulator, so its electric forces remain for long periods of time. (Charge will
dissipate from an insulator, given enough time.) As it happens, amber, fur, and most semi-precious gems are
insulators, as are materials like wood, glass, and plastic.

Charging by Induction
Let’s examine in more detail what happens in a conductor when an electrically charged object is brought close
to it. As mentioned, the conduction electrons in the conductor are able to move with nearly complete freedom.
As a result, when a charged insulator (such as a positively charged glass rod) is brought close to the conductor,
the (total) charge on the insulator exerts an electric force on the conduction electrons. Since the rod is
positively charged, the conduction electrons (which themselves are negatively charged) are attracted, flowing
toward the insulator to the near side of the conductor (Figure 5.10).

Now, the conductor is still overall electrically neutral; the conduction electrons have changed position, but they
are still in the conducting material. However, the conductor now has a charge distribution; the near end (the
portion of the conductor closest to the insulator) now has more negative charge than positive charge, and the
reverse is true of the end farthest from the insulator. The relocation of negative charges to the near side of the
conductor results in an overall positive charge in the part of the conductor farthest from the insulator. We have
thus created an electric charge distribution where one did not exist before. This process is referred to as
inducing polarization—in this case, polarizing the conductor. The resulting separation of positive and negative
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charge is called polarization, and a material, or even a molecule, that exhibits polarization is said to be
polarized. A similar situation occurs with a negatively charged insulator, but the resulting polarization is in the
opposite direction.

Figure 5.10 Induced polarization. A positively charged glass rod is brought near the left side of the conducting sphere, attracting negative

charge and leaving the other side of the sphere positively charged. Although the sphere is overall still electrically neutral, it now has a

charge distribution, so it can exert an electric force on other nearby charges. Furthermore, the distribution is such that it will be attracted to

the glass rod.

The result is the formation of what is called an electric dipole, from a Latin phrase meaning “two ends.” The
presence of electric charges on the insulator—and the electric forces they apply to the conduction
electrons—creates, or “induces,” the dipole in the conductor.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are
neutral, for example. If you run a plastic comb through your hair, the charged comb can pick up neutral pieces
of paper. Figure 5.11 shows how the polarization of atoms and molecules in neutral objects results in their
attraction to a charged object.

Figure 5.11 Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object brought near a

neutral insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the molecule, with unlike charges

being brought nearer and like charges moved away. Since the electrostatic force decreases with distance, there is a net attraction. (b) A

negative object produces the opposite polarization, but again attracts the neutral object. (c) The same effect occurs for a conductor; since

the unlike charges are closer, there is a net attraction.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in
atoms and molecules is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like
charge is repelled. Since the electrostatic force decreases with distance, the repulsion of like charges is weaker
than the attraction of unlike charges, and so there is a net attraction. Thus, a positively charged glass rod
attracts neutral pieces of paper, as will a negatively charged rubber rod. Some molecules, like water, are polar
molecules. Polar molecules have a natural or inherent separation of charge, although they are neutral overall.
Polar molecules are particularly affected by other charged objects and show greater polarization effects than
molecules with naturally uniform charge distributions.

When the two ends of a dipole can be separated, this method of charging by induction may be used to create
charged objects without transferring charge. In Figure 5.12, we see two neutral metal spheres in contact with
one another but insulated from the rest of the world. A positively charged rod is brought near one of them,
attracting negative charge to that side, leaving the other sphere positively charged.
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Figure 5.12 Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each other but insulated from the rest

of the world. (b) A positively charged glass rod is brought near the sphere on the left, attracting negative charge and leaving the other

sphere positively charged. (c) The spheres are separated before the rod is removed, thus separating negative and positive charges. (d) The

spheres retain net charges after the inducing rod is removed—without ever having been touched by a charged object.

Another method of charging by induction is shown in Figure 5.13. The neutral metal sphere is polarized when
a charged rod is brought near it. The sphere is then grounded, meaning that a conducting wire is run from the
sphere to the ground. Since Earth is large and most of the ground is a good conductor, it can supply or accept
excess charge easily. In this case, electrons are attracted to the sphere through a wire called the ground wire,
because it supplies a conducting path to the ground. The ground connection is broken before the charged rod
is removed, leaving the sphere with an excess charge opposite to that of the rod. Again, an opposite charge is
achieved when charging by induction, and the charged rod loses none of its excess charge.
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Figure 5.13 Charging by induction using a ground connection. (a) A positively charged rod is brought near a neutral metal sphere,

polarizing it. (b) The sphere is grounded, allowing electrons to be attracted from Earth’s ample supply. (c) The ground connection is broken.

(d) The positive rod is removed, leaving the sphere with an induced negative charge.

5.3 Coulomb's Law
Learning Objectives
By the end of this section, you will be able to:

• Describe the electric force, both qualitatively and quantitatively
• Calculate the force that charges exert on each other
• Determine the direction of the electric force for different source charges
• Correctly describe and apply the superposition principle for multiple source charges

Experiments with electric charges have shown that if two objects each have electric charge, then they exert an
electric force on each other. The magnitude of the force is linearly proportional to the net charge on each
object and inversely proportional to the square of the distance between them. (Interestingly, the force does not
depend on the mass of the objects.) The direction of the force vector is along the imaginary line joining the two
objects and is dictated by the signs of the charges involved.

Let

• the net electric charges of the two objects;
• the vector displacement from to .

The electric force on one of the charges is proportional to the magnitude of its own charge and the
magnitude of the other charge, and is inversely proportional to the square of the distance between them:

This proportionality becomes an equality with the introduction of a proportionality constant. For reasons that
will become clear in a later chapter, the proportionality constant that we use is actually a collection of
constants. (We discuss this constant shortly.)

Coulomb’s Law

The magnitude of the electric force (or Coulomb force) between two electrically charged particles is equal
to
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Figure 5.14 The electrostatic force between point charges and separated by a distance r is given by Coulomb’s law. Note that

Newton’s third law (every force exerted creates an equal and opposite force) applies as usual—the force on is equal in magnitude and

opposite in direction to the force it exerts on . (a) Like charges; (b) unlike charges.

It is important to note that the electric force is not constant; it is a function of the separation distance between
the two charges. If either the test charge or the source charge (or both) move, then changes, and therefore so
does the force. An immediate consequence of this is that direct application of Newton’s laws with this force can
be mathematically difficult, depending on the specific problem at hand. It can (usually) be done, but we almost
always look for easier methods of calculating whatever physical quantity we are interested in. (Conservation of
energy is the most common choice.)

Finally, the new constant in Coulomb’s law is called the permittivity of free space, or (better) the
permittivity of vacuum. It has a very important physical meaning that we will discuss in a later chapter; for
now, it is simply an empirical proportionality constant. Its numerical value (to three significant figures) turns
out to be

These units are required to give the force in Coulomb’s law the correct units of newtons. Note that in Coulomb’s
law, the permittivity of vacuum is only part of the proportionality constant. For convenience, we often define a
Coulomb’s constant:

EXAMPLE 5.1

The Force on the Electron in Hydrogen
A hydrogen atom consists of a single proton and a single electron. The proton has a charge of and the
electron has . In the “ground state” of the atom, the electron orbits the proton at most probable distance of

(Figure 5.15). Calculate the electric force on the electron due to the proton.

The unit vector has a magnitude of 1 and points along the axis as the charges. If the charges have the
same sign, the force is in the same direction as showing a repelling force. If the charges have different
signs, the force is in the opposite direction of showing an attracting force. (Figure 5.14).

5.1
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Figure 5.15 A schematic depiction of a hydrogen atom, showing the force on the electron. This depiction is only to enable us to calculate

the force; the hydrogen atom does not really look like this. Recall Figure 5.7.

Strategy
For the purposes of this example, we are treating the electron and proton as two point particles, each with an
electric charge, and we are told the distance between them; we are asked to calculate the force on the electron.
We thus use Coulomb’s law.

Solution
Our two charges and the distance between them are,

The magnitude of the force on the electron is

As for the direction, since the charges on the two particles are opposite, the force is attractive; the force on the
electron points radially directly toward the proton, everywhere in the electron’s orbit. The force is thus
expressed as

Significance
This is a three-dimensional system, so the electron (and therefore the force on it) can be anywhere in an
imaginary spherical shell around the proton. In this “classical” model of the hydrogen atom, the electrostatic
force on the electron points in the inward centripetal direction, thus maintaining the electron’s orbit. But note
that the quantum mechanical model of hydrogen (discussed in Quantum Mechanics) is utterly different.

CHECK YOUR UNDERSTANDING 5.1

What would be different if the electron also had a positive charge?

Multiple Source Charges
The analysis that we have done for two particles can be extended to an arbitrary number of particles; we
simply repeat the analysis, two charges at a time. Specifically, we ask the question: Given N charges (which we
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refer to as source charge), what is the net electric force that they exert on some other point charge (which we
call the test charge)? Note that we use these terms because we can think of the test charge being used to test
the strength of the force provided by the source charges.

Like all forces that we have seen up to now, the net electric force on our test charge is simply the vector sum of
each individual electric force exerted on it by each of the individual source charges. Thus, we can calculate the
net force on the test charge Q by calculating the force on it from each source charge, taken one at a time, and
then adding all those forces together (as vectors). This ability to simply add up individual forces in this way is
referred to as the principle of superposition, and is one of the more important features of the electric force. In
mathematical form, this becomes

In this expression, Q represents the charge of the particle that is experiencing the electric force , and is
located at from the origin; the are the N source charges, and the vectors are the displacements
from the position of the ith charge to the position of Q. Each of the N unit vectors points directly from its
associated source charge toward the test charge. All of this is depicted in Figure 5.16. Please note that there is
no physical difference between Q and ; the difference in labels is merely to allow clear discussion, with Q
being the charge we are determining the force on.

Figure 5.16 The eight source charges each apply a force on the single test charge Q. Each force can be calculated independently of the

other seven forces. This is the essence of the superposition principle.

(Note that the force vector does not necessarily point in the same direction as the unit vector ; it may
point in the opposite direction, . The signs of the source charge and test charge determine the direction of
the force on the test charge.)

There is a complication, however. Just as the source charges each exert a force on the test charge, so too (by
Newton’s third law) does the test charge exert an equal and opposite force on each of the source charges. As a
consequence, each source charge would change position. However, by Equation 5.2, the force on the test
charge is a function of position; thus, as the positions of the source charges change, the net force on the test
charge necessarily changes, which changes the force, which again changes the positions. Thus, the entire
mathematical analysis quickly becomes intractable. Later, we will learn techniques for handling this situation,
but for now, we make the simplifying assumption that the source charges are fixed in place somehow, so that
their positions are constant in time. (The test charge is allowed to move.) With this restriction in place, the
analysis of charges is known as electrostatics, where “statics” refers to the constant (that is, static) positions of
the source charges and the force is referred to as an electrostatic force.

5.2
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EXAMPLE 5.2

The Net Force from Two Source Charges
Three different, small charged objects are placed as shown in Figure 5.17. The charges and are fixed in
place; is free to move. Given , , and , and that , what is the net
force on the middle charge ?

Figure 5.17 Source charges and each apply a force on .

Strategy
We use Coulomb’s law again. The way the question is phrased indicates that is our test charge, so that
and are source charges. The principle of superposition says that the force on from each of the other
charges is unaffected by the presence of the other charge. Therefore, we write down the force on from each
and add them together as vectors.

Solution
We have two source charges and a test charge distances and and we are asked to find a
force. This calls for Coulomb’s law and superposition of forces. There are two forces:

We can’t add these forces directly because they don’t point in the same direction: points only in the
−x-direction, while points only in the +y-direction. The net force is obtained from applying the
Pythagorean theorem to its x- and y-components:

where

and
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We find that

at an angle of

that is, above the −x-axis, as shown in the diagram.

Significance
Notice that when we substituted the numerical values of the charges, we did not include the negative sign of
either or . Recall that negative signs on vector quantities indicate a reversal of direction of the vector in
question. But for electric forces, the direction of the force is determined by the types (signs) of both interacting
charges; we determine the force directions by considering whether the signs of the two charges are the same
or are opposite. If you also include negative signs from negative charges when you substitute numbers, you run
the risk of mathematically reversing the direction of the force you are calculating. Thus, the safest thing to do
is to calculate just the magnitude of the force, using the absolute values of the charges, and determine the
directions physically.

It’s also worth noting that the only new concept in this example is how to calculate the electric forces;
everything else (getting the net force from its components, breaking the forces into their components, finding
the direction of the net force) is the same as force problems you have done earlier.

CHECK YOUR UNDERSTANDING 5.2

What would be different if were negative?

5.4 Electric Field
Learning Objectives
By the end of this section, you will be able to:

• Explain the purpose of the electric field concept
• Describe the properties of the electric field
• Calculate the field of a collection of source charges of either sign

As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the
electric forces acting on it, from all of the various source charges, located at their various positions. But what if
we use a different test charge, one with a different magnitude, or sign, or both? Or suppose we have a dozen
different test charges we wish to try at the same location? We would have to calculate the sum of the forces
from scratch. Fortunately, it is possible to define a quantity, called the electric field, which is independent of
the test charge. It only depends on the configuration of the source charges, and once found, allows us to
calculate the force on any test charge.

Defining a Field
Suppose we have N source charges located at positions , applying N
electrostatic forces on a test charge Q. The net force on Q is (see Equation 5.2)
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We can rewrite this as

where

or, more compactly,

This expression is called the electric field at position of the N source charges. Here, P is the
location of the point in space where you are calculating the field and is relative to the positions of the source
charges (Figure 5.18). Note that we have to impose a coordinate system to solve actual problems.

Figure 5.18 Each of these eight source charges creates its own electric field at every point in space; shown here are the field vectors at an

arbitrary point P. Like the electric force, the net electric field obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically
useful approach is to calculate the electric field and then use it to calculate the force on some test charge later,
if needed. Different test charges experience different forces Equation 5.3, but it is the same electric field
Equation 5.4. That being said, recall that there is no fundamental difference between a test charge and a
source charge; these are merely convenient labels for the system of interest. Any charge produces an electric
field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge is not subject to a force due to
the electric field it generates. Charges are only subject to forces from the electric fields of other charges.

In this respect, the electric field of a point charge is similar to the gravitational field of Earth; once we have
calculated the gravitational field at some point in space, we can use it any time we want to calculate the

5.3

5.4
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resulting force on any mass we choose to place at that point. In fact, this is exactly what we do when we say the
gravitational field of Earth (near Earth’s surface) has a value of and then we calculate the resulting
force (i.e., weight) on different masses. Also, the general expression for calculating at arbitrary distances
from the center of Earth (i.e., not just near Earth’s surface) is very similar to the expression for : ,

where G is a proportionality constant, playing the same role for as does for . The value of is

calculated once and is then used in an endless number of problems.

To push the analogy further, notice the units of the electric field: From , the units of E are newtons per
coulomb, N/C, that is, the electric field applies a force on each unit charge. Now notice the units of g: From

, the units of g are newtons per kilogram, N/kg, that is, the gravitational field applies a force on each
unit mass. We could say that the gravitational field of Earth, near Earth’s surface, has a value of 9.81 N/kg.

The Meaning of “Field”
Recall from your studies of gravity that the word “field” in this context has a precise meaning. A field, in
physics, is a physical quantity whose value depends on (is a function of) position, relative to the source of the
field. In the case of the electric field, Equation 5.4 shows that the value of (both the magnitude and the
direction) depends on where in space the point P is located, measured from the locations of the source
charges .

In addition, since the electric field is a vector quantity, the electric field is referred to as a vector field. (The
gravitational field is also a vector field.) In contrast, a field that has only a magnitude at every point is a scalar
field. The temperature in a room is an example of a scalar field. It is a field because the temperature, in
general, is different at different locations in the room, and it is a scalar field because temperature is a scalar
quantity.

Also, as you did with the gravitational field of an object with mass, you should picture the electric field of a
charge-bearing object (the source charge) as a continuous, immaterial substance that surrounds the source
charge, filling all of space—in principle, to ∞ in all directions. The field exists at every physical point in space.

To put it another way, the electric charge on an object alters the space around the charged object in such a way
that all other electrically charged objects in space experience an electric force as a result of being in that field.
The electric field, then, is the mechanism by which the electric properties of the source charge are transmitted
to and through the rest of the universe. (Again, the range of the electric force is infinite.)

We will see in subsequent chapters that the speed at which electrical phenomena travel is the same as the
speed of light. There is a deep connection between the electric field and light.

Superposition
Yet another experimental fact about the field is that it obeys the superposition principle. In this context, that
means that we can (in principle) calculate the total electric field of many source charges by calculating the
electric field of only at position P, then calculate the field of at P, while—and this is the crucial
idea—ignoring the field of, and indeed even the existence of, We can repeat this process, calculating the
field of each individual source charge, independently of the existence of any of the other charges. The total
electric field, then, is the vector sum of all these fields. That, in essence, is what Equation 5.4 says.

In the next section, we describe how to determine the shape of an electric field of a source charge distribution
and how to sketch it.

The Direction of the Field
Equation 5.4 enables us to determine the magnitude of the electric field, but we need the direction also. We use
the convention that the direction of any electric field vector is the same as the direction of the electric force
vector that the field would apply to a positive test charge placed in that field. Such a charge would be repelled
by positive source charges (the force on it would point away from the positive source charge) but attracted to
negative charges (the force points toward the negative source).
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INTERACTIVE

Add charges to the Electric Field of Dreams (https://openstax.org/l/21elefiedream) and see how they react to
the electric field. Turn on a background electric field and adjust the direction and magnitude.

EXAMPLE 5.3

The E-field of an Atom
In an ionized helium atom, the most probable distance between the nucleus and the electron is

. What is the electric field due to the nucleus at the location of the electron?

Strategy
Note that although the electron is mentioned, it is not used in any calculation. The problem asks for an electric
field, not a force; hence, there is only one charge involved, and the problem specifically asks for the field due to
the nucleus. Thus, the electron is a red herring; only its distance matters. Also, since the distance between the
two protons in the nucleus is much, much smaller than the distance of the electron from the nucleus, we can
treat the two protons as a single charge +2e (Figure 5.19).

Figure 5.19 A schematic representation of a helium atom. Again, helium physically looks nothing like this, but this sort of diagram is

helpful for calculating the electric field of the nucleus.

Solution
The electric field is calculated by

Since there is only one source charge (the nucleus), this expression simplifies to

Here (since there are two protons) and r is given; substituting gives

Direction of the Electric Field

By convention, all electric fields point away from positive source charges and point toward negative
source charges.
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The direction of is radially away from the nucleus in all directions. Why? Because a positive test charge
placed in this field would accelerate radially away from the nucleus (since it is also positively charged), and
again, the convention is that the direction of the electric field vector is defined in terms of the direction of the
force it would apply to positive test charges.

EXAMPLE 5.4

The E-Field above Two Equal Charges
(a) Find the electric field (magnitude and direction) a distance z above the midpoint between two equal charges

that are a distance d apart (Figure 5.20). Check that your result is consistent with what you’d expect when
.

(b) The same as part (a), only this time make the right-hand charge instead of .

Figure 5.20 Finding the field of two identical source charges at the point P. Due to the symmetry, the net field at P is entirely vertical.

(Notice that this is not true away from the midline between the charges.)

Strategy
We add the two fields as vectors, per Equation 5.4. Notice that the system (and therefore the field) is
symmetrical about the vertical axis; as a result, the horizontal components of the field vectors cancel. This
simplifies the math. Also, we take care to express our final answer in terms of only quantities that are given in
the original statement of the problem: q, z, d, and constants

Solution

a. By symmetry, the horizontal (x)-components of cancel (Figure 5.21);
.
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Figure 5.21 Note that the horizontal components of the electric fields from the two charges cancel each other out, while the vertical

components add together.

The vertical (z)-component is given by

Since none of the other components survive, this is the entire electric field, and it points in the direction.
Notice that this calculation uses the principle of superposition; we calculate the fields of the two charges
independently and then add them together.
What we want to do now is replace the quantities in this expression that we don’t know (such as r), or can’t
easily measure (such as with quantities that we do know, or can measure. In this case, by geometry,

and

Thus, substituting,

Simplifying, the desired answer is

b. If the source charges are equal and opposite, the vertical components cancel because

and we get, for the horizontal component of ,

5.5
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This becomes

Significance
It is a very common and very useful technique in physics to check whether your answer is reasonable by
evaluating it at extreme cases. In this example, we should evaluate the field expressions for the cases ,

, and ∞ , and confirm that the resulting expressions match our physical expectations. Let’s do so:

Let’s start with Equation 5.5, the field of two identical charges. From far away (i.e., the two source
charges should “merge” and we should then “see” the field of just one charge, of size 2q. So, let then we
can neglect in Equation 5.5 to obtain

which is the correct expression for a field at a distance z away from a charge 2q.

Next, we consider the field of equal and opposite charges, Equation 5.6. It can be shown (via a Taylor
expansion) that for ∞ , this becomes

which is the field of a dipole, a system that we will study in more detail later. (Note that the units of are still
correct in this expression, since the units of d in the numerator cancel the unit of the “extra” z in the

denominator.) If z is very large ∞ , then , as it should; the two charges “merge” and so cancel out.

CHECK YOUR UNDERSTANDING 5.3

What is the electric field due to a single point particle?

INTERACTIVE

Try this simulation of electric field hockey (https://openstax.org/l/21elefielhocke) to get the charge in the goal
by placing other charges on the field.

5.6

5.7
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5.5 Calculating Electric Fields of Charge Distributions
Learning Objectives
By the end of this section, you will be able to:

• Explain what a continuous source charge distribution is and how it is related to the concept of quantization
of charge

• Describe line charges, surface charges, and volume charges
• Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is
in contrast with a continuous charge distribution, which has at least one nonzero dimension. If a charge
distribution is continuous rather than discrete, we can generalize the definition of the electric field. We simply
divide the charge into infinitesimal pieces and treat each piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution.
However, in most practical cases, the total charge creating the field involves such a huge number of discrete
charges that we can safely ignore the discrete nature of the charge and consider it to be continuous. This is
exactly the kind of approximation we make when we deal with a bucket of water as a continuous fluid, rather
than a collection of molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a
volume, as shown in Figure 5.22.

Figure 5.22 The configuration of charge differential elements for a (a) line charge, (b) sheet of charge, and (c) a volume of charge. Also

note that (d) some of the components of the total electric field cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

• charge per unit length (linear charge density); units are coulombs per meter (C/m)
• charge per unit area (surface charge density); units are coulombs per square meter
• charge per unit volume (volume charge density); units are coulombs per cubic meter

Then, for a line charge, a surface charge, and a volume charge, the summation in Equation 5.4 becomes an
integral and is replaced by , , or , respectively:

5.8

5.9
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The integrals are generalizations of the expression for the field of a point charge. They implicitly include and
assume the principle of superposition. The “trick” to using them is almost always in coming up with correct
expressions for dl, dA, or dV, as the case may be, expressed in terms of r, and also expressing the charge
density function appropriately. It may be constant; it might be dependent on location.

Note carefully the meaning of r in these equations: It is the distance from the charge element
to the location of interest, (the point in space where you want to determine the

field). However, don’t confuse this with the meaning of ; we are using it and the vector notation to write
three integrals at once. That is, Equation 5.9 is actually

EXAMPLE 5.5

Electric Field of a Line Segment
Find the electric field a distance z above the midpoint of a straight line segment of length L that carries a
uniform line charge density .

Strategy
Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces
of length dl, each of which carries a differential amount of charge . Then, we calculate the differential
field created by two symmetrically placed pieces of the wire, using the symmetry of the setup to simplify the
calculation (Figure 5.23). Finally, we integrate this differential field expression over the length of the wire (half
of it, actually, as we explain below) to obtain the complete electric field expression.

Figure 5.23 A uniformly charged segment of wire. The electric field at point P can be found by applying the superposition principle to

symmetrically placed charge elements and integrating.

Solution
Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment,
from far away, it should look like a point charge. We will check the expression we get to see if it meets this
expectation.

The electric field for a line charge is given by the general expression

5.10

5.11
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The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the
horizontal (x)-components of the field cancel, so that the net field points in the z-direction. Let’s check this
formally.

The total field is the vector sum of the fields from each of the two charge elements (call them and ,
for now):

Because the two charge elements are identical and are the same distance away from the point P where we want
to calculate the field, so those components cancel. This leaves

These components are also equal, so we have

where our differential line element dl is dx, in this example, since we are integrating along a line of charge that
lies on the x-axis. (The limits of integration are 0 to , not to , because we have constructed the net
field from two differential pieces of charge dq. If we integrated along the entire length, we would pick up an
erroneous factor of 2.)

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables
that are not given. In this case, both r and change as we integrate outward to the end of the line charge, so
those are the variables to get rid of. We can do that the same way we did for the two point charges: by noticing
that

and

Substituting, we obtain

which simplifies to

5.12
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Significance
Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for
calculating electric fields. The fields of nonsymmetrical charge distributions have to be handled with multiple
integrals and may need to be calculated numerically by a computer.

CHECK YOUR UNDERSTANDING 5.4

How would the strategy used above change to calculate the electric field at a point a distance z above one end of
the finite line segment?

EXAMPLE 5.6

Electric Field of an Infinite Line of Charge
Find the electric field a distance z above the midpoint of an infinite line of charge that carries a uniform line
charge density .

Strategy

This is exactly like the preceding example, except the limits of integration will be ∞ to ∞ .

Solution
Again, the horizontal components cancel out, so we wind up with

∞

∞

where our differential line element dl is dx, in this example, since we are integrating along a line of charge that
lies on the x-axis. Again,

Substituting, we obtain

∞

∞

∞

∞

∞

∞

which simplifies to

Significance
Our strategy for working with continuous charge distributions also gives useful results for charges with infinite
dimension.

In the case of a finite line of charge, note that for , dominates the L in the denominator, so that
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Equation 5.12 simplifies to

If you recall that , the total charge on the wire, we have retrieved the expression for the field of a point
charge, as expected.

In the limit ∞ , on the other hand, we get the field of an infinite straight wire, which is a straight wire

whose length is much, much greater than either of its other dimensions, and also much, much greater than the
distance at which the field is to be calculated:

An interesting artifact of this infinite limit is that we have lost the usual dependence that we are used to.
This will become even more intriguing in the case of an infinite plane.

EXAMPLE 5.7

Electric Field due to a Ring of Charge
A ring has a uniform charge density , with units of coulomb per unit meter of arc. Find the electric field at a
point on the axis passing through the center of the ring.

Strategy
We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a
circle. We divide the circle into infinitesimal elements shaped as arcs on the circle and use polar coordinates
shown in Figure 5.24.

Figure 5.24 The system and variable for calculating the electric field due to a ring of charge.

Solution
The electric field for a line charge is given by the general expression

A general element of the arc between and is of length and therefore contains a charge equal to
The element is at a distance of from P, the angle is , and therefore the

electric field is

5.13
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Significance
As usual, symmetry simplified this problem, in this particular case resulting in a trivial integral. Also, when we
take the limit of , we find that

as we expect.

EXAMPLE 5.8

The Field of a Disk
Find the electric field of a circular thin disk of radius R and uniform charge density at a distance z above the
center of the disk (Figure 5.25)

Figure 5.25 A uniformly charged disk. As in the line charge example, the field above the center of this disk can be calculated by taking

advantage of the symmetry of the charge distribution.

Strategy
The electric field for a surface charge is given by

To solve surface charge problems, we break the surface into symmetrical differential “stripes” that match the
shape of the surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal
components cancel and the field is entirely in the vertical direction. The vertical component of the electric
field is extracted by multiplying by , so
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As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this
case,

(Please take note of the two different “r’s” here; r is the distance from the differential ring of charge to the point
P where we wish to determine the field, whereas is the distance from the center of the disk to the differential
ring of charge.) Also, we already performed the polar angle integral in writing down dA.

Solution
Substituting all this in, we get

or, more simply,

Significance
Again, it can be shown (via a Taylor expansion) that when , this reduces to

which is the expression for a point charge

CHECK YOUR UNDERSTANDING 5.5

How would the above limit change with a uniformly charged rectangle instead of a disk?

As ∞ , Equation 5.14 reduces to the field of an infinite plane, which is a flat sheet whose area is much,

much greater than its thickness, and also much, much greater than the distance at which the field is to be
calculated:

Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will
make use of repeatedly in the future. To understand why this happens, imagine being placed above an infinite
plane of constant charge. Does the plane look any different if you vary your altitude? No—you still see the plane
going off to infinity, no matter how far you are from it. It is important to note that Equation 5.15 is because we
are above the plane. If we were below, the field would point in the direction.

5.14

5.15
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EXAMPLE 5.9

The Field of Two Infinite Planes
Find the electric field everywhere resulting from two infinite planes with equal but opposite charge densities
(Figure 5.26).

Figure 5.26 Two charged infinite planes. Note the direction of the electric field.

Strategy
We already know the electric field resulting from a single infinite plane, so we may use the principle of
superposition to find the field from two.

Solution
The electric field points away from the positively charged plane and toward the negatively charged plane. Since
the are equal and opposite, this means that in the region outside of the two planes, the electric fields cancel
each other out to zero.

However, in the region between the planes, the electric fields add, and we get

for the electric field. The is because in the figure, the field is pointing in the +x-direction.

Significance
Systems that may be approximated as two infinite planes of this sort provide a useful means of creating
uniform electric fields.

CHECK YOUR UNDERSTANDING 5.6

What would the electric field look like in a system with two parallel positively charged planes with equal charge
densities?
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5.6 Electric Field Lines
Learning Objectives
By the end of this section, you will be able to:

• Explain the purpose of an electric field diagram
• Describe the relationship between a vector diagram and a field line diagram
• Explain the rules for creating a field diagram and why these rules make physical sense
• Sketch the field of an arbitrary source charge

Now that we have some experience calculating electric fields, let’s try to gain some insight into the geometry of
electric fields. As mentioned earlier, our model is that the charge on an object (the source charge) alters space
in the region around it in such a way that when another charged object (the test charge) is placed in that region
of space, that test charge experiences an electric force. The concept of electric field lines, and of electric field
line diagrams, enables us to visualize the way in which the space is altered, allowing us to visualize the field.
The purpose of this section is to enable you to create sketches of this geometry, so we will list the specific steps
and rules involved in creating an accurate and useful sketch of an electric field.

It is important to remember that electric fields are three-dimensional. Although in this book we include some
pseudo-three-dimensional images, several of the diagrams that you’ll see (both here, and in subsequent
chapters) will be two-dimensional projections, or cross-sections. Always keep in mind that in fact, you’re
looking at a three-dimensional phenomenon.

Our starting point is the physical fact that the electric field of the source charge causes a test charge in that
field to experience a force. By definition, electric field vectors point in the same direction as the electric force
that a (hypothetical) positive test charge would experience, if placed in the field (Figure 5.27)

Figure 5.27 The electric field of a positive point charge. A large number of field vectors are shown. Like all vector arrows, the length of

each vector is proportional to the magnitude of the field at each point. (a) Field in two dimensions; (b) field in three dimensions.

We’ve plotted many field vectors in the figure, which are distributed uniformly around the source charge. Since
the electric field is a vector, the arrows that we draw correspond at every point in space to both the magnitude
and the direction of the field at that point. As always, the length of the arrow that we draw corresponds to the
magnitude of the field vector at that point. For a point source charge, the length decreases by the square of the
distance from the source charge. In addition, the direction of the field vector is radially away from the source
charge, because the direction of the electric field is defined by the direction of the force that a positive test
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charge would experience in that field. (Again, keep in mind that the actual field is three-dimensional; there are
also field lines pointing out of and into the page.)

This diagram is correct, but it becomes less useful as the source charge distribution becomes more
complicated. For example, consider the vector field diagram of a dipole (Figure 5.28).

Figure 5.28 The vector field of a dipole. Even with just two identical charges, the vector field diagram becomes difficult to understand.

There is a more useful way to present the same information. Rather than drawing a large number of
increasingly smaller vector arrows, we instead connect all of them together, forming continuous lines and
curves, as shown in Figure 5.29.

Figure 5.29 (a) The electric field line diagram of a positive point charge. (b) The field line diagram of a dipole. In both diagrams, the

magnitude of the field is indicated by the field line density. The field vectors (not shown here) are everywhere tangent to the field lines.

Although it may not be obvious at first glance, these field diagrams convey the same information about the
electric field as do the vector diagrams. First, the direction of the field at every point is simply the direction of
the field vector at that same point. In other words, at any point in space, the field vector at each point is tangent
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to the field line at that same point. The arrowhead placed on a field line indicates its direction.

As for the magnitude of the field, that is indicated by the field line density—that is, the number of field lines
per unit area passing through a small cross-sectional area perpendicular to the electric field. This field line
density is drawn to be proportional to the magnitude of the field at that cross-section. As a result, if the field
lines are close together (that is, the field line density is greater), this indicates that the magnitude of the field is
large at that point. If the field lines are far apart at the cross-section, this indicates the magnitude of the field is
small. Figure 5.30 shows the idea.

Figure 5.30 Electric field lines passing through imaginary areas. Since the number of lines passing through each area is the same, but the

areas themselves are different, the field line density is different. This indicates different magnitudes of the electric field at these points.

In Figure 5.30, the same number of field lines passes through both surfaces (S and but the surface S is
larger than surface . Therefore, the density of field lines (number of lines per unit area) is larger at the
location of , indicating that the electric field is stronger at the location of than at S. The rules for creating
an electric field diagram are as follows.

PROBLEM-SOLVING STRATEGY

Drawing Electric Field Lines
1. Electric field lines either originate on positive charges or come in from infinity, and either terminate on

negative charges or extend out to infinity.
2. The number of field lines originating or terminating at a charge is proportional to the magnitude of that

charge. A charge of 2q will have twice as many lines as a charge of q.
3. At every point in space, the field vector at that point is tangent to the field line at that same point.
4. The field line density at any point in space is proportional to (and therefore is representative of) the

magnitude of the field at that point in space.
5. Field lines can never cross. Since a field line represents the direction of the field at a given point, if two

field lines crossed at some point, that would imply that the electric field was pointing in two different
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directions at a single point. This in turn would suggest that the (net) force on a test charge placed at that
point would point in two different directions. Since this is obviously impossible, it follows that field lines
must never cross.

Always keep in mind that field lines serve only as a convenient way to visualize the electric field; they are not
physical entities. Although the direction and relative intensity of the electric field can be deduced from a set of
field lines, the lines can also be misleading. For example, the field lines drawn to represent the electric field in
a region must, by necessity, be discrete. However, the actual electric field in that region exists at every point in
space.

Field lines for three groups of discrete charges are shown in Figure 5.31. Since the charges in parts (a) and (b)
have the same magnitude, the same number of field lines are shown starting from or terminating on each
charge. In (c), however, we draw three times as many field lines leaving the charge as entering the . The
field lines that do not terminate at emanate outward from the charge configuration, to infinity.

Figure 5.31 Three typical electric field diagrams. (a) A dipole. (b) Two identical charges. (c) Two charges with opposite signs and different

magnitudes. Can you tell from the diagram which charge has the larger magnitude?

The ability to construct an accurate electric field diagram is an important, useful skill; it makes it much easier
to estimate, predict, and therefore calculate the electric field of a source charge. The best way to develop this
skill is with software that allows you to place source charges and then will draw the net field upon request. We
strongly urge you to search the Internet for a program. Once you’ve found one you like, run several simulations
to get the essential ideas of field diagram construction. Then practice drawing field diagrams, and checking
your predictions with the computer-drawn diagrams.

INTERACTIVE

One example of a field-line drawing program (https://openstax.org/l/21fieldlindrapr) is from the PhET
“Charges and Fields” simulation.

5.7 Electric Dipoles
Learning Objectives
By the end of this section, you will be able to:

• Describe a permanent dipole
• Describe an induced dipole
• Define and calculate an electric dipole moment
• Explain the physical meaning of the dipole moment

Earlier we discussed, and calculated, the electric field of a dipole: two equal and opposite charges that are
“close” to each other. (In this context, “close” means that the distance d between the two charges is much,
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much less than the distance of the field point P, the location where you are calculating the field.) Let’s now
consider what happens to a dipole when it is placed in an external field . We assume that the dipole is a
permanent dipole; it exists without the field, and does not break apart in the external field.

Rotation of a Dipole due to an Electric Field
For now, we deal with only the simplest case: The external field is uniform in space. Suppose we have the
situation depicted in Figure 5.32, where we denote the distance between the charges as the vector pointing
from the negative charge to the positive charge. The forces on the two charges are equal and opposite, so there
is no net force on the dipole. However, there is a torque:

Figure 5.32 A dipole in an external electric field. (a) The net force on the dipole is zero, but the net torque is not. As a result, the dipole

rotates, becoming aligned with the external field. (b) The dipole moment is a convenient way to characterize this effect. The points in the

same direction as .

The quantity (the magnitude of each charge multiplied by the vector distance between them) is a property
of the dipole; its value, as you can see, determines the torque that the dipole experiences in the external field. It
is useful, therefore, to define this product as the so-called dipole moment of the dipole:

We can therefore write

Recall that a torque changes the angular velocity of an object, the dipole, in this case. In this situation, the
effect is to rotate the dipole (that is, align the direction of so that it is parallel to the direction of the external
field.

Induced Dipoles
Neutral atoms are, by definition, electrically neutral; they have equal amounts of positive and negative charge.
Furthermore, since they are spherically symmetrical, they do not have a “built-in” dipole moment the way
most asymmetrical molecules do. They obtain one, however, when placed in an external electric field, because
the external field causes oppositely directed forces on the positive nucleus of the atom versus the negative
electrons that surround the nucleus. The result is a new charge distribution of the atom, and therefore, an
induced dipole moment (Figure 5.33).

5.16

5.17
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Figure 5.33 A dipole is induced in a neutral atom by an external electric field. The induced dipole moment is aligned with the external

field.

An important fact here is that, just as for a rotated polar molecule, the result is that the dipole moment ends up
aligned parallel to the external electric field. Generally, the magnitude of an induced dipole is much smaller
than that of an inherent dipole. For both kinds of dipoles, notice that once the alignment of the dipole (rotated
or induced) is complete, the net effect is to decrease the total electric field in the
regions inside the dipole charges (Figure 5.34). By “inside” we mean in between the charges. This effect is
crucial for capacitors, as you will see in Capacitance.

Figure 5.34 The net electric field is the vector sum of the field of the dipole plus the external field.

Recall that we found the electric field of a dipole in Equation 5.7. If we rewrite it in terms of the dipole moment
we get:

The form of this field is shown in Figure 5.34. Notice that along the plane perpendicular to the axis of the
dipole and midway between the charges, the direction of the electric field is opposite that of the dipole and gets
weaker the further from the axis one goes. Similarly, on the axis of the dipole (but outside it), the field points in
the same direction as the dipole, again getting weaker the further one gets from the charges.
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CHAPTER REVIEW
Key Terms
charging by induction process by which an

electrically charged object brought near a neutral
object creates a charge separation in that object

conduction electron electron that is free to move
away from its atomic orbit

conductor material that allows electrons to move
separately from their atomic orbits; object with
properties that allow charges to move about freely
within it

continuous charge distribution total source
charge composed of so large a number of
elementary charges that it must be treated as
continuous, rather than discrete

coulomb SI unit of electric charge
Coulomb force another term for the electrostatic

force
Coulomb’s law mathematical equation calculating

the electrostatic force vector between two
charged particles

dipole two equal and opposite charges that are
fixed close to each other

dipole moment property of a dipole; it
characterizes the combination of distance
between the opposite charges, and the magnitude
of the charges

electric charge physical property of an object that
causes it to be attracted toward or repelled from
another charged object; each charged object
generates and is influenced by a force called an
electric force

electric field physical phenomenon created by a
charge; it “transmits” a force between a two
charges

electric force noncontact force observed between
electrically charged objects

electron particle surrounding the nucleus of an
atom and carrying the smallest unit of negative
charge

electrostatic attraction phenomenon of two
objects with opposite charges attracting each
other

electrostatic force amount and direction of
attraction or repulsion between two charged
bodies; the assumption is that the source charges
have no acceleration

electrostatic repulsion phenomenon of two
objects with like charges repelling each other

electrostatics study of charged objects which are
not in motion

field line smooth, usually curved line that

indicates the direction of the electric field
field line density number of field lines per square

meter passing through an imaginary area; its
purpose is to indicate the field strength at
different points in space

induced dipole typically an atom, or a spherically
symmetric molecule; a dipole created due to
opposite forces displacing the positive and
negative charges

infinite plane flat sheet in which the dimensions
making up the area are much, much greater than
its thickness, and also much, much greater than
the distance at which the field is to be calculated;
its field is constant

infinite straight wire straight wire whose length is
much, much greater than either of its other
dimensions, and also much, much greater than
the distance at which the field is to be calculated

insulator material that holds electrons securely
within their atomic orbits

ion atom or molecule with more or fewer electrons
than protons

law of conservation of charge net electric charge
of a closed system is constant

linear charge density amount of charge in an
element of a charge distribution that is essentially
one-dimensional (the width and height are much,
much smaller than its length); its units are C/m

neutron neutral particle in the nucleus of an atom,
with (nearly) the same mass as a proton

permanent dipole typically a molecule; a dipole
created by the arrangement of the charged
particles from which the dipole is created

permittivity of vacuum also called the permittivity
of free space, and constant describing the
strength of the electric force in a vacuum

polarization slight shifting of positive and negative
charges to opposite sides of an object

principle of superposition useful fact that we can
simply add up all of the forces due to charges
acting on an object

proton particle in the nucleus of an atom and
carrying a positive charge equal in magnitude to
the amount of negative charge carried by an
electron

static electricity buildup of electric charge on the
surface of an object; the arrangement of the
charge remains constant (“static”)

superposition concept that states that the net
electric field of multiple source charges is the
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vector sum of the field of each source charge
calculated individually

surface charge density amount of charge in an
element of a two-dimensional charge distribution

(the thickness is small); its units are
volume charge density amount of charge in an

element of a three-dimensional charge
distribution; its units are

Key Equations

Coulomb’s law

Superposition of electric forces

Electric force due to an electric field

Electric field at point P

Field of an infinite wire

Field of an infinite plane

Dipole moment

Torque on dipole in external E-field

Summary
5.1 Electric Charge

• There are only two types of charge, which we
call positive and negative. Like charges repel,
unlike charges attract, and the force between
charges decreases with the square of the
distance.

• The vast majority of positive charge in nature is
carried by protons, whereas the vast majority of
negative charge is carried by electrons. The
electric charge of one electron is equal in
magnitude and opposite in sign to the charge of
one proton.

• An ion is an atom or molecule that has nonzero
total charge due to having unequal numbers of
electrons and protons.

• The SI unit for charge is the coulomb (C), with
protons and electrons having charges of
opposite sign but equal magnitude; the
magnitude of this basic charge is

• Both positive and negative charges exist in

neutral objects and can be separated by
bringing the two objects into physical contact;
rubbing the objects together can remove
electrons from the bonds in one object and
place them on the other object, increasing the
charge separation.

• For macroscopic objects, negatively charged
means an excess of electrons and positively
charged means a depletion of electrons.

• The law of conservation of charge states that the
net charge of a closed system is constant.

5.2 Conductors, Insulators, and Charging
by Induction

• A conductor is a substance that allows charge to
flow freely through its atomic structure.

• An insulator holds charge fixed in place.
• Polarization is the separation of positive and

negative charges in a neutral object. Polarized
objects have their positive and negative charges
concentrated in different areas, giving them a
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charge distribution.

5.3 Coulomb's Law

• Coulomb’s law gives the magnitude of the force
vector between point charges. It is

where and are two point charges
separated by a distance r. This Coulomb force is
extremely basic, since most charges are due to
point-like particles. It is responsible for all
electrostatic effects and underlies most
macroscopic forces.

5.4 Electric Field

• The electric field is an alteration of space caused
by the presence of an electric charge. The
electric field mediates the electric force between
a source charge and a test charge.

• The electric field, like the electric force, obeys
the superposition principle

• The field is a vector; by definition, it points away
from positive charges and toward negative
charges.

5.5 Calculating Electric Fields of Charge
Distributions

• A very large number of charges can be treated
as a continuous charge distribution, where the
calculation of the field requires integration.
Common cases are:
◦ one-dimensional (like a wire); uses a line

charge density
◦ two-dimensional (metal plate); uses surface

charge density
◦ three-dimensional (metal sphere); uses

volume charge density

• The “source charge” is a differential amount of
charge dq. Calculating dq depends on the type of
source charge distribution:

• Symmetry of the charge distribution is usually
key.

• Important special cases are the field of an
“infinite” wire and the field of an “infinite”
plane.

5.6 Electric Field Lines

• Electric field diagrams assist in visualizing the
field of a source charge.

• The magnitude of the field is proportional to the
field line density.

• Field vectors are everywhere tangent to field
lines.

5.7 Electric Dipoles

• If a permanent dipole is placed in an external
electric field, it results in a torque that aligns it
with the external field.

• If a nonpolar atom (or molecule) is placed in an
external field, it gains an induced dipole that is
aligned with the external field.

• The net field is the vector sum of the external
field plus the field of the dipole (physical or
induced).

• The strength of the polarization is described by
the dipole moment of the dipole, .

Conceptual Questions
5.1 Electric Charge

1. There are very large numbers of charged
particles in most objects. Why, then, don’t most
objects exhibit static electricity?

2. Why do most objects tend to contain nearly equal
numbers of positive and negative charges?

3. A positively charged rod attracts a small piece of
cork. (a) Can we conclude that the cork is
negatively charged? (b) The rod repels another
small piece of cork. Can we conclude that this
piece is positively charged?

4. Two bodies attract each other electrically. Do
they both have to be charged? Answer the same
question if the bodies repel one another.

5. How would you determine whether the charge on

a particular rod is positive or negative?

5.2 Conductors, Insulators, and Charging
by Induction

6. An eccentric inventor attempts to levitate a cork
ball by wrapping it with foil and placing a large
negative charge on the ball and then putting a
large positive charge on the ceiling of his
workshop. Instead, while attempting to place a
large negative charge on the ball, the foil flies off.
Explain.

7. When a glass rod is rubbed with silk, it becomes
positive and the silk becomes negative—yet both
attract dust. Does the dust have a third type of
charge that is attracted to both positive and

218 5 • Chapter Review

Access for free at openstax.org.



negative? Explain.
8. Why does a car always attract dust right after it is

polished? (Note that car wax and car tires are
insulators.)

9. Does the uncharged conductor shown below
experience a net electric force?

10. While walking on a rug, a person frequently
becomes charged because of the rubbing
between his shoes and the rug. This charge then
causes a spark and a slight shock when the
person gets close to a metal object. Why are
these shocks so much more common on a dry
day?

11. Compare charging by conduction to charging by
induction.

12. Small pieces of tissue are attracted to a charged
comb. Soon after sticking to the comb, the
pieces of tissue are repelled from it. Explain.

13. Trucks that carry gasoline often have chains
dangling from their undercarriages and
brushing the ground. Why?

14. Why do electrostatic experiments work so
poorly in humid weather?

15. Why do some clothes cling together after being
removed from the clothes dryer? Does this
happen if they’re still damp?

16. Can induction be used to produce charge on an
insulator?

17. Suppose someone tells you that rubbing quartz
with cotton cloth produces a third kind of
charge on the quartz. Describe what you might
do to test this claim.

18. A handheld copper rod does not acquire a
charge when you rub it with a cloth. Explain
why.

19. Suppose you place a charge q near a large metal
plate. (a) If q is attracted to the plate, is the plate

necessarily charged? (b) If q is repelled by the
plate, is the plate necessarily charged?

5.3 Coulomb's Law

20. Would defining the charge on an electron to be
positive have any effect on Coulomb’s law?

21. An atomic nucleus contains positively charged
protons and uncharged neutrons. Since nuclei
do stay together, what must we conclude about
the forces between these nuclear particles?

22. Is the force between two fixed charges
influenced by the presence of other charges?

5.4 Electric Field

23. When measuring an electric field, could we use
a negative rather than a positive test charge?

24. During fair weather, the electric field due to the
net charge on Earth points downward. Is Earth
charged positively or negatively?

25. If the electric field at a point on the line between
two charges is zero, what do you know about the
charges?

26. Two charges lie along the x-axis. Is it true that
the net electric field always vanishes at some
point (other than infinity) along the x-axis?

5.5 Calculating Electric Fields of Charge
Distributions

27. Give a plausible argument as to why the electric
field outside an infinite charged sheet is
constant.

28. Compare the electric fields of an infinite sheet
of charge, an infinite, charged conducting plate,
and infinite, oppositely charged parallel plates.

29. Describe the electric fields of an infinite
charged plate and of two infinite, charged
parallel plates in terms of the electric field of an
infinite sheet of charge.

30. A negative charge is placed at the center of a
ring of uniform positive charge. What is the
motion (if any) of the charge? What if the charge
were placed at a point on the axis of the ring
other than the center?

5.6 Electric Field Lines

31. If a point charge is released from rest in a
uniform electric field, will it follow a field line?
Will it do so if the electric field is not uniform?

32. Under what conditions, if any, will the trajectory
of a charged particle not follow a field line?

33. How would you experimentally distinguish an
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electric field from a gravitational field?
34. A representation of an electric field shows 10

field lines perpendicular to a square plate. How
many field lines should pass perpendicularly
through the plate to depict a field with twice the
magnitude?

35. What is the ratio of the number of electric field
lines leaving a charge 10q and a charge q?

5.7 Electric Dipoles

36. What are the stable orientation(s) for a dipole in
an external electric field? What happens if the
dipole is slightly perturbed from these
orientations?

Problems
5.1 Electric Charge

37. Common static electricity involves charges
ranging from nanocoulombs to microcoulombs.
(a) How many electrons are needed to form a
charge of −2.00 nC? (b) How many electrons
must be removed from a neutral object to leave
a net charge of ?

38. If electrons move through a pocket
calculator during a full day’s operation, how
many coulombs of charge moved through it?

39. To start a car engine, the car battery moves
electrons through the starter

motor. How many coulombs of charge were
moved?

40. A certain lightning bolt moves 40.0 C of charge.
How many fundamental units of charge is this?

41. A 2.5-g copper penny is given a charge of
. (a) How many excess electrons

are on the penny? (b) By what percent do the
excess electrons change the mass of the penny?

42. A 2.5-g copper penny is given a charge of
. (a) How many electrons are

removed from the penny? (b) If no more than
one electron is removed from an atom, what
percent of the atoms are ionized by this
charging process?

5.2 Conductors, Insulators, and Charging
by Induction

43. Suppose a speck of dust in an electrostatic
precipitator has protons in it
and has a net charge of −5.00 nC (a very large
charge for a small speck). How many electrons
does it have?

44. An amoeba has protons and a net
charge of 0.300 pC. (a) How many fewer
electrons are there than protons? (b) If you
paired them up, what fraction of the protons
would have no electrons?

45. A 50.0-g ball of copper has a net charge of
. What fraction of the copper’s electrons

has been removed? (Each copper atom has 29
protons, and copper has an atomic mass of
63.5.)

46. What net charge would you place on a 100-g
piece of sulfur if you put an extra electron on 1
in of its atoms? (Sulfur has an atomic mass
of 32.1 u.)

47. How many coulombs of positive charge are
there in 4.00 kg of plutonium, given its atomic
mass is 244 and that each plutonium atom has
94 protons?

5.3 Coulomb's Law

48. Two point particles with charges and
are held in place by 3-N forces on each

charge in appropriate directions. (a) Draw a
free-body diagram for each particle. (b) Find the
distance between the charges.

49. Two charges and are fixed 1 m
apart, with the second one to the right. Find the
magnitude and direction of the net force on a
−2-nC charge when placed at the following
locations: (a) halfway between the two (b) half a
meter to the left of the charge (c) half a
meter above the charge in a direction
perpendicular to the line joining the two fixed
charges

50. In a salt crystal, the distance between adjacent
sodium and chloride ions is
What is the force of attraction between the two
singly charged ions?

51. Protons in an atomic nucleus are typically
apart. What is the electric force of

repulsion between nuclear protons?
52. Suppose Earth and the Moon each carried a net

negative charge −Q. Approximate both bodies as
point masses and point charges.
(a) What value of Q is required to balance the
gravitational attraction between Earth and the
Moon?
(b) Does the distance between Earth and the
Moon affect your answer? Explain.

220 5 • Chapter Review

Access for free at openstax.org.



(c) How many electrons would be needed to
produce this charge?

53. Point charges and are
placed 1.0 m apart. What is the force on a third
charge placed midway between
and ?

54. Where must of the preceding problem be
placed so that the net force on it is zero?

55. Two small balls, each of mass 5.0 g, are attached
to silk threads 50 cm long, which are in turn
tied to the same point on the ceiling, as shown
below. When the balls are given the same
charge Q, the threads hang at to the
vertical, as shown below. What is the magnitude
of Q? What are the signs of the two charges?

56. Point charges and
are located at and

. What is the force of
on ?

57. The net excess charge on two small spheres
(small enough to be treated as point charges) is
Q. Show that the force of repulsion between the
spheres is greatest when each sphere has an
excess charge Q/2. Assume that the distance
between the spheres is so large compared with
their radii that the spheres can be treated as
point charges.

58. Two small, identical conducting spheres repel
each other with a force of 0.050 N when they are
0.25 m apart. After a conducting wire is
connected between the spheres and then

removed, they repel each other with a force of
0.060 N. What is the original charge on each
sphere?

59. A charge is placed at the point P
shown below. What is the force on q?

60. What is the net electric force on the charge
located at the lower right-hand corner of the
triangle shown here?

61. Two fixed particles, each of charge
are 24 cm apart. What force do

they exert on a third particle of charge
that is 13 cm from each of

them?
62. The charges

and
are placed at the corners

of the triangle shown below. What is the force on

63. What is the force on the charge q at the lower-
right-hand corner of the square shown here?
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64. Point charges and are
fixed at and

What is the force of
?

5.4 Electric Field

65. A particle of charge experiences
an upward force of magnitude
when it is placed in a particular point in an
electric field. (a) What is the electric field at that
point? (b) If a charge is
placed there, what is the force on it?

66. On a typical clear day, the atmospheric electric
field points downward and has a magnitude of
approximately 100 N/C. Compare the
gravitational and electric forces on a small dust
particle of mass that carries a
single electron charge. What is the acceleration
(both magnitude and direction) of the dust
particle?

67. Consider an electron that is from an
alpha particle (a) What is
the electric field due to the alpha particle at the
location of the electron? (b) What is the electric
field due to the electron at the location of the
alpha particle? (c) What is the electric force on
the alpha particle? On the electron?

68. Each the balls shown below carries a charge q
and has a mass m. The length of each thread is
l, and at equilibrium, the balls are separated by
an angle . How does vary with q and l? Show
that satisfies

.

69. What is the electric field at a point where the
force on a charge is

70. A proton is suspended in the air by an electric
field at the surface of Earth. What is the strength
of this electric field?

71. The electric field in a particular thundercloud is
What is the acceleration of an

electron in this field?
72. A small piece of cork whose mass is 2.0 g is

given a charge of What electric
field is needed to place the cork in equilibrium
under the combined electric and gravitational
forces?

73. If the electric field is at a distance of 50
cm from a point charge q, what is the value of q?

74. What is the electric field of a proton at the first
Bohr orbit for hydrogen
What is the force on the electron in that orbit?

75. (a) What is the electric field of an oxygen
nucleus at a point that is from the
nucleus? (b) What is the force this electric field
exerts on a second oxygen nucleus placed at
that point?

76. Two point charges, and
are held 25.0 cm apart.

(a) What is the electric field at a point 5.0 cm
from the negative charge and along the line
between the two charges? (b)What is the force
on an electron placed at that point?

77. Point charges and are
placed 1.0 m apart. (a) What is the electric field
at a point midway between them? (b) What is
the force on a charge situated there?

78. Can you arrange the two point charges
and

along the x-axis so that at the origin?
79. Point charges are fixed
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on the x-axis at and
What charge q must be placed at the origin so
that the electric field vanishes at

5.5 Calculating Electric Fields of Charge
Distributions

80. A thin conducting plate 1.0 m on the side is
given a charge of . An electron is
placed 1.0 cm above the center of the plate.
What is the acceleration of the electron?

81. Calculate the magnitude and direction of the
electric field 2.0 m from a long wire that is
charged uniformly at

82. Two thin conducting plates, each 25.0 cm on a
side, are situated parallel to one another and 5.0
mm apart. If electrons are moved from one
plate to the other, what is the electric field
between the plates?

83. The charge per unit length on the thin rod shown
below is . What is the electric field at the point P?
(Hint: Solve this problem by first considering the
electric field at P due to a small segment dx of the
rod, which contains charge . Then find the
net field by integrating over the length of the
rod.)

84. The charge per unit length on the thin
semicircular wire shown below is . What is the
electric field at the point P?

85. Two thin parallel conducting plates are placed
2.0 cm apart. Each plate is 2.0 cm on a side; one
plate carries a net charge of and the
other plate carries a net charge of
What is the charge density on the inside surface
of each plate? What is the electric field between
the plates?

86. A thin conducting plate 2.0 m on a side is given
a total charge of . (a) What is the
electric field above the plate? (b) What is
the force on an electron at this point? (c) Repeat
these calculations for a point 2.0 cm above the
plate. (d) When the electron moves from 1.0 to

2,0 cm above the plate, how much work is done
on it by the electric field?

87. A total charge q is distributed uniformly along a thin,
straight rod of length L (see below). What is the
electric field at

88. Charge is distributed along the entire x-axis
with uniform density How much work does
the electric field of this charge distribution do
on an electron that moves along the y-axis from

89. Charge is distributed along the entire x-axis
with uniform density and along the entire
y-axis with uniform density Calculate the
resulting electric field at (a) and (b)

90. A rod bent into the arc of a circle subtends an
angle at the center P of the circle (see below).
If the rod is charged uniformly with a total
charge Q, what is the electric field at P?

91. A proton moves in the electric field
(a) What are the force on and the

acceleration of the proton? (b) Do the same
calculation for an electron moving in this field.

92. An electron and a proton, each starting from
rest, are accelerated by the same uniform
electric field of 200 N/C. Determine the distance
and time for each particle to acquire a kinetic
energy of

93. A spherical water droplet of radius
carries an excess 250 electrons. What vertical
electric field is needed to balance the
gravitational force on the droplet at the surface
of the earth?

94. A proton enters the uniform electric field produced
by the two charged plates shown below. The
magnitude of the electric field is and
the speed of the proton when it enters is

What distance d has the proton been
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deflected downward when it leaves the plates?

95. Shown below is a small sphere of mass 0.25 g
that carries a charge of The
sphere is attached to one end of a very thin silk
string 5.0 cm long. The other end of the string is
attached to a large vertical conducting plate that
has a charge density of What
is the angle that the string makes with the
vertical?

96. Two infinite rods, each carrying a uniform charge
density are parallel to one another and
perpendicular to the plane of the page. (See
below.) What is the electrical field at

97. Positive charge is distributed with a uniform
density along the positive x-axis from ∞
along the positive y-axis from ∞ and along

a arc of a circle of radius r, as shown below.
What is the electric field at O?

98. From a distance of 10 cm, a proton is projected
with a speed of directly at a
large, positively charged plate whose charge
density is (See below.)
(a) Does the proton reach the plate? (b) If not,
how far from the plate does it turn around?

99. A particle of mass m and charge moves
along a straight line away from a fixed particle
of charge Q. When the distance between the two
particles is is moving with a speed (a)
Use the work-energy theorem to calculate the
maximum separation of the charges. (b) What
do you have to assume about to make this
calculation? (c) What is the minimum value of

such that escapes from Q?

5.6 Electric Field Lines

100. Which of the following electric field lines are
incorrect for point charges? Explain why.
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101. In this exercise, you will practice drawing
electric field lines. Make sure you represent
both the magnitude and direction of the
electric field adequately. Note that the number
of lines into or out of charges is proportional to
the charges.
(a) Draw the electric field lines map for two
charges and situated 5 cm
from each other.
(b) Draw the electric field lines map for two
charges and situated 5 cm
from each other.
(c) Draw the electric field lines map for two
charges and situated 5 cm
from each other.

102. Draw the electric field for a system of three
particles of charges and
fixed at the corners of an equilateral triangle of
side 2 cm.

103. Two charges of equal magnitude but opposite
sign make up an electric dipole. A quadrupole

consists of two electric dipoles that are placed
anti-parallel at two edges of a square as shown.

Draw the electric field of the charge
distribution.

104. Suppose the electric field of an isolated point
charge decreased with distance as
rather than as . Show that it is then
impossible to draw continous field lines so that
their number per unit area is proportional to
E.

5.7 Electric Dipoles

105. Consider the equal and opposite charges
shown below. (a) Show that at all points on the
x-axis for which (b)
Show that at all points on the y-axis for which

106. (a) What is the dipole moment of the
configuration shown above? If , (b)
what is the torque on this dipole with an
electric field of ? (c) What is the
torque on this dipole with an electric field of

? (d) What is the torque on
this dipole with an electric field of

?
107. A water molecule consists of two hydrogen

atoms bonded with one oxygen atom. The
bond angle between the two hydrogen atoms is

(see below). Calculate the net dipole
moment of a hypothetical water molecule
where the charge at the oxygen molecule is
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−2e and at each hydrogen atom is +e. The net
dipole moment of the molecule is the vector
sum of the individual dipole moment between
the two O-Hs. The separation O-H is 0.9578
angstroms.

Additional Problems
108. Point charges and are

located at and

. What is the force
of

109. What is the force on the charge shown
below?

110. What is the force on the charge placed
at the center of the square shown below?

111. Four charged particles are positioned at the corners
of a parallelogram as shown below. If and

what is the net force on q?

112. A charge Q is fixed at the origin and a second
charge q moves along the x-axis, as shown
below. How much work is done on q by the
electric force when q moves from

113. A charge is released from rest
when it is 2.0 m from a fixed charge

What is the kinetic energy of q
when it is 1.0 m from Q?

114. What is the electric field at the midpoint M of
the hypotenuse of the triangle shown below?
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115. Find the electric field at P for the charge
configurations shown below.

116. (a) What is the electric field at the lower-right-
hand corner of the square shown below? (b)
What is the force on a charge q placed at that
point?

117. Point charges are placed at the four corners of
a rectangle as shown below:

and
What is the electric field at P?

118. Three charges are positioned at the corners of
a parallelogram as shown below. (a) If

what is the electric field at the
unoccupied corner? (b) What is the force on a

charge placed at this corner?

119. A positive charge q is released from rest at the
origin of a rectangular coordinate system and
moves under the influence of the electric field

What is the kinetic energy
of q when it passes through

120. A particle of charge and mass m is placed
at the center of a uniformaly charged ring of
total charge Q and radius R. The particle is
displaced a small distance along the axis
perpendicular to the plane of the ring and
released. Assuming that the particle is
constrained to move along the axis, show that
the particle oscillates in simple harmonic

motion with a frequency

121. Charge is distributed uniformly along the
entire y-axis with a density and along the
positive x-axis from with a
density What is the force between the two
distributions?
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122. The circular arc shown below carries a charge
per unit length where is
measured from the x-axis. What is the electric
field at the origin?

123. Calculate the electric field due to a uniformly
charged rod of length L, aligned with the x-axis
with one end at the origin; at a point P on the
z-axis.

124. The charge per unit length on the thin rod
shown below is What is the electric force on
the point charge q? Solve this problem by first
considering the electric force on q due to a
small segment of the rod, which contains
charge Then, find the net force by
integrating over the length of the rod.

125. The charge per unit length on the thin rod
shown here is What is the electric force on
the point charge q? (See the preceding
problem.)

126. The charge per unit length on the thin
semicircular wire shown below is What is
the electric force on the point charge q? (See
the preceding problems.)
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INTRODUCTION

CHAPTER 6
Gauss's Law

6.1 Electric Flux

6.2 Explaining Gauss’s Law

6.3 Applying Gauss’s Law

6.4 Conductors in Electrostatic Equilibrium

Flux is a general and broadly applicable concept in physics. However, in this chapter, we
concentrate on the flux of the electric field. This allows us to introduce Gauss’s law, which is particularly useful
for finding the electric fields of charge distributions exhibiting spatial symmetry. The main topics discussed
here are

1. Electric flux. We define electric flux for both open and closed surfaces.
2. Gauss’s law. We derive Gauss’s law for an arbitrary charge distribution and examine the role of electric

flux in Gauss’s law.
3. Calculating electric fields with Gauss’s law. The main focus of this chapter is to explain how to use

Gauss’s law to find the electric fields of spatially symmetrical charge distributions. We discuss the
importance of choosing a Gaussian surface and provide examples involving the applications of Gauss’s
law.

Figure 6.1 This chapter introduces the concept of flux, which relates a physical quantity and the area through
which it is flowing. Although we introduce this concept with the electric field, the concept may be used for many
other quantities, such as fluid flow. (credit: modification of work by “Alessandro”/Flickr)
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4. Electric fields in conductors. Gauss’s law provides useful insight into the absence of electric fields in
conducting materials.

So far, we have found that the electrostatic field begins and ends at point charges and that the field of a point
charge varies inversely with the square of the distance from that charge. These characteristics of the
electrostatic field lead to an important mathematical relationship known as Gauss’s law. This law is named in
honor of the extraordinary German mathematician and scientist Karl Friedrich Gauss (Figure 6.2). Gauss’s law
gives us an elegantly simple way of finding the electric field, and, as you will see, it can be much easier to use
than the integration method described in the previous chapter. However, there is a catch—Gauss’s law has a
limitation in that, while always true, it can be readily applied only for charge distributions with certain
symmetries.

Figure 6.2 Karl Friedrich Gauss (1777–1855) was a legendary mathematician of the nineteenth century. Although his major contributions

were to the field of mathematics, he also did important work in physics and astronomy.

6.1 Electric Flux
Learning Objectives
By the end of this section, you will be able to:

• Define the concept of flux
• Describe electric flux
• Calculate electric flux for a given situation

The concept of flux describes how much of something goes through a given area. More formally, it is the dot
product of a vector field (in this chapter, the electric field) with an area. You may conceptualize the flux of an
electric field as a measure of the number of electric field lines passing through an area (Figure 6.3). The larger
the area, the more field lines go through it and, hence, the greater the flux; similarly, the stronger the electric
field is (represented by a greater density of lines), the greater the flux. On the other hand, if the area rotated so
that the plane is aligned with the field lines, none will pass through and there will be no flux.
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Figure 6.3 The flux of an electric field through the shaded area captures information about the “number” of electric field lines passing

through the area. The numerical value of the electric flux depends on the magnitudes of the electric field and the area, as well as the

relative orientation of the area with respect to the direction of the electric field.

A macroscopic analogy that might help you imagine this is to put a hula hoop in a flowing river. As you change
the angle of the hoop relative to the direction of the current, more or less of the flow will go through the hoop.
Similarly, the amount of flow through the hoop depends on the strength of the current and the size of the hoop.
Again, flux is a general concept; we can also use it to describe the amount of sunlight hitting a solar panel or
the amount of energy a telescope receives from a distant star, for example.

To quantify this idea, Figure 6.4(a) shows a planar surface of area that is perpendicular to the uniform
electric field If N field lines pass through , then we know from the definition of electric field lines
(Electric Charges and Fields) that or

The quantity is the electric flux through . We represent the electric flux through an open surface like
by the symbol . Electric flux is a scalar quantity and has an SI unit of newton-meters squared per coulomb

( ). Notice that may also be written as , demonstrating that electric flux is a measure
of the number of field lines crossing a surface.

Figure 6.4 (a) A planar surface of area is perpendicular to the electric field . N field lines cross surface . (b) A surface of

area whose projection onto the xz-plane is .The same number of field lines cross each surface.

Now consider a planar surface that is not perpendicular to the field. How would we represent the electric flux?
Figure 6.4(b) shows a surface of area that is inclined at an angle to the xz-plane and whose projection
in that plane is (area ). The areas are related by Because the same number of field lines
crosses both and , the fluxes through both surfaces must be the same. The flux through is therefore

Designating as a unit vector normal to (see Figure 6.4(b)), we obtain

INTERACTIVE

Check out this video (https://openstax.org/l/21fluxsizeangl) to observe what happens to the flux as the area
changes in size and angle, or the electric field changes in strength.
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Area Vector
For discussing the flux of a vector field, it is helpful to introduce an area vector This allows us to write the
last equation in a more compact form. What should the magnitude of the area vector be? What should the
direction of the area vector be? What are the implications of how you answer the previous question?

The area vector of a flat surface of area A has the following magnitude and direction:

• Magnitude is equal to area (A)
• Direction is along the normal to the surface ( ); that is, perpendicular to the surface.

Since the normal to a flat surface can point in either direction from the surface, the direction of the area vector
of an open surface needs to be chosen, as shown in Figure 6.5.

Figure 6.5 The direction of the area vector of an open surface needs to be chosen; it could be either of the two cases displayed here. The

area vector of a part of a closed surface is defined to point from the inside of the closed space to the outside. This rule gives a unique

direction.

Since is a unit normal to a surface, it has two possible directions at every point on that surface (Figure 6.6(a)).
For an open surface, we can use either direction, as long as we are consistent over the entire surface. Part (c) of
the figure shows several cases.

232 6 • Gauss's Law

Access for free at openstax.org.



Figure 6.6 (a) Two potential normal vectors arise at every point on a surface. (b) The outward normal is used to calculate the flux through

a closed surface. (c) Only has been given a consistent set of normal vectors that allows us to define the flux through the surface.

However, if a surface is closed, then the surface encloses a volume. In that case, the direction of the normal
vector at any point on the surface points from the inside to the outside. On a closed surface such as that of
Figure 6.6(b), is chosen to be the outward normal at every point, to be consistent with the sign convention for
electric charge.

Electric Flux
Now that we have defined the area vector of a surface, we can define the electric flux of a uniform electric field
through a flat area as the scalar product of the electric field and the area vector, as defined in Products of
Vectors:

Figure 6.7 shows the electric field of an oppositely charged, parallel-plate system and an imaginary box
between the plates. The electric field between the plates is uniform and points from the positive plate toward
the negative plate. A calculation of the flux of this field through various faces of the box shows that the net flux
through the box is zero. Why does the flux cancel out here?

6.1
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Figure 6.7 Electric flux through a cube, placed between two charged plates. Electric flux through the bottom face (ABCD) is negative,

because is in the opposite direction to the normal to the surface. The electric flux through the top face (FGHK) is positive, because the

electric field and the normal are in the same direction. The electric flux through the other faces is zero, since the electric field is

perpendicular to the normal vectors of those faces. The net electric flux through the cube is the sum of fluxes through the six faces. Here,

the net flux through the cube is equal to zero. The magnitude of the flux through rectangle BCKF is equal to the magnitudes of the flux

through both the top and bottom faces.

The reason is that the sources of the electric field are outside the box. Therefore, if any electric field line enters
the volume of the box, it must also exit somewhere on the surface because there is no charge inside for the
lines to land on. Therefore, quite generally, electric flux through a closed surface is zero if there are no sources
of electric field, whether positive or negative charges, inside the enclosed volume. In general, when field lines
leave (or “flow out of”) a closed surface, is positive; when they enter (or “flow into”) the surface, is
negative.

Any smooth, non-flat surface can be replaced by a collection of tiny, approximately flat surfaces, as shown in
Figure 6.8. If we divide a surface S into small patches, then we notice that, as the patches become smaller, they
can be approximated by flat surfaces. This is similar to the way we treat the surface of Earth as locally flat, even
though we know that globally, it is approximately spherical.
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Figure 6.8 A surface is divided into patches to find the flux.

To keep track of the patches, we can number them from 1 through N . Now, we define the area vector for each
patch as the area of the patch pointed in the direction of the normal. Let us denote the area vector for the ith
patch by (We have used the symbol to remind us that the area is of an arbitrarily small patch.) With
sufficiently small patches, we may approximate the electric field over any given patch as uniform. Let us
denote the average electric field at the location of the ith patch by

Therefore, we can write the electric flux through the area of the ith patch as

The flux through each of the individual patches can be constructed in this manner and then added to give us
an estimate of the net flux through the entire surface S, which we denote simply as .

This estimate of the flux gets better as we decrease the size of the patches. However, when you use smaller
patches, you need more of them to cover the same surface. In the limit of infinitesimally small patches, they
may be considered to have area dA and unit normal . Since the elements are infinitesimal, they may be
assumed to be planar, and may be taken as constant over any element. Then the flux through an area
dA is given by It is positive when the angle between and is less than and negative
when the angle is greater than . The net flux is the sum of the infinitesimal flux elements over the entire
surface. With infinitesimally small patches, you need infinitely many patches, and the limit of the sum

becomes a surface integral. With representing the integral over S,

In practical terms, surface integrals are computed by taking the antiderivatives of both dimensions defining
the area, with the edges of the surface in question being the bounds of the integral.

To distinguish between the flux through an open surface like that of Figure 6.4 and the flux through a closed

6.2
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surface (one that completely bounds some volume), we represent flux through a closed surface by

where the circle through the integral symbol simply means that the surface is closed, and we are integrating
over the entire thing. If you only integrate over a portion of a closed surface, that means you are treating a
subset of it as an open surface.

EXAMPLE 6.1

Flux of a Uniform Electric Field
A constant electric field of magnitude points in the direction of the positive z-axis (Figure 6.9). What is the
electric flux through a rectangle with sides a and b in the (a) xy-plane and in the (b) xz-plane?

Figure 6.9 Calculating the flux of through a rectangular surface.

Strategy

Apply the definition of flux: , where the definition of dot product is crucial.

Solution

a. In this case,
b. Here, the direction of the area vector is either along the positive y-axis or toward the negative y-axis.

Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

Significance
The relative directions of the electric field and area can cause the flux through the area to be zero.

EXAMPLE 6.2

Flux of a Uniform Electric Field through a Closed Surface
A constant electric field of magnitude points in the direction of the positive z-axis (Figure 6.10). What is the
net electric flux through a cube?

6.3

236 6 • Gauss's Law

Access for free at openstax.org.



Figure 6.10 Calculating the flux of through a closed cubic surface.

Strategy

Apply the definition of flux: , noting that a closed surface eliminates the ambiguity in
the direction of the area vector.

Solution

Through the top face of the cube,

Through the bottom face of the cube, because the area vector here points downward.

Along the other four sides, the direction of the area vector is perpendicular to the direction of the electric field.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

The net flux is .

Significance
The net flux of a uniform electric field through a closed surface is zero.

EXAMPLE 6.3

Electric Flux through a Plane, Integral Method
A uniform electric field of magnitude 10 N/C is directed parallel to the yz-plane at above the xy-plane, as
shown in Figure 6.11. What is the electric flux through the plane surface of area located in the
xz-plane? Assume that points in the positive y-direction.
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Figure 6.11 The electric field produces a net electric flux through the surface S.

Strategy

Apply , where the direction and magnitude of the electric field are constant.

Solution

The angle between the uniform electric field and the unit normal to the planar surface is . Since both
the direction and magnitude are constant, E comes outside the integral. All that is left is a surface integral over
dA, which is A. Therefore, using the open-surface equation, we find that the electric flux through the surface is

Significance
Again, the relative directions of the field and the area matter, and the general equation with the integral will
simplify to the simple dot product of area and electric field.

CHECK YOUR UNDERSTANDING 6.1

What angle should there be between the electric field and the surface shown in Figure 6.11 in the previous
example so that no electric flux passes through the surface?

EXAMPLE 6.4

Inhomogeneous Electric Field
What is the total flux of the electric field through the rectangular surface shown in Figure 6.12?
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Figure 6.12 Since the electric field is not constant over the surface, an integration is necessary to determine the flux.

Strategy

Apply . We assume that the unit normal to the given surface points in the positive

z-direction, so Since the electric field is not uniform over the surface, it is necessary to divide the
surface into infinitesimal strips along which is essentially constant. As shown in Figure 6.12, these strips
are parallel to the x-axis, and each strip has an area

Solution
From the open surface integral, we find that the net flux through the rectangular surface is

Significance
For a non-constant electric field, the integral method is required.

CHECK YOUR UNDERSTANDING 6.2

If the electric field in Example 6.4 is what is the flux through the rectangular area?

6.2 Explaining Gauss’s Law
Learning Objectives
By the end of this section, you will be able to:

• State Gauss’s law
• Explain the conditions under which Gauss’s law may be used
• Apply Gauss’s law in appropriate systems

We can now determine the electric flux through an arbitrary closed surface due to an arbitrary charge
distribution. We found that if a closed surface does not have any charge inside where an electric field line can
terminate, then any electric field line entering the surface at one point must necessarily exit at some other
point of the surface. Therefore, if a closed surface does not have any charges inside the enclosed volume, then
the electric flux through the surface is zero. Now, what happens to the electric flux if there are some charges
inside the enclosed volume? Gauss’s law gives a quantitative answer to this question.
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To get a feel for what to expect, let’s calculate the electric flux through a spherical surface around a positive
point charge q, since we already know the electric field in such a situation. Recall that when we place the point
charge at the origin of a coordinate system, the electric field at a point P that is at a distance r from the charge
at the origin is given by

where is the radial vector from the charge at the origin to the point P. We can use this electric field to find the
flux through the spherical surface of radius r, as shown in Figure 6.13.

Figure 6.13 A closed spherical surface surrounding a point charge q.

Then we apply to this system and substitute known values. On the sphere, and ,

so for an infinitesimal area dA,

We now find the net flux by integrating this flux over the surface of the sphere:

where the total surface area of the spherical surface is This gives the flux through the closed spherical
surface at radius r as

A remarkable fact about this equation is that the flux is independent of the size of the spherical surface. This
can be directly attributed to the fact that the electric field of a point charge decreases as with distance,
which just cancels the rate of increase of the surface area.

Electric Field Lines Picture
An alternative way to see why the flux through a closed spherical surface is independent of the radius of the
surface is to look at the electric field lines. Note that every field line from q that pierces the surface at radius
also pierces the surface at (Figure 6.14).

6.4
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Figure 6.14 Flux through spherical surfaces of radii and enclosing a charge q are equal, independent of the size of the surface,

since all E-field lines that pierce one surface from the inside to outside direction also pierce the other surface in the same direction.

Therefore, the net number of electric field lines passing through the two surfaces from the inside to outside
direction is equal. This net number of electric field lines, which is obtained by subtracting the number of lines
in the direction from outside to inside from the number of lines in the direction from inside to outside gives a
visual measure of the electric flux through the surfaces.

You can see that if no charges are included within a closed surface, then the electric flux through it must be
zero. A typical field line enters the surface at and leaves at Every line that enters the surface must
also leave that surface. Hence the net “flow” of the field lines into or out of the surface is zero (Figure 6.15(a)).
The same thing happens if charges of equal and opposite sign are included inside the closed surface, so that
the total charge included is zero (part (b)). A surface that includes the same amount of charge has the same
number of field lines crossing it, regardless of the shape or size of the surface, as long as the surface encloses
the same amount of charge (part (c)).

Figure 6.15 Understanding the flux in terms of field lines. (a) The electric flux through a closed surface due to a charge outside that

surface is zero. (b) Charges are enclosed, but because the net charge included is zero, the net flux through the closed surface is also zero.

(c) The shape and size of the surfaces that enclose a charge does not matter because all surfaces enclosing the same charge have the same

flux.

Statement of Gauss’s Law
Gauss’s law generalizes this result to the case of any number of charges and any location of the charges in the
space inside the closed surface. According to Gauss’s law, the flux of the electric field through any closed
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surface, also called a Gaussian surface, is equal to the net charge enclosed divided by the permittivity of
free space :

This equation holds for charges of either sign, because we define the area vector of a closed surface to point
outward. If the enclosed charge is negative (see Figure 6.16(b)), then the flux through either is negative.

Figure 6.16 The electric flux through any closed surface surrounding a point charge q is given by Gauss’s law. (a) Enclosed charge is

positive. (b) Enclosed charge is negative.

The Gaussian surface does not need to correspond to a real, physical object; indeed, it rarely will. It is a
mathematical construct that may be of any shape, provided that it is closed. However, since our goal is to
integrate the flux over it, we tend to choose shapes that are highly symmetrical.

If the charges are discrete point charges, then we just add them. If the charge is described by a continuous
distribution, then we need to integrate appropriately to find the total charge that resides inside the enclosed
volume. For example, the flux through the Gaussian surface S of Figure 6.17 is Note
that is simply the sum of the point charges. If the charge distribution were continuous, we would need to
integrate appropriately to compute the total charge within the Gaussian surface.

Figure 6.17 The flux through the Gaussian surface shown, due to the charge distribution, is

Recall that the principle of superposition holds for the electric field. Therefore, the total electric field at any
point, including those on the chosen Gaussian surface, is the sum of all the electric fields present at this point.
This allows us to write Gauss’s law in terms of the total electric field.
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To use Gauss’s law effectively, you must have a clear understanding of what each term in the equation
represents. The field is the total electric field at every point on the Gaussian surface. This total field includes
contributions from charges both inside and outside the Gaussian surface. However, is just the charge
inside the Gaussian surface. Finally, the Gaussian surface is any closed surface in space. That surface can
coincide with the actual surface of a conductor, or it can be an imaginary geometric surface. The only
requirement imposed on a Gaussian surface is that it be closed (Figure 6.18).

Figure 6.18 A Klein bottle partially filled with a liquid. Could the Klein bottle be used as a Gaussian surface?

EXAMPLE 6.5

Electric Flux through Gaussian Surfaces
Calculate the electric flux through each Gaussian surface shown in Figure 6.19.

Gauss’s Law

The flux of the electric field through any closed surface S (a Gaussian surface) is equal to the net
charge enclosed divided by the permittivity of free space

6.5
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Figure 6.19 Various Gaussian surfaces and charges.

Strategy
From Gauss’s law, the flux through each surface is given by where is the charge enclosed by that
surface.

Solution
For the surfaces and charges shown, we find

a.

b.

c.

d.

e.

Significance
In the special case of a closed surface, the flux calculations become a sum of charges. In the next section, this
will allow us to work with more complex systems.

CHECK YOUR UNDERSTANDING 6.3

Calculate the electric flux through the closed cubical surface for each charge distribution shown in Figure 6.20.
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Figure 6.20 A cubical Gaussian surface with various charge distributions.

INTERACTIVE

Use this simulation (https://openstax.org/l/21gaussimulat) to adjust the magnitude of the charge and the
radius of the Gaussian surface around it. See how this affects the total flux and the magnitude of the electric
field at the Gaussian surface.

6.3 Applying Gauss’s Law
Learning Objectives
By the end of this section, you will be able to:

• Explain what spherical, cylindrical, and planar symmetry are
• Recognize whether or not a given system possesses one of these symmetries
• Apply Gauss’s law to determine the electric field of a system with one of these symmetries

Gauss’s law is very helpful in determining expressions for the electric field, even though the law is not directly
about the electric field; it is about the electric flux. It turns out that in situations that have certain symmetries
(spherical, cylindrical, or planar) in the charge distribution, we can deduce the electric field based on
knowledge of the electric flux. In these systems, we can find a Gaussian surface S over which the electric field
has constant magnitude. Furthermore, if is parallel to everywhere on the surface, then (If
and are antiparallel everywhere on the surface, then ) Gauss’s law then simplifies to

6.3 • Applying Gauss’s Law 245



where A is the area of the surface. Note that these symmetries lead to the transformation of the flux integral
into a product of the magnitude of the electric field and an appropriate area. When you use this flux in the
expression for Gauss’s law, you obtain an algebraic equation that you can solve for the magnitude of the
electric field, which looks like

The direction of the electric field at point P is obtained from the symmetry of the charge distribution and the
type of charge in the distribution. Therefore, Gauss’s law can be used to determine Here is a summary of
the steps we will follow:

PROBLEM-SOLVING STRATEGY

Gauss’s Law
1. Identify the spatial symmetry of the charge distribution. This is an important first step that allows us to

choose the appropriate Gaussian surface. As examples, an isolated point charge has spherical symmetry,
and an infinite line of charge has cylindrical symmetry.

2. Choose a Gaussian surface with the same symmetry as the charge distribution and identify its
consequences. With this choice, is easily determined over the Gaussian surface.

3. Evaluate the integral over the Gaussian surface, that is, calculate the flux through the surface.

The symmetry of the Gaussian surface allows us to factor outside the integral.
4. Determine the amount of charge enclosed by the Gaussian surface. This is an evaluation of the right-hand

side of the equation representing Gauss’s law. It is often necessary to perform an integration to obtain the
net enclosed charge.

5. Evaluate the electric field of the charge distribution. The field may now be found using the results of steps
3 and 4.

Basically, there are only three types of symmetry that allow Gauss’s law to be used to deduce the electric field.
They are

• A charge distribution with spherical symmetry
• A charge distribution with cylindrical symmetry
• A charge distribution with planar symmetry

To exploit the symmetry, we perform the calculations in appropriate coordinate systems and use the right kind
of Gaussian surface for that symmetry, applying the remaining four steps.

Charge Distribution with Spherical Symmetry
A charge distribution has spherical symmetry if the density of charge depends only on the distance from a
point in space and not on the direction. In other words, if you rotate the system, it doesn’t look different. For
instance, if a sphere of radius R is uniformly charged with charge density then the distribution has
spherical symmetry (Figure 6.21(a)). On the other hand, if a sphere of radius R is charged so that the top half of
the sphere has uniform charge density and the bottom half has a uniform charge density then the
sphere does not have spherical symmetry because the charge density depends on the direction (Figure
6.21(b)). Thus, it is not the shape of the object but rather the shape of the charge distribution that determines
whether or not a system has spherical symmetry.

Figure 6.21(c) shows a sphere with four different shells, each with its own uniform charge density. Although
this is a situation where charge density in the full sphere is not uniform, the charge density function depends
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only on the distance from the center and not on the direction. Therefore, this charge distribution does have
spherical symmetry.

Figure 6.21 Illustrations of spherically symmetrical and nonsymmetrical systems. Different shadings indicate different charge densities.

Charges on spherically shaped objects do not necessarily mean the charges are distributed with spherical symmetry. The spherical

symmetry occurs only when the charge density does not depend on the direction. In (a), charges are distributed uniformly in a sphere. In

(b), the upper half of the sphere has a different charge density from the lower half; therefore, (b) does not have spherical symmetry. In (c),

the charges are in spherical shells of different charge densities, which means that charge density is only a function of the radial distance

from the center; therefore, the system has spherical symmetry.

One good way to determine whether or not your problem has spherical symmetry is to look at the charge
density function in spherical coordinates, . If the charge density is only a function of r, that is

, then you have spherical symmetry. If the density depends on or , you could change it by rotation;
hence, you would not have spherical symmetry.

Consequences of symmetry
In all spherically symmetrical cases, the electric field at any point must be radially directed, because the
charge and, hence, the field must be invariant under rotation. Therefore, using spherical coordinates with their
origins at the center of the spherical charge distribution, we can write down the expected form of the electric
field at a point P located at a distance r from the center:

where is the unit vector pointed in the direction from the origin to the field point P. The radial component
of the electric field can be positive or negative. When the electric field at P points away from the

origin, and when the electric field at P points toward the origin.

Gaussian surface and flux calculations
We can now use this form of the electric field to obtain the flux of the electric field through the Gaussian
surface. For spherical symmetry, the Gaussian surface is a closed spherical surface that has the same center as
the center of the charge distribution. Thus, the direction of the area vector of an area element on the Gaussian
surface at any point is parallel to the direction of the electric field at that point, since they are both radially
directed outward (Figure 6.22).

6.7

6.3 • Applying Gauss’s Law 247



Figure 6.22 The electric field at any point of the spherical Gaussian surface for a spherically symmetrical charge distribution is parallel to

the area element vector at that point, giving flux as the product of the magnitude of electric field and the value of the area. Note that the

radius R of the charge distribution and the radius r of the Gaussian surface are different quantities.

The magnitude of the electric field must be the same everywhere on a spherical Gaussian surface
concentric with the distribution. For a spherical surface of radius r,

Using Gauss’s law
According to Gauss’s law, the flux through a closed surface is equal to the total charge enclosed within the
closed surface divided by the permittivity of vacuum . Let be the total charge enclosed inside the
distance r from the origin, which is the space inside the Gaussian spherical surface of radius r. This gives the
following relation for Gauss’s law:

Hence, the electric field at point P that is a distance r from the center of a spherically symmetrical charge
distribution has the following magnitude and direction:

Direction: radial from O to P or from P to O.

The direction of the field at point P depends on whether the charge in the sphere is positive or negative. For a
net positive charge enclosed within the Gaussian surface, the direction is from O to P, and for a net negative
charge, the direction is from P to O. This is all we need for a point charge, and you will notice that the result
above is identical to that for a point charge. However, Gauss’s law becomes truly useful in cases where the
charge occupies a finite volume.

Computing enclosed charge
The more interesting case is when a spherical charge distribution occupies a volume, and asking what the
electric field inside the charge distribution is thus becomes relevant. In this case, the charge enclosed depends
on the distance r of the field point relative to the radius of the charge distribution R, such as that shown in
Figure 6.23.
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Figure 6.23 A spherically symmetrical charge distribution and the Gaussian surface used for finding the field (a) inside and (b) outside the

distribution.

If point P is located outside the charge distribution—that is, if —then the Gaussian surface containing P
encloses all charges in the sphere. In this case, equals the total charge in the sphere. On the other hand, if
point P is within the spherical charge distribution, that is, if then the Gaussian surface encloses a
smaller sphere than the sphere of charge distribution. In this case, is less than the total charge present in
the sphere. Referring to Figure 6.23, we can write as

The field at a point outside the charge distribution is also called , and the field at a point inside the charge
distribution is called Focusing on the two types of field points, either inside or outside the charge
distribution, we can now write the magnitude of the electric field as

Note that the electric field outside a spherically symmetrical charge distribution is identical to that of a point
charge at the center that has a charge equal to the total charge of the spherical charge distribution. This is
remarkable since the charges are not located at the center only. We now work out specific examples of
spherical charge distributions, starting with the case of a uniformly charged sphere.

EXAMPLE 6.6

Uniformly Charged Sphere
A sphere of radius R, such as that shown in Figure 6.23, has a uniform volume charge density . Find the
electric field at a point outside the sphere and at a point inside the sphere.

Strategy
Apply the Gauss’s law problem-solving strategy, where we have already worked out the flux calculation.

Solution
The charge enclosed by the Gaussian surface is given by
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The answer for electric field amplitude can then be written down immediately for a point outside the sphere,
labeled and a point inside the sphere, labeled

It is interesting to note that the magnitude of the electric field increases inside the material as you go out, since
the amount of charge enclosed by the Gaussian surface increases with the volume. Specifically, the charge
enclosed grows , whereas the field from each infinitesimal element of charge drops off with the net
result that the electric field within the distribution increases in strength linearly with the radius. The
magnitude of the electric field outside the sphere decreases as you go away from the charges, because the
included charge remains the same but the distance increases. Figure 6.24 displays the variation of the
magnitude of the electric field with distance from the center of a uniformly charged sphere.

Figure 6.24 Electric field of a uniformly charged, non-conducting sphere increases inside the sphere to a maximum at the surface and

then decreases as . Here, . The electric field is due to a spherical charge distribution of uniform charge density and total

charge Q as a function of distance from the center of the distribution.

The direction of the electric field at any point P is radially outward from the origin if is positive, and inward
(i.e., toward the center) if is negative. The electric field at some representative space points are displayed in
Figure 6.25 whose radial coordinates r are , , and .
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Figure 6.25 Electric field vectors inside and outside a uniformly charged sphere.

Significance
Notice that has the same form as the equation of the electric field of an isolated point charge. In
determining the electric field of a uniform spherical charge distribution, we can therefore assume that all of
the charge inside the appropriate spherical Gaussian surface is located at the center of the distribution.

EXAMPLE 6.7

Non-Uniformly Charged Sphere
A non-conducting sphere of radius R has a non-uniform charge density that varies with the distance from its
center as given by

where a is a constant. We require so that the charge density is not undefined at . Find the electric
field at a point outside the sphere and at a point inside the sphere.

Strategy
Apply the Gauss’s law strategy given above, where we work out the enclosed charge integrals separately for
cases inside and outside the sphere.

Solution
Since the given charge density function has only a radial dependence and no dependence on direction, we
have a spherically symmetrical situation. Therefore, the magnitude of the electric field at any point is given
above and the direction is radial. We just need to find the enclosed charge which depends on the location
of the field point.

A note about symbols: We use for locating charges in the charge distribution and r for locating the field
point(s) at the Gaussian surface(s). The letter R is used for the radius of the charge distribution.
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As charge density is not constant here, we need to integrate the charge density function over the volume
enclosed by the Gaussian surface. Therefore, we set up the problem for charges in one spherical shell, say
between and as shown in Figure 6.26. The volume of charges in the shell of infinitesimal width is
equal to the product of the area of surface and the thickness . Multiplying the volume with the density
at this location, which is , gives the charge in the shell:

Figure 6.26 Spherical symmetry with non-uniform charge distribution. In this type of problem, we need four radii: R is the radius of the

charge distribution, r is the radius of the Gaussian surface, is the inner radius of the spherical shell, and is the outer radius of the

spherical shell. The spherical shell is used to calculate the charge enclosed within the Gaussian surface. The range for is from 0 to r for

the field at a point inside the charge distribution and from 0 to R for the field at a point outside the charge distribution. If , then the

Gaussian surface encloses more volume than the charge distribution, but the additional volume does not contribute to .

(a) Field at a point outside the charge distribution. In this case, the Gaussian surface, which contains the field
point P, has a radius r that is greater than the radius R of the charge distribution, . Therefore, all charges
of the charge distribution are enclosed within the Gaussian surface. Note that the space between and

is empty of charges and therefore does not contribute to the integral over the volume enclosed by the
Gaussian surface:

This is used in the general result for above to obtain the electric field at a point outside the charge
distribution as

where is a unit vector in the direction from the origin to the field point at the Gaussian surface.

(b) Field at a point inside the charge distribution. The Gaussian surface is now buried inside the charge
distribution, with . Therefore, only those charges in the distribution that are within a distance r of the
center of the spherical charge distribution count in :
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Now, using the general result above for we find the electric field at a point that is a distance r from the
center and lies within the charge distribution as

where the direction information is included by using the unit radial vector.

CHECK YOUR UNDERSTANDING 6.4

Check that the electric fields for the sphere reduce to the correct values for a point charge.

Charge Distribution with Cylindrical Symmetry
A charge distribution has cylindrical symmetry if the charge density depends only upon the distance r from
the axis of a cylinder and must not vary along the axis or with direction about the axis. In other words, if your
system varies if you rotate it around the axis, or shift it along the axis, you do not have cylindrical symmetry.

Figure 6.27 shows four situations in which charges are distributed in a cylinder. A uniform charge density
in an infinite straight wire has a cylindrical symmetry, and so does an infinitely long cylinder with constant
charge density An infinitely long cylinder that has different charge densities along its length, such as a
charge density for and for , does not have a usable cylindrical symmetry for this course.
Neither does a cylinder in which charge density varies with the direction, such as a charge density for

and for . A system with concentric cylindrical shells, each with uniform charge
densities, albeit different in different shells, as in Figure 6.27(d), does have cylindrical symmetry if they are
infinitely long. The infinite length requirement is due to the charge density changing along the axis of a finite
cylinder. In real systems, we don’t have infinite cylinders; however, if the cylindrical object is considerably
longer than the radius from it that we are interested in, then the approximation of an infinite cylinder becomes
useful.

Figure 6.27 To determine whether a given charge distribution has cylindrical symmetry, look at the cross-section of an “infinitely long”

cylinder. If the charge density does not depend on the polar angle of the cross-section or along the axis, then you have cylindrical

symmetry. (a) Charge density is constant in the cylinder; (b) upper half of the cylinder has a different charge density from the lower half; (c)

left half of the cylinder has a different charge density from the right half; (d) charges are constant in different cylindrical rings, but the

density does not depend on the polar angle. Cases (a) and (d) have cylindrical symmetry, whereas (b) and (c) do not.

Consequences of symmetry
In all cylindrically symmetrical cases, the electric field at any point P must also display cylindrical
symmetry.

Cylindrical symmetry: ,
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where r is the distance from the axis and is a unit vector directed perpendicularly away from the axis (Figure
6.28).

Figure 6.28 The electric field in a cylindrically symmetrical situation depends only on the distance from the axis. The direction of the

electric field is pointed away from the axis for positive charges and toward the axis for negative charges.

Gaussian surface and flux calculation
To make use of the direction and functional dependence of the electric field, we choose a closed Gaussian
surface in the shape of a cylinder with the same axis as the axis of the charge distribution. The flux through
this surface of radius s and height L is easy to compute if we divide our task into two parts: (a) a flux through
the flat ends and (b) a flux through the curved surface (Figure 6.29).

Figure 6.29 The Gaussian surface in the case of cylindrical symmetry. The electric field at a patch is either parallel or perpendicular to the

normal to the patch of the Gaussian surface.

The electric field is perpendicular to the cylindrical side and parallel to the planar end caps of the surface. The
flux through the cylindrical part is

whereas the flux through the end caps is zero because there. Thus, the flux is

Using Gauss’s law
According to Gauss’s law, the flux must equal the amount of charge within the volume enclosed by this surface,
divided by the permittivity of free space. When you do the calculation for a cylinder of length L, you find that

of Gauss’s law is directly proportional to L. Let us write it as charge per unit length times length L:

Hence, Gauss’s law for any cylindrically symmetrical charge distribution yields the following magnitude of the
electric field a distance s away from the axis:
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The charge per unit length depends on whether the field point is inside or outside the cylinder of charge
distribution, just as we have seen for the spherical distribution.

Computing enclosed charge
Let R be the radius of the cylinder within which charges are distributed in a cylindrically symmetrical way. Let
the field point P be at a distance s from the axis. (The side of the Gaussian surface includes the field point P.)
When (that is, when P is outside the charge distribution), the Gaussian surface includes all the charge in
the cylinder of radius R and length L. When (P is located inside the charge distribution), then only the
charge within a cylinder of radius s and length L is enclosed by the Gaussian surface:

EXAMPLE 6.8

Uniformly Charged Cylindrical Shell
A very long non-conducting cylindrical shell of radius R has a uniform surface charge density Find the
electric field (a) at a point outside the shell and (b) at a point inside the shell.

Strategy
Apply the Gauss’s law strategy given earlier, where we treat the cases inside and outside the shell separately.

Solution

a. Electric field at a point outside the shell. For a point outside the cylindrical shell, the Gaussian surface is
the surface of a cylinder of radius and length L, as shown in Figure 6.30. The charge enclosed by the
Gaussian cylinder is equal to the charge on the cylindrical shell of length L. Therefore, is given by

Figure 6.30 A Gaussian surface surrounding a cylindrical shell.

Hence, the electric field at a point P outside the shell at a distance r away from the axis is

where is a unit vector, perpendicular to the axis and pointing away from it, as shown in the figure. The
electric field at P points in the direction of given in Figure 6.30 if and in the opposite direction to

if .
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b. Electric field at a point inside the shell. For a point inside the cylindrical shell, the Gaussian surface is a
cylinder whose radius r is less than R (Figure 6.31). This means no charges are included inside the
Gaussian surface:

Figure 6.31 A Gaussian surface within a cylindrical shell.

This gives the following equation for the magnitude of the electric field at a point whose r is less than R
of the shell of charges.

This gives us

Significance
Notice that the result inside the shell is exactly what we should expect: No enclosed charge means zero electric
field. Outside the shell, the result becomes identical to a wire with uniform charge

CHECK YOUR UNDERSTANDING 6.5

A thin straight wire has a uniform linear charge density Find the electric field at a distance d from the wire,
where d is much less than the length of the wire.

Charge Distribution with Planar Symmetry
A planar symmetry of charge density is obtained when charges are uniformly spread over a large flat surface.
In planar symmetry, all points in a plane parallel to the plane of charge are identical with respect to the
charges.

Consequences of symmetry
We take the plane of the charge distribution to be the xy-plane and we find the electric field at a space point P
with coordinates (x, y, z). Since the charge density is the same at all (x, y)-coordinates in the plane, by
symmetry, the electric field at P cannot depend on the x- or y-coordinates of point P, as shown in Figure 6.32.
Therefore, the electric field at P can only depend on the distance from the plane and has a direction either
toward the plane or away from the plane. That is, the electric field at P has only a nonzero z-component.

Uniform charges in xy plane:

where z is the distance from the plane and is the unit vector normal to the plane. Note that in this system,
although of course they point in opposite directions.

256 6 • Gauss's Law

Access for free at openstax.org.



Figure 6.32 The components of the electric field parallel to a plane of charges cancel out the two charges located symmetrically from the

field point P. Therefore, the field at any point is pointed vertically from the plane of charges. For any point P and charge we can always

find a with this effect.

Gaussian surface and flux calculation
In the present case, a convenient Gaussian surface is a box, since the expected electric field points in one
direction only. To keep the Gaussian box symmetrical about the plane of charges, we take it to straddle the
plane of the charges, such that one face containing the field point P is taken parallel to the plane of the charges.
In Figure 6.33, sides I and II of the Gaussian surface (the box) that are parallel to the infinite plane have been
shaded. They are the only surfaces that give rise to nonzero flux because the electric field and the area vectors
of the other faces are perpendicular to each other.

Figure 6.33 A thin charged sheet and the Gaussian box for finding the electric field at the field point P. The normal to each face of the box

is from inside the box to outside. On two faces of the box, the electric fields are parallel to the area vectors, and on the other four faces, the

electric fields are perpendicular to the area vectors.

Let A be the area of the shaded surface on each side of the plane and be the magnitude of the electric field
at point P. Since sides I and II are at the same distance from the plane, the electric field has the same
magnitude at points in these planes, although the directions of the electric field at these points in the two
planes are opposite to each other.

Magnitude at I or II:

If the charge on the plane is positive, then the direction of the electric field and the area vectors are as shown in
Figure 6.33. Therefore, we find for the flux of electric field through the box

where the zeros are for the flux through the other sides of the box. Note that if the charge on the plane is
negative, the directions of electric field and area vectors for planes I and II are opposite to each other, and we
get a negative sign for the flux. According to Gauss’s law, the flux must equal . From Figure 6.33, we see
that the charges inside the volume enclosed by the Gaussian box reside on an area A of the xy-plane. Hence,
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Using the equations for the flux and enclosed charge in Gauss’s law, we can immediately determine the electric
field at a point at height z from a uniformly charged plane in the xy-plane:

The direction of the field depends on the sign of the charge on the plane and the side of the plane where the
field point P is located. Note that above the plane, , while below the plane, .

You may be surprised to note that the electric field does not actually depend on the distance from the plane;
this is an effect of the assumption that the plane is infinite. In practical terms, the result given above is still a
useful approximation for finite planes near the center.

6.4 Conductors in Electrostatic Equilibrium
Learning Objectives
By the end of this section, you will be able to:

• Describe the electric field within a conductor at equilibrium
• Describe the electric field immediately outside the surface of a charged conductor at equilibrium
• Explain why if the field is not as described in the first two objectives, the conductor is not at equilibrium

So far, we have generally been working with charges occupying a volume within an insulator. We now study
what happens when free charges are placed on a conductor. Generally, in the presence of a (generally external)
electric field, the free charge in a conductor redistributes and very quickly reaches electrostatic equilibrium.
The resulting charge distribution and its electric field have many interesting properties, which we can
investigate with the help of Gauss’s law and the concept of electric potential.

The Electric Field inside a Conductor Vanishes
If an electric field is present inside a conductor, it exerts forces on the free electrons (also called conduction
electrons), which are electrons in the material that are not bound to an atom. These free electrons then
accelerate. However, moving charges by definition means nonstatic conditions, contrary to our assumption.
Therefore, when electrostatic equilibrium is reached, the charge is distributed in such a way that the electric
field inside the conductor vanishes.

If you place a piece of a metal near a positive charge, the free electrons in the metal are attracted to the
external positive charge and migrate freely toward that region. The region the electrons move to then has an
excess of electrons over the protons in the atoms and the region from where the electrons have migrated has
more protons than electrons. Consequently, the metal develops a negative region near the charge and a
positive region at the far end (Figure 6.34). As we saw in the preceding chapter, this separation of equal
magnitude and opposite type of electric charge is called polarization. If you remove the external charge, the
electrons migrate back and neutralize the positive region.

Figure 6.34 Polarization of a metallic sphere by an external point charge . The near side of the metal has an opposite surface charge

compared to the far side of the metal. The sphere is said to be polarized. When you remove the external charge, the polarization of the

metal also disappears.

The polarization of the metal happens only in the presence of external charges. You can think of this in terms
of electric fields. The external charge creates an external electric field. When the metal is placed in the region
of this electric field, the electrons and protons of the metal experience electric forces due to this external
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electric field, but only the conduction electrons are free to move in the metal over macroscopic distances. The
movement of the conduction electrons leads to the polarization, which creates an induced electric field in
addition to the external electric field (Figure 6.35). The net electric field is a vector sum of the fields of and
the surface charge densities and This means that the net field inside the conductor is different from
the field outside the conductor.

Figure 6.35 In the presence of an external charge q, the charges in a metal redistribute. The electric field at any point has three

contributions, from and the induced charges and Note that the surface charge distribution will not be uniform in this case.

The redistribution of charges is such that the sum of the three contributions at any point P inside the
conductor is

Now, thanks to Gauss’s law, we know that there is no net charge enclosed by a Gaussian surface that is solely
within the volume of the conductor at equilibrium. That is, and hence

Charge on a Conductor
An interesting property of a conductor in static equilibrium is that extra charges on the conductor end up on
the outer surface of the conductor, regardless of where they originate. Figure 6.36 illustrates a system in which
we bring an external positive charge inside the cavity of a metal and then touch it to the inside surface.
Initially, the inside surface of the cavity is negatively charged and the outside surface of the conductor is
positively charged. When we touch the inside surface of the cavity, the induced charge is neutralized, leaving
the outside surface and the whole metal charged with a net positive charge.

Figure 6.36 Electric charges on a conductor migrate to the outside surface no matter where you put them initially.

To see why this happens, note that the Gaussian surface in Figure 6.37 (the dashed line) follows the contour of
the actual surface of the conductor and is located an infinitesimal distance within it. Since everywhere
inside a conductor,

Thus, from Gauss’s law, there is no net charge inside the Gaussian surface. But the Gaussian surface lies just
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below the actual surface of the conductor; consequently, there is no net charge inside the conductor. Any
excess charge must lie on its surface.

Figure 6.37 The dashed line represents a Gaussian surface that is just beneath the actual surface of the conductor.

This particular property of conductors is the basis for an extremely accurate method developed by Plimpton
and Lawton in 1936 to verify Gauss’s law and, correspondingly, Coulomb’s law. A sketch of their apparatus is
shown in Figure 6.38. Two spherical shells are connected to one another through an electrometer E, a device
that can detect a very slight amount of charge flowing from one shell to the other. When switch S is thrown to
the left, charge is placed on the outer shell by the battery B. Will charge flow through the electrometer to the
inner shell?

No. Doing so would mean a violation of Gauss’s law. Plimpton and Lawton did not detect any flow and, knowing
the sensitivity of their electrometer, concluded that if the radial dependence in Coulomb’s law were ,
would be less than 1 . More recent measurements place at less than 2 , a number so small
that the validity of Coulomb’s law seems indisputable.

Figure 6.38 A representation of the apparatus used by Plimpton and Lawton. Any transfer of charge between the spheres is detected by

1 S. Plimpton and W. Lawton. 1936. “A Very Accurate Test of Coulomb’s Law of Force between Charges.” Physical Review 50, No. 11:

1066, doi:10.1103/PhysRev.50.1066

2 E. Williams, J. Faller, and H. Hill. 1971. “New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest

Mass.” Physical Review Letters 26 , No. 12: 721, doi:10.1103/PhysRevLett.26.721
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the electrometer E.

The Electric Field at the Surface of a Conductor
If the electric field had a component parallel to the surface of a conductor, free charges on the surface would
move, a situation contrary to the assumption of electrostatic equilibrium. Therefore, the electric field is always
perpendicular to the surface of a conductor.

At any point just above the surface of a conductor, the surface charge density and the magnitude of the
electric field E are related by

To see this, consider an infinitesimally small Gaussian cylinder that surrounds a point on the surface of the
conductor, as in Figure 6.39. The cylinder has one end face inside and one end face outside the surface. The
height and cross-sectional area of the cylinder are and , respectively. The cylinder’s sides are
perpendicular to the surface of the conductor, and its end faces are parallel to the surface. Because the cylinder
is infinitesimally small, the charge density is essentially constant over the surface enclosed, so the total
charge inside the Gaussian cylinder is . Now E is perpendicular to the surface of the conductor outside the
conductor and vanishes within it, because otherwise, the charges would accelerate, and we would not be in
equilibrium. Electric flux therefore crosses only the outer end face of the Gaussian surface and may be written
as , since the cylinder is assumed to be small enough that E is approximately constant over that area.
From Gauss’ law,

Thus,

Figure 6.39 An infinitesimally small cylindrical Gaussian surface surrounds point P, which is on the surface of the conductor. The field is

perpendicular to the surface of the conductor outside the conductor and vanishes within it.

EXAMPLE 6.9

Electric Field of a Conducting Plate
The infinite conducting plate in Figure 6.40 has a uniform surface charge density . Use Gauss’ law to find the
electric field outside the plate. Compare this result with that previously calculated directly.
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Figure 6.40 A side view of an infinite conducting plate and Gaussian cylinder with cross-sectional area A.

Strategy
For this case, we use a cylindrical Gaussian surface, a side view of which is shown.

Solution
The flux calculation is similar to that for an infinite sheet of charge from the previous chapter with one major
exception: The left face of the Gaussian surface is inside the conductor where so the total flux through
the Gaussian surface is EA rather than 2EA. Then from Gauss’ law,

and the electric field outside the plate is

Significance
This result is in agreement with the result from the previous section, and consistent with the rule stated above.

EXAMPLE 6.10

Electric Field between Oppositely Charged Parallel Plates
Two large conducting plates carry equal and opposite charges, with a surface charge density of magnitude

as shown in Figure 6.41. The separation between the plates is . What is the
electric field between the plates?
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Figure 6.41 The electric field between oppositely charged parallel plates. A test charge is released at the positive plate.

Strategy
Note that the electric field at the surface of one plate only depends on the charge on that plate. Thus, apply

with the given values.

Solution
The electric field is directed from the positive to the negative plate, as shown in the figure, and its magnitude is
given by

Significance
This formula is applicable to more than just a plate. Furthermore, two-plate systems will be important later.

EXAMPLE 6.11

A Conducting Sphere
The isolated conducting sphere (Figure 6.42) has a radius R and an excess charge q. What is the electric field
both inside and outside the sphere?
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Figure 6.42 An isolated conducting sphere.

Strategy
The sphere is isolated, so its surface change distribution and the electric field of that distribution are
spherically symmetrical. We can therefore represent the field as . To calculate E(r), we apply
Gauss’s law over a closed spherical surface S of radius r that is concentric with the conducting sphere.

Solution
Since r is constant and on the sphere,

For , S is within the conductor, so and Gauss’s law gives

as expected inside a conductor. If , S encloses the conductor so From Gauss’s law,

The electric field of the sphere may therefore be written as

Significance
Notice that in the region , the electric field due to a charge q placed on an isolated conducting sphere of
radius R is identical to the electric field of a point charge q located at the center of the sphere. The difference
between the charged metal and a point charge occurs only at the space points inside the conductor. For a point
charge placed at the center of the sphere, the electric field is not zero at points of space occupied by the sphere,
but a conductor with the same amount of charge has a zero electric field at those points (Figure 6.43). However,
there is no distinction at the outside points in space where , and we can replace the isolated charged
spherical conductor by a point charge at its center with impunity.
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Figure 6.43 Electric field of a positively charged metal sphere. The electric field inside is zero, and the electric field outside is same as the

electric field of a point charge at the center, although the charge on the metal sphere is at the surface.

CHECK YOUR UNDERSTANDING 6.6

How will the system above change if there are charged objects external to the sphere?

For a conductor with a cavity, if we put a charge inside the cavity, then the charge separation takes place in
the conductor, with amount of charge on the inside surface and a amount of charge at the outside
surface (Figure 6.44(a)). For the same conductor with a charge outside it, there is no excess charge on the
inside surface; both the positive and negative induced charges reside on the outside surface (Figure 6.44(b)).

Figure 6.44 (a) A charge inside a cavity in a metal. The distribution of charges at the outer surface does not depend on how the charges

are distributed at the inner surface, since the E-field inside the body of the metal is zero. That magnitude of the charge on the outer surface

does depend on the magnitude of the charge inside, however. (b) A charge outside a conductor containing an inner cavity. The cavity

remains free of charge. The polarization of charges on the conductor happens at the surface.

If a conductor has two cavities, one of them having a charge inside it and the other a charge the
polarization of the conductor results in on the inside surface of the cavity a, on the inside surface of
the cavity b, and on the outside surface (Figure 6.45). The charges on the surfaces may not be
uniformly spread out; their spread depends upon the geometry. The only rule obeyed is that when the
equilibrium has been reached, the charge distribution in a conductor is such that the electric field by the
charge distribution in the conductor cancels the electric field of the external charges at all space points inside
the body of the conductor.
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Figure 6.45 The charges induced by two equal and opposite charges in two separate cavities of a conductor. If the net charge on the

cavity is nonzero, the external surface becomes charged to the amount of the net charge.
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CHAPTER REVIEW
Key Terms
area vector vector with magnitude equal to the

area of a surface and direction perpendicular to
the surface

cylindrical symmetry system only varies with
distance from the axis, not direction

electric flux dot product of the electric field and
the area through which it is passing

flux quantity of something passing through a given
area

free electrons also called conduction electrons,

these are the electrons in a conductor that are not
bound to any particular atom, and hence are free
to move around

Gaussian surface any enclosed (usually
imaginary) surface

planar symmetry system only varies with distance
from a plane

spherical symmetry system only varies with the
distance from the origin, not in direction

Key Equations

Definition of electric flux, for uniform electric field

Electric flux through an open surface

Electric flux through a closed surface

Gauss’s law

Gauss’s Law for systems with symmetry

The magnitude of the electric field just outside the surface
of a conductor

Summary
6.1 Electric Flux

• The electric flux through a surface is
proportional to the number of field lines
crossing that surface. Note that this means the
magnitude is proportional to the portion of the
field perpendicular to the area.

• The electric flux is obtained by evaluating the
surface integral

where the notation used here is for a closed
surface S.

6.2 Explaining Gauss’s Law

• Gauss’s law relates the electric flux through a
closed surface to the net charge within that

surface,

where is the total charge inside the
Gaussian surface S.

• All surfaces that include the same amount of
charge have the same number of field lines
crossing it, regardless of the shape or size of the
surface, as long as the surfaces enclose the
same amount of charge.

6.3 Applying Gauss’s Law

• For a charge distribution with certain spatial
symmetries (spherical, cylindrical, and planar),
we can find a Gaussian surface over which

, where E is constant over the surface.
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The electric field is then determined with
Gauss’s law.

• For spherical symmetry, the Gaussian surface is
also a sphere, and Gauss’s law simplifies to

.

• For cylindrical symmetry, we use a cylindrical
Gaussian surface, and find that Gauss’s law
simplifies to .

• For planar symmetry, a convenient Gaussian
surface is a box penetrating the plane, with two
faces parallel to the plane and the remainder

perpendicular, resulting in Gauss’s law being
.

6.4 Conductors in Electrostatic Equilibrium

• The electric field inside a conductor vanishes.
• Any excess charge placed on a conductor

resides entirely on the surface of the conductor.
• The electric field is perpendicular to the surface

of a conductor everywhere on that surface.
• The magnitude of the electric field just above

the surface of a conductor is given by .

Conceptual Questions
6.1 Electric Flux

1. Discuss how to orient a planar surface of area A
in a uniform electric field of magnitude to
obtain (a) the maximum flux and (b) the
minimum flux through the area.

2. What are the maximum and minimum values of
the flux in the preceding question?

3. The net electric flux crossing a closed surface is
always zero. True or false?

4. The net electric flux crossing an open surface is
never zero. True or false?

6.2 Explaining Gauss’s Law

5. Two concentric spherical surfaces enclose a
point charge q. The radius of the outer sphere is
twice that of the inner one. Compare the electric
fluxes crossing the two surfaces.

6. Compare the electric flux through the surface of a
cube of side length a that has a charge q at its
center to the flux through a spherical surface of
radius a with a charge q at its center.

7. (a) If the electric flux through a closed surface is
zero, is the electric field necessarily zero at all
points on the surface? (b) What is the net charge
inside the surface?

8. Discuss how Gauss’s law would be affected if the
electric field of a point charge did not vary as

9. Discuss the similarities and differences between
the gravitational field of a point mass m and the
electric field of a point charge q.

10. Discuss whether Gauss’s law can be applied to
other forces, and if so, which ones.

11. Is the term in Gauss’s law the electric field
produced by just the charge inside the Gaussian
surface?

12. Reformulate Gauss’s law by choosing the unit

normal of the Gaussian surface to be the one
directed inward.

6.3 Applying Gauss’s Law

13. Would Gauss’s law be helpful for determining
the electric field of two equal but opposite
charges a fixed distance apart?

14. Discuss the role that symmetry plays in the
application of Gauss’s law. Give examples of
continuous charge distributions in which
Gauss’s law is useful and not useful in
determining the electric field.

15. Discuss the restrictions on the Gaussian surface
used to discuss planar symmetry. For example,
is its length important? Does the cross-section
have to be square? Must the end faces be on
opposite sides of the sheet?

6.4 Conductors in Electrostatic Equilibrium

16. Is the electric field inside a metal always zero?
17. Under electrostatic conditions, the excess

charge on a conductor resides on its surface.
Does this mean that all the conduction electrons
in a conductor are on the surface?

18. A charge q is placed in the cavity of a conductor
as shown below. Will a charge outside the
conductor experience an electric field due to the
presence of q?
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19. The conductor in the preceding figure has an
excess charge of . If a point
charge is placed in the cavity, what is the net
charge on the surface of the cavity and on the
outer surface of the conductor?

Problems
6.1 Electric Flux

20. A uniform electric field of magnitude
is perpendicular to a square

sheet with sides 2.0 m long. What is the electric
flux through the sheet?

21. Calculate the flux through the sheet of the
previous problem if the plane of the sheet is at
an angle of to the field. Find the flux for both
directions of the unit normal to the sheet.

22. Find the electric flux through a rectangular area
between two parallel plates where

there is a constant electric field of 30 N/C for the
following orientations of the area: (a) parallel to
the plates, (b) perpendicular to the plates, and
(c) the normal to the area making a angle
with the direction of the electric field. Note that
this angle can also be given as

23. The electric flux through a square-shaped area
of side 5 cm near a large charged sheet is found
to be when the area is
parallel to the plate. Find the charge density on
the sheet.

24. Two large rectangular aluminum plates of area
face each other with a separation of 3

mm between them. The plates are charged with
equal amount of opposite charges, . The
charges on the plates face each other. Find the
flux through a circle of radius 3 cm between the
plates when the normal to the circle makes an
angle of with a line perpendicular to the
plates. Note that this angle can also be given as

25. A square surface of area is in a space of
uniform electric field of magnitude .
The amount of flux through it depends on how

the square is oriented relative to the direction of
the electric field. Find the electric flux through
the square, when the normal to it makes the
following angles with electric field: (a) , (b)

, and (c) . Note that these angles can also
be given as .

26. A vector field is pointed along the z-axis,
(a) Find the flux of the vector field

through a rectangle in the xy-plane between
and . (b) Do the same

through a rectangle in the yz-plane between
and . (Leave your answer as

an integral.)
27. Consider the uniform electric field

What is its
electric flux through a circular area of radius
2.0 m that lies in the xy-plane?

28. Repeat the previous problem, given that the
circular area is (a) in the yz-plane and (b)
above the xy-plane.

29. An infinite charged wire with charge per unit
length lies along the central axis of a
cylindrical surface of radius r and length l. What
is the flux through the surface due to the
electric field of the charged wire?

6.2 Explaining Gauss’s Law

30. Determine the electric flux through each closed
surface where the cross-section inside the surface is
shown below.
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31. Find the electric flux through the closed surface
whose cross-sections are shown below.

32. A point charge q is located at the center of a
cube whose sides are of length a. If there are no
other charges in this system, what is the electric
flux through one face of the cube?

33. A point charge of is at an unspecified
location inside a cube of side 2 cm. Find the net
electric flux though the surfaces of the cube.

270 6 • Chapter Review

Access for free at openstax.org.



34. A net flux of passes inward
through the surface of a sphere of radius 5 cm.
(a) How much charge is inside the sphere? (b)
How precisely can we determine the location of
the charge from this information?

35. A charge q is placed at one of the corners of a
cube of side a, as shown below. Find the
magnitude of the electric flux through the
shaded face due to q. Assume .

36. The electric flux through a cubical box 8.0 cm
on a side is What is the
total charge enclosed by the box?

37. The electric flux through a spherical surface is
What is the net charge

enclosed by the surface?
38. A cube whose sides are of length d is placed in a

uniform electric field of magnitude
so that the field is

perpendicular to two opposite faces of the cube.
What is the net flux through the cube?

39. Repeat the previous problem, assuming that the
electric field is directed along a body diagonal of
the cube.

40. A total charge is distributed
uniformly throughout a cubical volume whose
edges are 8.0 cm long. (a) What is the charge
density in the cube? (b) What is the electric flux
through a cube with 12.0-cm edges that is
concentric with the charge distribution? (c) Do
the same calculation for cubes whose edges are
10.0 cm long and 5.0 cm long. (d) What is the
electric flux through a spherical surface of
radius 3.0 cm that is also concentric with the
charge distribution?

6.3 Applying Gauss’s Law

41. Recall that in the example of a uniform charged
sphere, Rewrite the answers
in terms of the total charge Q on the sphere.

42. Suppose that the charge density of the spherical
charge distribution shown in Figure 6.23 is

for and zero for

Obtain expressions for the electric field both
inside and outside the distribution.

43. A very long, thin wire has a uniform linear
charge density of What is the electric
field at a distance 2.0 cm from the wire?

44. A charge of is distributed uniformly
throughout a spherical volume of radius 10.0
cm. Determine the electric field due to this
charge at a distance of (a) 2.0 cm, (b) 5.0 cm,
and (c) 20.0 cm from the center of the sphere.

45. Repeat your calculations for the preceding
problem, given that the charge is distributed
uniformly over the surface of a spherical
conductor of radius 10.0 cm.

46. A total charge Q is distributed uniformly
throughout a spherical shell of inner and outer
radii respectively. Show that the
electric field due to the charge is

47. When a charge is placed on a metal sphere, it
ends up in equilibrium at the outer surface. Use
this information to determine the electric field
of charge put on a 5.0-cm aluminum
spherical ball at the following two points in
space: (a) a point 1.0 cm from the center of the
ball (an inside point) and (b) a point 10 cm from
the center of the ball (an outside point).

48. A large sheet of charge has a uniform charge
density of What is the electric field
due to this charge at a point just above the
surface of the sheet?

49. Determine if approximate cylindrical symmetry
holds for the following situations. State why or
why not. (a) A 300-cm long copper rod of radius
1 cm is charged with +500 nC of charge and we
seek electric field at a point 5 cm from the
center of the rod. (b) A 10-cm long copper rod of
radius 1 cm is charged with +500 nC of charge
and we seek electric field at a point 5 cm from
the center of the rod. (c) A 150-cm wooden rod
is glued to a 150-cm plastic rod to make a
300-cm long rod, which is then painted with a
charged paint so that one obtains a uniform
charge density. The radius of each rod is 1 cm,
and we seek an electric field at a point that is 4
cm from the center of the rod. (d) Same rod as
(c), but we seek electric field at a point that is
500 cm from the center of the rod.

50. A long silver rod of radius 3 cm has a charge of
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on its surface. (a) Find the electric
field at a point 5 cm from the center of the rod
(an outside point). (b) Find the electric field at a
point 2 cm from the center of the rod (an inside
point).

51. The electric field at 2 cm from the center of long
copper rod of radius 1 cm has a magnitude 3 N/
C and directed outward from the axis of the rod.
(a) How much charge per unit length exists on
the copper rod? (b) What would be the electric
flux through a cube of side 5 cm situated such
that the rod passes through opposite sides of
the cube perpendicularly?

52. A long copper cylindrical shell of inner radius 2
cm and outer radius 3 cm surrounds
concentrically a charged long aluminum rod of
radius 1 cm with a charge density of 4 pC/m. All
charges on the aluminum rod reside at its
surface. The inner surface of the copper shell
has exactly opposite charge to that of the
aluminum rod while the outer surface of the
copper shell has the same charge as the
aluminum rod. Find the magnitude and
direction of the electric field at points that are at
the following distances from the center of the
aluminum rod: (a) 0.5 cm, (b) 1.5 cm, (c) 2.5 cm,
(d) 3.5 cm, and (e) 7 cm.

53. Charge is distributed uniformly with a density
throughout an infinitely long cylindrical volume
of radius R. Show that the field of this charge
distribution is directed radially with respect to
the cylinder and that

54. Charge is distributed throughout a very long
cylindrical volume of radius R such that the
charge density increases with the distance r
from the central axis of the cylinder according
to where is a constant. Show that the
field of this charge distribution is directed
radially with respect to the cylinder and that

55. The electric field 10.0 cm from the surface of a
copper ball of radius 5.0 cm is directed toward

the ball’s center and has magnitude
How much charge is on the

surface of the ball?
56. Charge is distributed throughout a spherical

shell of inner radius and outer radius with
a volume density given by where
is a constant. Determine the electric field due to
this charge as a function of r, the distance from
the center of the shell.

57. Charge is distributed throughout a spherical
volume of radius R with a density
where is a constant. Determine the electric
field due to the charge at points both inside and
outside the sphere.

58. Consider a uranium nucleus to be sphere of
radius with a charge of 92e
distributed uniformly throughout its volume. (a)
What is the electric force exerted on an electron
when it is from the center of the
nucleus? (b) What is the acceleration of the
electron at this point?

59. The volume charge density of a spherical charge
distribution is given by where
and are constants. What is the electric field
produced by this charge distribution?

6.4 Conductors in Electrostatic Equilibrium

60. An uncharged conductor with an internal cavity
is shown in the following figure. Use the closed
surface S along with Gauss’ law to show that
when a charge q is placed in the cavity a total
charge –q is induced on the inner surface of the
conductor. What is the charge on the outer
surface of the conductor?

Figure 6.46 A charge inside a cavity of a metal. Charges at

the outer surface do not depend on how the charges are

distributed at the inner surface since E field inside the body

of the metal is zero.

61. An uncharged spherical conductor S of radius R
has two spherical cavities A and B of radii a and
b, respectively as shown below. Two point
charges and are placed at the center of
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the two cavities by using non-conducting
supports. In addition, a point charge is
placed outside at a distance r from the center of
the sphere. (a) Draw approximate charge
distributions in the metal although metal
sphere has no net charge. (b) Draw electric field
lines. Draw enough lines to represent all
distinctly different places.

62. A positive point charge is placed at the angle
bisector of two uncharged plane conductors
that make an angle of See below. Draw the
electric field lines.

63. A long cylinder of copper of radius 3 cm is
charged so that it has a uniform charge per unit
length on its surface of 3 C/m. (a) Find the
electric field inside and outside the cylinder. (b)
Draw electric field lines in a plane
perpendicular to the rod.

64. An aluminum spherical ball of radius 4 cm is
charged with of charge. A copper spherical
shell of inner radius 6 cm and outer radius 8 cm
surrounds it. A total charge of is put on
the copper shell. (a) Find the electric field at all
points in space, including points inside the
aluminum and copper shell when copper shell
and aluminum sphere are concentric. (b) Find
the electric field at all points in space, including
points inside the aluminum and copper shell
when the centers of copper shell and aluminum
sphere are 1 cm apart.

65. A long cylinder of aluminum of radius R meters
is charged so that it has a uniform charge per
unit length on its surface of . (a) Find the
electric field inside and outside the cylinder. (b)
Plot electric field as a function of distance from

the center of the rod.
66. At the surface of any conductor in electrostatic

equilibrium, Show that this equation
is consistent with the fact that at the
surface of a spherical conductor.

67. Two parallel plates 10 cm on a side are given
equal and opposite charges of magnitude

The plates are 1.5 mm apart.
What is the electric field at the center of the
region between the plates?

68. Two parallel conducting plates, each of cross-
sectional area , are 2.0 cm apart and
uncharged. If electrons are
transferred from one plate to the other, what are
(a) the charge density on each plate? (b) The
electric field between the plates?

69. The surface charge density on a long straight
metallic pipe is . What is the electric field
outside and inside the pipe? Assume the pipe
has a diameter of 2a.

70. A point charge is placed at
the center of a spherical conducting shell of
inner radius 3.5 cm and outer radius 4.0 cm.
The electric field just above the surface of the
conductor is directed radially outward and has
magnitude 8.0 N/C. (a) What is the charge
density on the inner surface of the shell? (b)
What is the charge density on the outer surface
of the shell? (c) What is the net charge on the
conductor?

71. A solid cylindrical conductor of radius a is
surrounded by a concentric cylindrical shell of
inner radius b. The solid cylinder and the shell
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carry charges +Q and –Q, respectively.
Assuming that the length L of both conductors
is much greater than a or b, determine the

electric field as a function of r, the distance from
the common central axis of the cylinders, for (a)

(b) and (c)

Additional Problems
72. A vector field (not necessarily an electric field;

note units) is given by Calculate

where S is the area shown below.

Assume that

73. Repeat the preceding problem, with

74. A circular area S is concentric with the origin,
has radius a, and lies in the yz-plane. Calculate

for

75. (a) Calculate the electric flux through the open
hemispherical surface due to the electric field

(see below). (b) If the hemisphere is
rotated by around the x-axis, what is the
flux through it?

76. Suppose that the electric field of an isolated
point charge were proportional to rather
than Determine the flux that passes
through the surface of a sphere of radius R
centered at the charge. Would Gauss’s law
remain valid?

77. The electric field in a region is given by
where

and What is
the net charge enclosed by the shaded volume
shown below?

78. Two equal and opposite charges of magnitude Q
are located on the x-axis at the points +a and –a,
as shown below. What is the net flux due to
these charges through a square surface of side
2a that lies in the yz-plane and is centered at
the origin? (Hint: Determine the flux due to each
charge separately, then use the principle of
superposition. You may be able to make a
symmetry argument.)

79. A fellow student calculated the flux through the
square for the system in the preceding problem
and got 0. What went wrong?
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80. A piece of aluminum foil of 0.1
mm thickness has a charge of that
spreads on both wide side surfaces evenly. You
may ignore the charges on the thin sides of the
edges. (a) Find the charge density. (b) Find the
electric field 1 cm from the center, assuming
approximate planar symmetry.

81. Two pieces of aluminum foil of
thickness 0.1 mm face each other with a
separation of 5 mm. One of the foils has a
charge of and the other has . (a)
Find the charge density at all surfaces, i.e., on
those facing each other and those facing away.
(b) Find the electric field between the plates
near the center assuming planar symmetry.

82. Two large copper plates facing each other have
charge densities on the surface
facing the other plate, and zero in between the
plates. Find the electric flux through a

rectangular area between the
plates, as shown below, for the following
orientations of the area. (a) If the area is parallel
to the plates, and (b) if the area is tilted
from the parallel direction. Note, this angle can
also be

83. The infinite slab between the planes defined by
and contains a uniform

volume charge density (see below). What is the
electric field produced by this charge
distribution, both inside and outside the
distribution?

84. A total charge Q is distributed uniformly
throughout a spherical volume that is centered
at and has a radius R. Without disturbing the
charge remaining, charge is removed from the
spherical volume that is centered at (see
below). Show that the electric field everywhere
in the empty region is given by

where is the displacement vector directed
from

85. A non-conducting spherical shell of inner
radius and outer radius is uniformly
charged with charged density inside another
non-conducting spherical shell of inner radius

and outer radius that is also uniformly
charged with charge density . See below. Find
the electric field at space point P at a distance r
from the common center such that (a)
(b) (c) (d)

and (e) .
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86. Two non-conducting spheres of radii and
are uniformly charged with charge densities

and respectively. They are separated at
center-to-center distance a (see below). Find the
electric field at point P located at a distance r
from the center of sphere 1 and is in the
direction from the line joining the two spheres
assuming their charge densities are not affected
by the presence of the other sphere. (Hint: Work
one sphere at a time and use the superposition
principle.)

87. A disk of radius R is cut in a non-conducting large
plate that is uniformly charged with charge density

(coulomb per square meter). See below. Find the
electric field at a height h above the center of the
disk. (Hint: Fill the hole
with

88. Concentric conducting spherical shells carry
charges Q and –Q, respectively (see below). The
inner shell has negligible thickness. Determine
the electric field for (a) (b) (c)

and (d)

89. Shown below are two concentric conducting
spherical shells of radii and , each of
finite thickness much less than either radius.
The inner and outer shell carry net charges
and respectively, where both and are
positive. What is the electric field for (a)
(b) and (c) (d) What is the
net charge on the inner surface of the inner
shell, the outer surface of the inner shell, the
inner surface of the outer shell, and the outer
surface of the outer shell?

90. A point charge of is placed at
the center of an uncharged spherical
conducting shell of inner radius 6.0 cm and
outer radius 9.0 cm. Find the electric field at (a)

, (b) , and (c) .
(d) What are the charges induced on the inner
and outer surfaces of the shell?
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Challenge Problems
91. The Hubble Space Telescope can measure the

energy flux from distant objects such as
supernovae and stars. Scientists then use this
data to calculate the energy emitted by that
object. Choose an interstellar object which
scientists have observed the flux at the Hubble
with (for example, Vega3 ), find the distance to
that object and the size of Hubble’s primary
mirror, and calculate the total energy flux. (Hint:
The Hubble intercepts only a small part of the
total flux.)

92. Re-derive Gauss’s law for the gravitational field,
with directed positively outward.

93. An infinite plate sheet of charge of surface charge
density is shown below. What is the electric field at
a distance x from the sheet? Compare the result of
this calculation with that of worked out in the text.

94. A spherical rubber balloon carries a total charge
Q distributed uniformly over its surface. At

, the radius of the balloon is R. The balloon
is then slowly inflated until its radius reaches
2R at the time Determine the electric field
due to this charge as a function of time (a) at the
surface of the balloon, (b) at the surface of
radius R, and (c) at the surface of radius 2R.
Ignore any effect on the electric field due to the
material of the balloon and assume that the
radius increases uniformly with time.

95. Find the electric field of a large conducting plate
containing a net charge q. Let A be area of one
side of the plate and h the thickness of the plate
(see below). The charge on the metal plate will
distribute mostly on the two planar sides and
very little on the edges if the plate is thin.

3 http://adsabs.harvard.edu/abs/2004AJ....127.3508B
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INTRODUCTION

CHAPTER 7
Electric Potential

7.1 Electric Potential Energy

7.2 Electric Potential and Potential Difference

7.3 Calculations of Electric Potential

7.4 Determining Field from Potential

7.5 Equipotential Surfaces and Conductors

7.6 Applications of Electrostatics

In Electric Charges and Fields, we just scratched the surface (or at least rubbed it) of
electrical phenomena. Two terms commonly used to describe electricity are its energy and voltage, which we
show in this chapter is directly related to the potential energy in a system.

We know, for example, that great amounts of electrical energy can be stored in batteries, are transmitted cross-
country via currents through power lines, and may jump from clouds to explode the sap of trees. In a similar
manner, at the molecular level, ions cross cell membranes and transfer information.

Figure 7.1 The energy released in a lightning strike is an excellent illustration of the vast quantities of energy that
may be stored and released by an electric potential difference. In this chapter, we calculate just how much energy
can be released in a lightning strike and how this varies with the height of the clouds from the ground. (credit:
modification of work by Anthony Quintano)

Chapter Outline



We also know about voltages associated with electricity. Batteries are typically a few volts, the outlets in your
home frequently produce 120 volts, and power lines can be as high as hundreds of thousands of volts. But
energy and voltage are not the same thing. A motorcycle battery, for example, is small and would not be very
successful in replacing a much larger car battery, yet each has the same voltage. In this chapter, we examine
the relationship between voltage and electrical energy, and begin to explore some of the many applications of
electricity.

7.1 Electric Potential Energy
Learning Objectives
By the end of this section, you will be able to:

• Define the work done by an electric force
• Define electric potential energy
• Apply work and potential energy in systems with electric charges

When a free positive charge q is accelerated by an electric field, it is given kinetic energy (Figure 7.2). The
process is analogous to an object being accelerated by a gravitational field, as if the charge were going down an
electrical hill where its electric potential energy is converted into kinetic energy, although of course the
sources of the forces are very different. Let us explore the work done on a charge q by the electric field in this
process, so that we may develop a definition of electric potential energy.

Figure 7.2 A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases, potential energy decreases as

kinetic energy increases, . Work is done by a force, but since this force is conservative, we can write .

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the
path taken, as we will demonstrate later. This is exactly analogous to the gravitational force. When a force is
conservative, it is possible to define a potential energy associated with the force. It is usually easier to work
with the potential energy (because it depends only on position) than to calculate the work directly.

To show this explicitly, consider an electric charge fixed at the origin and move another charge toward
q in such a manner that, at each instant, the applied force exactly balances the electric force on Q (Figure
7.3). The work done by the applied force on the charge Q changes the potential energy of Q. We call this
potential energy the electrical potential energy of Q.

Figure 7.3 Displacement of “test” charge Q in the presence of fixed “source” charge q.

The work done by the applied force when the particle moves from to may be calculated by
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Since the applied force balances the electric force on Q, the two forces have equal magnitude and
opposite directions. Therefore, the applied force is

where we have defined positive to be pointing away from the origin and r is the distance from the origin. The
directions of both the displacement and the applied force in the system in Figure 7.3 are parallel, and thus the
work done on the system is positive.

We use the letter U to denote electric potential energy, which has units of joules (J). When a conservative force
does negative work, the system gains potential energy. When a conservative force does positive work, the
system loses potential energy, In the system in Figure 7.3, the Coulomb force acts in the opposite
direction to the displacement; therefore, the work is negative. However, we have increased the potential energy
in the two-charge system.

EXAMPLE 7.1

Kinetic Energy of a Charged Particle
A charge Q is initially at rest a distance of 10 cm ( ) from a charge q fixed at the origin
(Figure 7.4). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( ).

Figure 7.4 The charge Q is repelled by q, thus having work done on it and gaining kinetic energy.

a. What is the work done by the electric field between and ?
b. How much kinetic energy does Q have at ?

Strategy
Calculate the work with the usual definition. Since Q started from rest, this is the same as the kinetic energy.

Solution
Integrating force over distance, we obtain

This is also the value of the kinetic energy at

Significance
Charge Q was initially at rest; the electric field of q did work on Q, so now Q has kinetic energy equal to the
work done by the electric field.

CHECK YOUR UNDERSTANDING 7.1

If Q has a mass of what is the speed of Q at
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In this example, the work W done to accelerate a positive charge from rest is positive and results from a loss in
U, or a negative . A value for U can be found at any point by taking one point as a reference and calculating
the work needed to move a charge to the other point.

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for
work done by a conservative force and gives added insight regarding energy and energy transformation
without the necessity of dealing with the force directly. It is much more common, for example, to use the
concept of electric potential energy than to deal with the Coulomb force directly in real-world applications.

In polar coordinates with q at the origin and Q located at r, the displacement element vector is and
thus the work becomes

Notice that this result only depends on the endpoints and is otherwise independent of the path taken. To
explore this further, compare path to with path in Figure 7.5.

Figure 7.5 Two paths for displacement to The work on segments and are zero due to the electrical force being

perpendicular to the displacement along these paths. Therefore, work on paths and are equal.

The segments and are arcs of circles centered at q. Since the force on Q points either toward or
away from q, no work is done by a force balancing the electric force, because it is perpendicular to the
displacement along these arcs. Therefore, the only work done is along segment which is identical to

One implication of this work calculation is that if we were to go around the path the net work
would be zero (Figure 7.6). Recall that this is how we determine whether a force is conservative or not. Hence,
because the electric force is related to the electric field by , the electric field is itself conservative. That
is,

Note that Q is a constant.

Electric Potential Energy

Work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a negative
. Mathematically,

7.1
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Figure 7.6 A closed path in an electric field. The net work around this path is zero.

Another implication is that we may define an electric potential energy. Recall that the work done by a
conservative force is also expressed as the difference in the potential energy corresponding to that force.
Therefore, the work to bring a charge from a reference point to a point of interest may be written as

and, by Equation 7.1, the difference in potential energy of the test charge Q between the two points
is

Therefore, we can write a general expression for the potential energy of two point charges (in spherical
coordinates):

We may take the second term to be an arbitrary constant reference level, which serves as the zero reference:

A convenient choice of reference that relies on our common sense is that when the two charges are infinitely
far apart, there is no interaction between them. (Recall the discussion of reference potential energy in
Potential Energy and Conservation of Energy.) Taking the potential energy of this state to be zero removes the
term from the equation (just like when we say the ground is zero potential energy in a gravitational
potential energy problem), and the potential energy of Q when it is separated from q by a distance r assumes
the form

This formula is symmetrical with respect to q and Q, so it is best described as the potential energy of the two-
charge system.

EXAMPLE 7.2

Potential Energy of a Charged Particle
A charge Q is initially at rest a distance of 10 cm ( ) from a charge q fixed at the origin
(Figure 7.7). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( ).

∞ 7.2
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Figure 7.7 The charge Q is repelled by q, thus having work done on it and losing potential energy.

What is the change in the potential energy of the two-charge system from to

Strategy

Calculate the potential energy with the definition given above: Since Q started from

rest, this is the same as the kinetic energy.

Solution
We have

Significance
The change in the potential energy is negative, as expected, and equal in magnitude to the change in kinetic
energy in this system. Recall from Example 7.1 that the change in kinetic energy was positive.

CHECK YOUR UNDERSTANDING 7.2

What is the potential energy of Q relative to the zero reference at infinity at in the above example?

Due to Coulomb’s law, the forces due to multiple charges on a test charge Q superimpose; they may be
calculated individually and then added. This implies that the work integrals and hence the resulting potential
energies exhibit the same behavior. To demonstrate this, we consider an example of assembling a system of
four charges.

EXAMPLE 7.3

Assembling Four Positive Charges
Find the amount of work an external agent must do in assembling four charges
and at the vertices of a square of side 1.0 cm, starting each charge from infinity (Figure 7.8).

Figure 7.8 How much work is needed to assemble this charge configuration?
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Strategy
We bring in the charges one at a time, giving them starting locations at infinity and calculating the work to
bring them in from infinity to their final location. We do this in order of increasing charge.

Solution
Step 1. First bring the charge to the origin. Since there are no other charges at a finite distance from
this charge yet, no work is done in bringing it from infinity,

Step 2. While keeping the charge fixed at the origin, bring the charge to
(Figure 7.9). Now, the applied force must do work against the force exerted by the

charge fixed at the origin. The work done equals the change in the potential energy of the
charge:

Figure 7.9 Step 2. Work to bring the charge from infinity.

Step 3. While keeping the charges of and fixed in their places, bring in the charge to
(Figure 7.10). The work done in this step is

Figure 7.10 Step 3. The work to bring the charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the charge to
(Figure 7.11). The work done here is
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Figure 7.11 Step 4. The work to bring the charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work
in bringing each charge from infinity to its final position:

Significance
The work on each charge depends only on its pairwise interactions with the other charges. No more
complicated interactions need to be considered; the work on the third charge only depends on its interaction
with the first and second charges, the interaction between the first and second charge does not affect the third.

CHECK YOUR UNDERSTANDING 7.3

Is the electrical potential energy of two point charges positive or negative if the charges are of the same sign?
Opposite signs? How does this relate to the work necessary to bring the charges into proximity from infinity?

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or
negative, and negative if the two charges are of opposite types. This makes sense if you think of the change in
the potential energy as you bring the two charges closer or move them farther apart. Depending on the
relative types of charges, you may have to work on the system or the system would do work on you, that is, your
work is either positive or negative. If you have to do positive work on the system (actually push the charges
closer), then the energy of the system should increase. If you bring two positive charges or two negative
charges closer, you have to do positive work on the system, which raises their potential energy. Since potential
energy is proportional to 1/r, the potential energy goes up when r goes down between two positive or two
negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the
system (the charges are pulling you), which means that you take energy away from the system. This reduces
the potential energy. Since potential energy is negative in the case of a positive and a negative charge pair, the
increase in 1/r makes the potential energy more negative, which is the same as a reduction in potential energy.

The result from Example 7.1 may be extended to systems with any arbitrary number of charges. In this case, it
is most convenient to write the formula as

7.3
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The factor of 1/2 accounts for adding each pair of charges twice.

7.2 Electric Potential and Potential Difference
Learning Objectives
By the end of this section, you will be able to:

• Define electric potential, voltage, and potential difference
• Define the electron-volt
• Calculate electric potential and potential difference from potential energy and electric field
• Describe systems in which the electron-volt is a useful unit
• Apply conservation of energy to electric systems

Recall that earlier we defined electric field to be a quantity independent of the test charge in a given system,
which would nonetheless allow us to calculate the force that would result on an arbitrary test charge. (The
default assumption in the absence of other information is that the test charge is positive.) We briefly defined a
field for gravity, but gravity is always attractive, whereas the electric force can be either attractive or repulsive.
Therefore, although potential energy is perfectly adequate in a gravitational system, it is convenient to define a
quantity that allows us to calculate the work on a charge independent of the magnitude of the charge.
Calculating the work directly may be difficult, since and the direction and magnitude of can be
complex for multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that because

, the work, and hence is proportional to the test charge q. To have a physical quantity that is
independent of test charge, we define electric potential V (or simply potential, since electric is understood) to
be the potential energy per unit charge:

Since U is proportional to q, the dependence on q cancels. Thus, V does not depend on q. The change in
potential energy is crucial, so we are concerned with the difference in potential or potential difference
between two points, where

The familiar term voltage is the common name for electric potential difference. Keep in mind that whenever a
voltage is quoted, it is understood to be the potential difference between two points. For example, every battery
has two terminals, and its voltage is the potential difference between them. More fundamentally, the point you
choose to be zero volts is arbitrary. This is analogous to the fact that gravitational potential energy has an
arbitrary zero, such as sea level or perhaps a lecture hall floor. It is worthwhile to emphasize the distinction
between potential difference and electrical potential energy.

Electric Potential

The electric potential energy per unit charge is

7.4

Electric Potential Difference

The electric potential difference between points A and B, is defined to be the change in
potential energy of a charge q moved from A to B, divided by the charge. Units of potential difference are
joules per coulomb, given the name volt (V) after Alessandro Volta.
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Voltage is not the same as energy. Voltage is the energy per unit charge. Thus, a motorcycle battery and a car
battery can both have the same voltage (more precisely, the same potential difference between battery
terminals), yet one stores much more energy than the other because The car battery can move
more charge than the motorcycle battery, although both are 12-V batteries.

EXAMPLE 7.4

Calculating Energy
You have a 12.0-V motorcycle battery that can move 5000 C of charge, and a 12.0-V car battery that can move
60,000 C of charge. How much energy does each deliver? (Assume that the numerical value of each charge is
accurate to three significant figures.)

Strategy
To say we have a 12.0-V battery means that its terminals have a 12.0-V potential difference. When such a
battery moves charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a
change in potential energy equal to To find the energy output, we multiply the charge moved by
the potential difference.

Solution
For the motorcycle battery, and . The total energy delivered by the motorcycle battery
is

Similarly, for the car battery, and

Significance
Voltage and energy are related, but they are not the same thing. The voltages of the batteries are identical, but
the energy supplied by each is quite different. A car battery has a much larger engine to start than a
motorcycle. Note also that as a battery is discharged, some of its energy is used internally and its terminal
voltage drops, such as when headlights dim because of a depleted car battery. The energy supplied by the
battery is still calculated as in this example, but not all of the energy is available for external use.

CHECK YOUR UNDERSTANDING 7.4

How much energy does a 1.5-V AAA battery have that can move 100 C?

Note that the energies calculated in the previous example are absolute values. The change in potential energy
for the battery is negative, since it loses energy. These batteries, like many electrical systems, actually move
negative charge—electrons in particular. The batteries repel electrons from their negative terminals (A)
through whatever circuitry is involved and attract them to their positive terminals (B), as shown in Figure 7.12.
The change in potential is and the charge q is negative, so that is
negative, meaning the potential energy of the battery has decreased when q has moved from A to B.

Potential Difference and Electrical Potential Energy

The relationship between potential difference (or voltage) and electrical potential energy is given by

7.5
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Figure 7.12 A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate

combinations of chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is repelled

by it and attracted to the excess positive charge on the other terminal. In terms of potential, the positive terminal is at a higher voltage than

the negative terminal. Inside the battery, both positive and negative charges move.

EXAMPLE 7.5

How Many Electrons Move through a Headlight Each Second?
When a 12.0-V car battery powers a single 30.0-W headlight, how many electrons pass through it each second?

Strategy
To find the number of electrons, we must first find the charge that moves in 1.00 s. The charge moved is related
to voltage and energy through the equations A 30.0-W lamp uses 30.0 joules per second. Since the
battery loses energy, we have and, since the electrons are going from the negative terminal to the
positive, we see that

Solution
To find the charge q moved, we solve the equation

Entering the values for and , we get

The number of electrons is the total charge divided by the charge per electron. That is,

Significance
This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so
many being present in ordinary systems. In fact, electricity had been in use for many decades before it was
determined that the moving charges in many circumstances were negative. Positive charge moving in the
opposite direction of negative charge often produces identical effects; this makes it difficult to determine
which is moving or whether both are moving.

CHECK YOUR UNDERSTANDING 7.5

How many electrons would go through a 24.0-W lamp?
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The Electron-Volt
The energy per electron is very small in macroscopic situations like that in the previous example—a tiny
fraction of a joule. But on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of
great importance. For example, even a tiny fraction of a joule can be great enough for these particles to destroy
organic molecules and harm living tissue. The particle may do its damage by direct collision, or it may create
harmful X-rays, which can also inflict damage. It is useful to have an energy unit related to submicroscopic
effects.

Figure 7.13 shows a situation related to the definition of such an energy unit. An electron is accelerated
between two charged metal plates, as it might be in an old-model television tube or oscilloscope. The electron
gains kinetic energy that is later converted into another form—light in the television tube, for example. (Note
that in terms of energy, “downhill” for the electron is “uphill” for a positive charge.) Since energy is related to
voltage by , we can think of the joule as a coulomb-volt.

Figure 7.13 A typical electron gun accelerates electrons using a potential difference between two separated metal plates. By

conservation of energy, the kinetic energy has to equal the change in potential energy, so . The energy of the electron in electron-

volts is numerically the same as the voltage between the plates. For example, a 5000-V potential difference produces 5000-eV electrons.

The conceptual construct, namely two parallel plates with a hole in one, is shown in (a), while a real electron gun is shown in (b).

Electron-Volt

On the submicroscopic scale, it is more convenient to define an energy unit called the electron-volt (eV),
which is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In
equation form,
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An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an
electron accelerated through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron an
energy of 100,000 eV (100 keV), and so on. Similarly, an ion with a double positive charge accelerated through
100 V gains 200 eV of energy. These simple relationships between accelerating voltage and particle charges
make the electron-volt a simple and convenient energy unit in such circumstances.

The electron-volt is commonly employed in submicroscopic processes—chemical valence energies and
molecular and nuclear binding energies are among the quantities often expressed in electron-volts. For
example, about 5 eV of energy is required to break up certain organic molecules. If a proton is accelerated from
rest through a potential difference of 30 kV, it acquires an energy of 30 keV (30,000 eV) and can break up as
many as 6000 of these molecules Nuclear decay energies
are on the order of 1 MeV (1,000,000 eV) per event and can thus produce significant biological damage.

Conservation of Energy
The total energy of a system is conserved if there is no net addition (or subtraction) due to work or heat
transfer. For conservative forces, such as the electrostatic force, conservation of energy states that mechanical
energy is a constant.

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is,
A loss of U for a charged particle becomes an increase in its K. Conservation of energy is stated in equation
form as

or

where i and f stand for initial and final conditions. As we have found many times before, considering energy
can give us insights and facilitate problem solving.

EXAMPLE 7.6

Electrical Potential Energy Converted into Kinetic Energy
Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V.
(Assume that this numerical value is accurate to three significant figures.)

Strategy
We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and
neglecting the gravitational force (we will check on this assumption later), all of the electrical potential energy
is converted into kinetic energy. We can identify the initial and final forms of energy to be

Solution
Conservation of energy states that

Entering the forms identified above, we obtain

We solve this for v:

Entering values for q, V, and m gives
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Significance
Note that both the charge and the initial voltage are negative, as in Figure 7.13. From the discussion of electric
charge and electric field, we know that electrostatic forces on small particles are generally very large
compared with the gravitational force. The large final speed confirms that the gravitational force is indeed
negligible here. The large speed also indicates how easy it is to accelerate electrons with small voltages
because of their very small mass. Voltages much higher than the 100 V in this problem are typically used in
electron guns. These higher voltages produce electron speeds so great that effects from special relativity must
be taken into account and hence are reserved for a later chapter (Relativity). That is why we consider a low
voltage (accurately) in this example.

CHECK YOUR UNDERSTANDING 7.6

How would this example change with a positron? A positron is identical to an electron except the charge is
positive.

Voltage and Electric Field
So far, we have explored the relationship between voltage and energy. Now we want to explore the relationship
between voltage and electric field. We will start with the general case for a non-uniform field. Recall that our
general formula for the potential energy of a test charge q at point P relative to reference point R is

When we substitute in the definition of electric field this becomes

Applying our definition of potential to this potential energy, we find that, in general,

From our previous discussion of the potential energy of a charge in an electric field, the result is independent
of the path chosen, and hence we can pick the integral path that is most convenient.

Consider the special case of a positive point charge q at the origin. To calculate the potential caused by q at a
distance r from the origin relative to a reference of 0 at infinity (recall that we did the same for potential
energy), let and ∞ with and use When we evaluate the integral

for this system, we have

∞

which simplifies to

7.6
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∞ ∞

This result,

is the standard form of the potential of a point charge. This will be explored further in the next section.

To examine another interesting special case, suppose a uniform electric field is produced by placing a
potential difference (or voltage) across two parallel metal plates, labeled A and B (Figure 7.14). Examining
this situation will tell us what voltage is needed to produce a certain electric field strength. It will also reveal a
more fundamental relationship between electric potential and electric field.

Figure 7.14 The relationship between V and E for parallel conducting plates is . (Note that in magnitude. For a

charge that is moved from plate A at higher potential to plate B at lower potential, a minus sign needs to be included as follows:

)

From a physicist’s point of view, either or can be used to describe any interaction between charges.
However, is a scalar quantity and has no direction, whereas is a vector quantity, having both magnitude
and direction. (Note that the magnitude of the electric field, a scalar quantity, is represented by E.) The
relationship between and is revealed by calculating the work done by the electric force in moving a
charge from point A to point B. But, as noted earlier, arbitrary charge distributions require calculus. We
therefore look at a uniform electric field as an interesting special case.

The work done by the electric field in Figure 7.14 to move a positive charge q from A, the positive plate, higher
potential, to B, the negative plate, lower potential, is

The potential difference between points A and B is

Entering this into the expression for work yields
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Work is ; here , since the path is parallel to the field. Thus, . Since
, we see that .

Substituting this expression for work into the previous equation gives

The charge cancels, so we obtain for the voltage between points A and B

where d is the distance from A to B, or the distance between the plates in Figure 7.14. Note that this equation
implies that the units for electric field are volts per meter. We already know the units for electric field are
newtons per coulomb; thus, the following relation among units is valid:

Furthermore, we may extend this to the integral form. Substituting Equation 7.5 into our definition for the
potential difference between points A and B, we obtain

which simplifies to

As a demonstration, from this we may calculate the potential difference between two points (A and B)
equidistant from a point charge q at the origin, as shown in Figure 7.15.

Figure 7.15 The arc for calculating the potential difference between two points that are equidistant from a point charge at the origin.

To do this, we integrate around an arc of the circle of constant radius r between A and B, which means we let
while using . Thus,

for this system becomes

However, and therefore

This result, that there is no difference in potential along a constant radius from a point charge, will come in

7.7
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handy when we map potentials.

EXAMPLE 7.7

What Is the Highest Voltage Possible between Two Plates?
Dry air can support a maximum electric field strength of about Above that value, the field
creates enough ionization in the air to make the air a conductor. This allows a discharge or spark that reduces
the field. What, then, is the maximum voltage between two parallel conducting plates separated by 2.5 cm of
dry air?

Strategy
We are given the maximum electric field E between the plates and the distance d between them. We can use
the equation to calculate the maximum voltage.

Solution
The potential difference or voltage between the plates is

Entering the given values for E and d gives

or

(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Significance
One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5-cm (1-in.)
gap, or 150 kV for a 5-cm spark. This limits the voltages that can exist between conductors, perhaps on a
power transmission line. A smaller voltage can cause a spark if there are spines on the surface, since sharp
points have larger field strengths than smooth surfaces. Humid air breaks down at a lower field strength,
meaning that a smaller voltage will make a spark jump through humid air. The largest voltages can be built up
with static electricity on dry days (Figure 7.16).

Figure 7.16 A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as they pass through

the gas between the plates allows a spark to jump. The sparks are perpendicular to the plates, following electric field lines between them.

The potential difference between adjacent plates is not high enough to cause sparks without the ionization produced by particles from

accelerator experiments (or cosmic rays). This form of detector is now archaic and no longer in use except for demonstration purposes.

(credit b: modification of work by Jack Collins)

7.2 • Electric Potential and Potential Difference 295



EXAMPLE 7.8

Field and Force inside an Electron Gun
An electron gun (Figure 7.13) has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy.
(a) What is the electric field strength between the plates? (b) What force would this field exert on a piece of
plastic with a charge that gets between the plates?

Strategy
Since the voltage and plate separation are given, the electric field strength can be calculated directly from the

expression . Once we know the electric field strength, we can find the force on a charge by using

Since the electric field is in only one direction, we can write this equation in terms of the magnitudes,
.

Solution

a. The expression for the magnitude of the electric field between two uniform metal plates is

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0
kV. Entering this value for and the plate separation of 0.0400 m, we obtain

b. The magnitude of the force on a charge in an electric field is obtained from the equation

Substituting known values gives

Significance
Note that the units are newtons, since . Because the electric field is uniform between the plates,
the force on the charge is the same no matter where the charge is located between the plates.

EXAMPLE 7.9

Calculating Potential of a Point Charge
Given a point charge at the origin, calculate the potential difference between point a distance

from q, and a distance from q, where the two points have an angle of
between them (Figure 7.17).

Figure 7.17 Find the difference in potential between and .

Strategy

Do this in two steps. The first step is to use and let and
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with and Then perform the integral. The second step is to

integrate around an arc of constant radius r, which means we let with

limits still using . Then add the two results together.

Solution

For the first part, for this system becomes which

computes to

For the second step, becomes , but and

therefore Adding the two parts together, we get 300 V.

Significance
We have demonstrated the use of the integral form of the potential difference to obtain a numerical result.
Notice that, in this particular system, we could have also used the formula for the potential due to a point
charge at the two points and simply taken the difference.

CHECK YOUR UNDERSTANDING 7.7

From the examples, how does the energy of a lightning strike vary with the height of the clouds from the
ground? Consider the cloud-ground system to be two parallel plates.

Before presenting problems involving electrostatics, we suggest a problem-solving strategy to follow for this
topic.

PROBLEM-SOLVING STRATEGY

Electrostatics
1. Examine the situation to determine if static electricity is involved; this may concern separated stationary

charges, the forces among them, and the electric fields they create.
2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is

useful. Determine whether the Coulomb force is to be considered directly—if so, it may be useful to draw a
free-body diagram, using electric field lines.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is
important to distinguish the Coulomb force F from the electric field E, for example.

5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as
requested.

6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers
involved reasonable?
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7.3 Calculations of Electric Potential
Learning Objectives
By the end of this section, you will be able to:

• Calculate the potential due to a point charge
• Calculate the potential of a system of multiple point charges
• Describe an electric dipole
• Define dipole moment
• Calculate the potential of a continuous charge distribution

Point charges, such as electrons, are among the fundamental building blocks of matter. Furthermore, spherical
charge distributions (such as charge on a metal sphere) create external electric fields exactly like a point
charge. The electric potential due to a point charge is, thus, a case we need to consider.

We can use calculus to find the work needed to move a test charge q from a large distance away to a distance of
r from a point charge q. Noting the connection between work and potential as in the last section,
we can obtain the following result.

The potential at infinity is chosen to be zero. Thus, V for a point charge decreases with distance, whereas for
a point charge decreases with distance squared:

Recall that the electric potential V is a scalar and has no direction, whereas the electric field is a vector. To
find the voltage due to a combination of point charges, you add the individual voltages as numbers. To find the
total electric field, you must add the individual fields as vectors, taking magnitude and direction into account.
This is consistent with the fact that V is closely associated with energy, a scalar, whereas is closely
associated with force, a vector.

EXAMPLE 7.10

What Voltage Is Produced by a Small Charge on a Metal Sphere?
Charges in static electricity are typically in the nanocoulomb (nC) to microcoulomb range. What is the
voltage 5.00 cm away from the center of a 1-cm-diameter solid metal sphere that has a –3.00-nC static charge?

Strategy
As we discussed in Electric Charges and Fields, charge on a metal sphere spreads out uniformly and produces
a field like that of a point charge located at its center. Thus, we can find the voltage using the equation

Solution
Entering known values into the expression for the potential of a point charge, we obtain

Electric Potential V of a Point Charge

The electric potential V of a point charge is given by

where k is a constant equal to

7.8
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Significance
The negative value for voltage means a positive charge would be attracted from a larger distance, since the
potential is lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as
expected.

EXAMPLE 7.11

What Is the Excess Charge on a Van de Graaff Generator?
A demonstration Van de Graaff generator has a 25.0-cm-diameter metal sphere that produces a voltage of 100
kV near its surface (Figure 7.18). What excess charge resides on the sphere? (Assume that each numerical
value here is shown with three significant figures.)

Figure 7.18 The voltage of this demonstration Van de Graaff generator is measured between the charged sphere and ground. Earth’s

potential is taken to be zero as a reference. The potential of the charged conducting sphere is the same as that of an equal point charge at

its center.

Strategy
The potential on the surface is the same as that of a point charge at the center of the sphere, 12.5 cm away.
(The radius of the sphere is 12.5 cm.) We can thus determine the excess charge using the equation

Solution
Solving for q and entering known values gives

Significance
This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it
is difficult to store isolated charges.
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CHECK YOUR UNDERSTANDING 7.8

What is the potential inside the metal sphere in Example 7.10?

The voltages in both of these examples could be measured with a meter that compares the measured potential
with ground potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to
be zero). It is the potential difference between two points that is of importance, and very often there is a tacit
assumption that some reference point, such as Earth or a very distant point, is at zero potential. As noted
earlier, this is analogous to taking sea level as when considering gravitational potential energy

.

Systems of Multiple Point Charges
Just as the electric field obeys a superposition principle, so does the electric potential. Consider a system
consisting of N charges What is the net electric potential V at a space point P from these
charges? Each of these charges is a source charge that produces its own electric potential at point P,
independent of whatever other changes may be doing. Let be the electric potentials at P
produced by the charges respectively. Then, the net electric potential at that point is equal to
the sum of these individual electric potentials. You can easily show this by calculating the potential energy of a
test charge when you bring the test charge from the reference point at infinity to point P:

Note that electric potential follows the same principle of superposition as electric field and electric potential
energy. To show this more explicitly, note that a test charge at the point P in space has distances of

from the N charges fixed in space above, as shown in Figure 7.19. Using our formula for the
potential of a point charge for each of these (assumed to be point) charges, we find that

Therefore, the electric potential energy of the test charge is

which is the same as the work to bring the test charge into the system, as found in the first section of the
chapter.

Figure 7.19 Notation for direct distances from charges to a space point P.

The Electric Dipole
An electric dipole is a system of two equal but opposite charges a fixed distance apart. This system is used to
model many real-world systems, including atomic and molecular interactions. One of these systems is the
water molecule, under certain circumstances. These circumstances are met inside a microwave oven, where

7.9
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electric fields with alternating directions make the water molecules change orientation. This vibration is the
same as heat at the molecular level.

EXAMPLE 7.12

Electric Potential of a Dipole
Consider the dipole in Figure 7.20 with the charge magnitude of and separation distance

What is the potential at the following locations in space? (a) (0, 0, 1.0 cm); (b) (0, 0, –5.0 cm); (c)
(3.0 cm, 0, 2.0 cm).

Figure 7.20 A general diagram of an electric dipole, and the notation for the distances from the individual charges to a point P in space.

Strategy

Apply to each of these three points.

Solution

a.

b.

c.

Significance
Note that evaluating potential is significantly simpler than electric field, due to potential being a scalar instead
of a vector.

CHECK YOUR UNDERSTANDING 7.9
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What is the potential on the x-axis? The z-axis?

Now let us consider the special case when the distance of the point P from the dipole is much greater than the
distance between the charges in the dipole, for example, when we are interested in the electric potential
due to a polarized molecule such as a water molecule. This is not so far (infinity) that we can simply treat the
potential as zero, but the distance is great enough that we can simplify our calculations relative to the previous
example.

We start by noting that in Figure 7.21 the potential is given by

where

Figure 7.21 A general diagram of an electric dipole, and the notation for the distances from the individual charges to a point P in space.

This is still the exact formula. To take advantage of the fact that we rewrite the radii in terms of polar
coordinates, with and . This gives us

We can simplify this expression by pulling r out of the root,

and then multiplying out the parentheses

The last term in the root is small enough to be negligible (remember and hence is extremely
small, effectively zero to the level we will probably be measuring), leaving us with
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Using the binomial approximation (a standard result from the mathematics of series, when is small)

and substituting this into our formula for , we get

This may be written more conveniently if we define a new quantity, the electric dipole moment,

where these vectors point from the negative to the positive charge. Note that this has magnitude qd. This
quantity allows us to write the potential at point P due to a dipole at the origin as

A diagram of the application of this formula is shown in Figure 7.22.

Figure 7.22 The geometry for the application of the potential of a dipole.

There are also higher-order moments, for quadrupoles, octupoles, and so on. You will see these in future
classes.

Potential of Continuous Charge Distributions
We have been working with point charges a great deal, but what about continuous charge distributions? Recall
from Equation 7.9 that

We may treat a continuous charge distribution as a collection of infinitesimally separated individual points.
This yields the integral

for the potential at a point P. Note that r is the distance from each individual point in the charge distribution to
the point P. As we saw in Electric Charges and Fields, the infinitesimal charges are given by

7.10

7.11

7.12
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where is linear charge density, is the charge per unit area, and is the charge per unit volume.

EXAMPLE 7.13

Potential of a Line of Charge
Find the electric potential of a uniformly charged, nonconducting wire with linear density (coulomb/meter)
and length L at a point that lies on a line that divides the wire into two equal parts.

Strategy
To set up the problem, we choose Cartesian coordinates in such a way as to exploit the symmetry in the
problem as much as possible. We place the origin at the center of the wire and orient the y-axis along the wire
so that the ends of the wire are at . The field point P is in the xy-plane and since the choice of axes is
up to us, we choose the x-axis to pass through the field point P, as shown in Figure 7.23.

Figure 7.23 We want to calculate the electric potential due to a line of charge.

Solution
Consider a small element of the charge distribution between y and . The charge in this cell is
and the distance from the cell to the field point P is Therefore, the potential becomes

Significance
Note that this was simpler than the equivalent problem for electric field, due to the use of scalar quantities.
Recall that we expect the zero level of the potential to be at infinity, when we have a finite charge. To examine
this, we take the limit of the above potential as x approaches infinity; in this case, the terms inside the natural
log approach one, and hence the potential approaches zero in this limit. Note that we could have done this
problem equivalently in cylindrical coordinates; the only effect would be to substitute r for x and z for y.
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EXAMPLE 7.14

Potential Due to a Ring of Charge
A ring has a uniform charge density , with units of coulomb per unit meter of arc. Find the electric potential at
a point on the axis passing through the center of the ring.

Strategy
We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a
circle. We divide the circle into infinitesimal elements shaped as arcs on the circle and use cylindrical
coordinates shown in Figure 7.24.

Figure 7.24 We want to calculate the electric potential due to a ring of charge.

Solution
A general element of the arc between and is of length and therefore contains a charge equal to

The element is at a distance of from P, and therefore the potential is

Significance
This result is expected because every element of the ring is at the same distance from point P. The net
potential at P is that of the total charge placed at the common distance, .

EXAMPLE 7.15

Potential Due to a Uniform Disk of Charge
A disk of radius R has a uniform charge density , with units of coulomb meter squared. Find the electric
potential at any point on the axis passing through the center of the disk.

Strategy
We divide the disk into ring-shaped cells, and make use of the result for a ring worked out in the previous
example, then integrate over r in addition to . This is shown in Figure 7.25.
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Figure 7.25 We want to calculate the electric potential due to a disk of charge.

Solution
An infinitesimal width cell between cylindrical coordinates r and shown in Figure 7.25 will be a ring of
charges whose electric potential at the field point has the following expression

where

The superposition of potential of all the infinitesimal rings that make up the disk gives the net potential at
point P. This is accomplished by integrating from to :

Significance
The basic procedure for a disk is to first integrate around and then over r. This has been demonstrated for
uniform (constant) charge density. Often, the charge density will vary with r, and then the last integral will give
different results.

EXAMPLE 7.16

Potential Due to an Infinite Charged Wire
Find the electric potential due to an infinitely long uniformly charged wire.

Strategy
Since we have already worked out the potential of a finite wire of length L in Example 7.7, we might wonder if
taking ∞ in our previous result will work:

∞
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However, this limit does not exist because the argument of the logarithm becomes [2/0] as ∞ , so this way

of finding V of an infinite wire does not work. The reason for this problem may be traced to the fact that the
charges are not localized in some space but continue to infinity in the direction of the wire. Hence, our
(unspoken) assumption that zero potential must be an infinite distance from the wire is no longer valid.

To avoid this difficulty in calculating limits, let us use the definition of potential by integrating over the electric
field from the previous section, and the value of the electric field from this charge configuration from the
previous chapter.

Solution
We use the integral

where R is a finite distance from the line of charge, as shown in Figure 7.26.

Figure 7.26 Points of interest for calculating the potential of an infinite line of charge.

With this setup, we use and to obtain

Now, if we define the reference potential at this simplifies to

Note that this form of the potential is quite usable; it is 0 at 1 m and is undefined at infinity, which is why we
could not use the latter as a reference.

Significance
Although calculating potential directly can be quite convenient, we just found a system for which this strategy
does not work well. In such cases, going back to the definition of potential in terms of the electric field may
offer a way forward.

CHECK YOUR UNDERSTANDING 7.10

What is the potential on the axis of a nonuniform ring of charge, where the charge density is ?
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7.4 Determining Field from Potential
Learning Objectives
By the end of this section, you will be able to:

• Explain how to calculate the electric field in a system from the given potential
• Calculate the electric field in a given direction from a given potential
• Calculate the electric field throughout space from a given potential

Recall that we were able, in certain systems, to calculate the potential by integrating over the electric field. As
you may already suspect, this means that we may calculate the electric field by taking derivatives of the
potential, although going from a scalar to a vector quantity introduces some interesting wrinkles. We
frequently need to calculate the force in a system; since it is often simpler to calculate the potential directly,
there are systems in which it is useful to calculate V and then derive from it.

In general, regardless of whether the electric field is uniform, it points in the direction of decreasing potential,
because the force on a positive charge is in the direction of and also in the direction of lower potential V.
Furthermore, the magnitude of equals the rate of decrease of V with distance. The faster V decreases over
distance, the greater the electric field. This gives us the following result.

For continually changing potentials, and become infinitesimals, and we need differential calculus to
determine the electric field. As shown in Figure 7.27, if we treat the distance as very small so that the
electric field is essentially constant over it, we find that

Figure 7.27 The electric field component along the displacement is given by . Note that A and B are assumed to be so close

together that the field is constant along .

Therefore, the electric field components in the Cartesian directions are given by

This allows us to define the “grad” or “del” vector operator, which allows us to compute the gradient in one
step. In Cartesian coordinates, it takes the form

Relationship between Voltage and Uniform Electric Field

In equation form, the relationship between voltage and uniform electric field is

where is the distance over which the change in potential takes place. The minus sign tells us that E
points in the direction of decreasing potential. The electric field is said to be the gradient (as in grade or
slope) of the electric potential.

7.13
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With this notation, we can calculate the electric field from the potential with

a process we call calculating the gradient of the potential.

If we have a system with either cylindrical or spherical symmetry, we only need to use the del operator in the
appropriate coordinates:

EXAMPLE 7.17

Electric Field of a Point Charge
Calculate the electric field of a point charge from the potential.

Strategy
The potential is known to be , which has a spherical symmetry. Therefore, we use the spherical del

operator in the formula .

Solution
Performing this calculation gives us

This equation simplifies to

as expected.

Significance
We not only obtained the equation for the electric field of a point particle that we’ve seen before, we also have a
demonstration that points in the direction of decreasing potential, as shown in Figure 7.28.

7.14

7.15

7.16

7.17
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Figure 7.28 Electric field vectors inside and outside a uniformly charged sphere.

EXAMPLE 7.18

Electric Field of a Ring of Charge
Use the potential found in Example 7.8 to calculate the electric field along the axis of a ring of charge (Figure
7.29).

Figure 7.29 We want to calculate the electric field from the electric potential due to a ring charge.

Strategy
In this case, we are only interested in one dimension, the z-axis. Therefore, we use

with the potential found previously.
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Solution
Taking the derivative of the potential yields

Significance
Again, this matches the equation for the electric field found previously. It also demonstrates a system in which
using the full del operator is not necessary.

CHECK YOUR UNDERSTANDING 7.11

Which coordinate system would you use to calculate the electric field of a dipole?

7.5 Equipotential Surfaces and Conductors
Learning Objectives
By the end of this section, you will be able to:

• Define equipotential surfaces and equipotential lines
• Explain the relationship between equipotential lines and electric field lines
• Map equipotential lines for one or two point charges
• Describe the potential of a conductor
• Compare and contrast equipotential lines and elevation lines on topographic maps

We can represent electric potentials (voltages) pictorially, just as we drew pictures to illustrate electric fields.
This is not surprising, since the two concepts are related. Consider Figure 7.30, which shows an isolated
positive point charge and its electric field lines, which radiate out from a positive charge and terminate on
negative charges. We use red arrows to represent the magnitude and direction of the electric field, and we use
black lines to represent places where the electric potential is constant. These are called equipotential
surfaces in three dimensions, or equipotential lines in two dimensions. The term equipotential is also used
as a noun, referring to an equipotential line or surface. The potential for a point charge is the same anywhere
on an imaginary sphere of radius r surrounding the charge. This is true because the potential for a point
charge is given by and thus has the same value at any point that is a given distance r from the charge.
An equipotential sphere is a circle in the two-dimensional view of Figure 7.30. Because the electric field lines
point radially away from the charge, they are perpendicular to the equipotential lines.

Figure 7.30 An isolated point charge Q with its electric field lines in red and equipotential lines in black. The potential is the same along

each equipotential line, meaning that no work is required to move a charge anywhere along one of those lines. Work is needed to move a

charge from one equipotential line to another. Equipotential lines are perpendicular to electric field lines in every case. For a three-
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dimensional version, explore the first media link.

It is important to note that equipotential lines are always perpendicular to electric field lines. No work is
required to move a charge along an equipotential, since . Thus, the work is

Work is zero if the direction of the force is perpendicular to the displacement. Force is in the same direction as
E, so motion along an equipotential must be perpendicular to E. More precisely, work is related to the electric
field by

Note that in this equation, E and F symbolize the magnitudes of the electric field and force, respectively.
Neither q nor E is zero; d is also not zero. So must be 0, meaning must be . In other words, motion
along an equipotential is perpendicular to E.

One of the rules for static electric fields and conductors is that the electric field must be perpendicular to the
surface of any conductor. This implies that a conductor is an equipotential surface in static situations. There
can be no voltage difference across the surface of a conductor, or charges will flow. One of the uses of this fact
is that a conductor can be fixed at what we consider zero volts by connecting it to the earth with a good
conductor—a process called grounding. Grounding can be a useful safety tool. For example, grounding the
metal case of an electrical appliance ensures that it is at zero volts relative to Earth.

Because a conductor is an equipotential, it can replace any equipotential surface. For example, in Figure 7.30,
a charged spherical conductor can replace the point charge, and the electric field and potential surfaces
outside of it will be unchanged, confirming the contention that a spherical charge distribution is equivalent to
a point charge at its center.

Figure 7.31 shows the electric field and equipotential lines for two equal and opposite charges. Given the
electric field lines, the equipotential lines can be drawn simply by making them perpendicular to the electric
field lines. Conversely, given the equipotential lines, as in Figure 7.32(a), the electric field lines can be drawn
by making them perpendicular to the equipotentials, as in Figure 7.32(b).

Figure 7.31 The electric field lines and equipotential lines for two equal but opposite charges. The equipotential lines can be drawn by

making them perpendicular to the electric field lines, if those are known. Note that the potential is greatest (most positive) near the positive

charge and least (most negative) near the negative charge. For a three-dimensional version, explore the first media link.
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Figure 7.32 (a) These equipotential lines might be measured with a voltmeter in a laboratory experiment. (b) The corresponding electric

field lines are found by drawing them perpendicular to the equipotentials. Note that these fields are consistent with two equal negative

charges. For a three-dimensional version, play with the first media link.

To improve your intuition, we show a three-dimensional variant of the potential in a system with two opposing
charges. Figure 7.33 displays a three-dimensional map of electric potential, where lines on the map are for
equipotential surfaces. The hill is at the positive charge, and the trough is at the negative charge. The potential
is zero far away from the charges. Note that the cut off at a particular potential implies that the charges are on
conducting spheres with a finite radius.

Figure 7.33 Electric potential map of two opposite charges of equal magnitude on conducting spheres. The potential is negative near the

negative charge and positive near the positive charge.

A two-dimensional map of the cross-sectional plane that contains both charges is shown in Figure 7.34. The
line that is equidistant from the two opposite charges corresponds to zero potential, since at the points on the
line, the positive potential from the positive charge cancels the negative potential from the negative charge.
Equipotential lines in the cross-sectional plane are closed loops, which are not necessarily circles, since at
each point, the net potential is the sum of the potentials from each charge.
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Figure 7.34 A cross-section of the electric potential map of two opposite charges of equal magnitude. The potential is negative near the

negative charge and positive near the positive charge.

INTERACTIVE

View this simulation (https://openstax.org/l/21equipsurelec) to observe and modify the equipotential surfaces
and electric fields for many standard charge configurations. There’s a lot to explore.

One of the most important cases is that of the familiar parallel conducting plates shown in Figure 7.35.
Between the plates, the equipotentials are evenly spaced and parallel. The same field could be maintained by
placing conducting plates at the equipotential lines at the potentials shown.

Figure 7.35 The electric field and equipotential lines between two metal plates. Note that the electric field is perpendicular to the

equipotentials and hence normal to the plates at their surface as well as in the center of the region between them.

Consider the parallel plates in Figure 7.2. These have equipotential lines that are parallel to the plates in the
space between and evenly spaced. An example of this (with sample values) is given in Figure 7.35. We could
draw a similar set of equipotential isolines for gravity on the hill shown in Figure 7.2. If the hill has any extent
at the same slope, the isolines along that extent would be parallel to each other. Furthermore, in regions of
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constant slope, the isolines would be evenly spaced. An example of real topographic lines is shown in Figure
7.36.

Figure 7.36 A topographical map along a ridge has roughly parallel elevation lines, similar to the equipotential lines in Figure 7.35. (a) A

topographical map of Devil’s Tower, Wyoming. Lines that are close together indicate very steep terrain. (b) A perspective photo of Devil’s

Tower shows just how steep its sides are. Notice the top of the tower has the same shape as the center of the topographical map.

EXAMPLE 7.19

Calculating Equipotential Lines
You have seen the equipotential lines of a point charge in Figure 7.30. How do we calculate them? For example,
if we have a charge at the origin, what are the equipotential surfaces at which the potential is (a) 100 V,
(b) 50 V, (c) 20 V, and (d) 10 V?

Strategy
Set the equation for the potential of a point charge equal to a constant and solve for the remaining variable(s).
Then calculate values as needed.

Solution
In , let V be a constant. The only remaining variable is r; hence, . Thus, the
equipotential surfaces are spheres about the origin. Their locations are:

a. ;

b. ;

c. ;

d. .

Significance
This means that equipotential surfaces around a point charge are spheres of constant radius, as shown earlier,
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with well-defined locations.

EXAMPLE 7.20

Potential Difference between Oppositely Charged Parallel Plates
Two large conducting plates carry equal and opposite charges, with a surface charge density of magnitude

as shown in Figure 7.37. The separation between the plates is . (a) What is the
electric field between the plates? (b) What is the potential difference between the plates? (c) What is the
distance between equipotential planes which differ by 100 V?

Figure 7.37 The electric field between oppositely charged parallel plates. A portion is released at the positive plate.

Strategy
(a) Since the plates are described as “large” and the distance between them is not, we will approximate each of
them as an infinite plane, and apply the result from Gauss’s law in the previous chapter.

(b) Use .

(c) Since the electric field is constant, find the ratio of 100 V to the total potential difference; then calculate this
fraction of the distance.

Solution

a. The electric field is directed from the positive to the negative plate as shown in the figure, and its
magnitude is given by

b. To find the potential difference between the plates, we use a path from the negative to the positive
plate that is directed against the field. The displacement vector and the electric field are antiparallel
so The potential difference between the positive plate and the negative plate is then
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c. The total potential difference is 500 V, so 1/5 of the distance between the plates will be the distance
between 100-V potential differences. The distance between the plates is 6.5 mm, so there will be 1.3 mm
between 100-V potential differences.

Significance
You have now seen a numerical calculation of the locations of equipotentials between two charged parallel
plates.

CHECK YOUR UNDERSTANDING 7.12

What are the equipotential surfaces for an infinite line charge?

Distribution of Charges on Conductors
In Example 7.19 with a point charge, we found that the equipotential surfaces were in the form of spheres, with
the point charge at the center. Given that a conducting sphere in electrostatic equilibrium is a spherical
equipotential surface, we should expect that we could replace one of the surfaces in Example 7.19 with a
conducting sphere and have an identical solution outside the sphere. Inside will be rather different, however.

Figure 7.38 An isolated conducting sphere.

To investigate this, consider the isolated conducting sphere of Figure 7.38 that has a radius R and an excess
charge q. To find the electric field both inside and outside the sphere, note that the sphere is isolated, so its
surface change distribution and the electric field of that distribution are spherically symmetric. We can
therefore represent the field as To calculate E(r), we apply Gauss’s law over a closed spherical
surface S of radius r that is concentric with the conducting sphere. Since r is constant and on the sphere,

For , S is within the conductor, so recall from our previous study of Gauss’s law that and Gauss’s
law gives , as expected inside a conductor at equilibrium. If , S encloses the conductor so

From Gauss’s law,

The electric field of the sphere may therefore be written as
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As expected, in the region the electric field due to a charge q placed on an isolated conducting sphere of
radius R is identical to the electric field of a point charge q located at the center of the sphere.

To find the electric potential inside and outside the sphere, note that for the potential must be the same
as that of an isolated point charge q located at ,

simply due to the similarity of the electric field.

For so V(r) is constant in this region. Since

We will use this result to show that

for two conducting spheres of radii , with surface charge densities respectively, that are
connected by a thin wire, as shown in Figure 7.39. The spheres are sufficiently separated so that each can be
treated as if it were isolated (aside from the wire). Note that the connection by the wire means that this entire
system must be an equipotential.

Figure 7.39 Two conducting spheres are connected by a thin conducting wire.

We have just seen that the electrical potential at the surface of an isolated, charged conducting sphere of
radius R is

Now, the spheres are connected by a conductor and are therefore at the same potential; hence

and

The net charge on a conducting sphere and its surface charge density are related by Substituting
this equation into the previous one, we find

Obviously, two spheres connected by a thin wire do not constitute a typical conductor with a variable radius of
curvature. Nevertheless, this result does at least provide a qualitative idea of how charge density varies over
the surface of a conductor. The equation indicates that where the radius of curvature is large (points B and D in
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Figure 7.40), and E are small.

Similarly, the charges tend to be denser where the curvature of the surface is greater, as demonstrated by the
charge distribution on oddly shaped metal (Figure 7.40). The surface charge density is higher at locations with
a small radius of curvature than at locations with a large radius of curvature.

Figure 7.40 The surface charge density and the electric field of a conductor are greater at regions with smaller radii of curvature.

A practical application of this phenomenon is the lightning rod, which is simply a grounded metal rod with a
sharp end pointing upward. As positive charge accumulates in the ground due to a negatively charged cloud
overhead, the electric field around the sharp point gets very large. When the field reaches a value of
approximately (the dielectric strength of the air), the free ions in the air are accelerated to such
high energies that their collisions with air molecules actually ionize the molecules. The resulting free electrons
in the air then flow through the rod to Earth, thereby neutralizing some of the positive charge. This keeps the
electric field between the cloud and the ground from getting large enough to produce a lightning bolt in the
region around the rod.

An important application of electric fields and equipotential lines involves the heart. The heart relies on
electrical signals to maintain its rhythm. The movement of electrical signals causes the chambers of the heart
to contract and relax. When a person has a heart attack, the movement of these electrical signals may be
disturbed. An artificial pacemaker and a defibrillator can be used to initiate the rhythm of electrical signals.
The equipotential lines around the heart, the thoracic region, and the axis of the heart are useful ways of
monitoring the structure and functions of the heart. An electrocardiogram (ECG) measures the small electric
signals being generated during the activity of the heart.

INTERACTIVE

Play around with this simulation (https://openstax.org/l/21pointcharsim) to move point charges around on the
playing field and then view the electric field, voltages, equipotential lines, and more.

7.6 Applications of Electrostatics
Learning Objectives
By the end of this section, you will be able to:

• Describe some of the many practical applications of electrostatics, including several printing technologies
• Relate these applications to Newton’s second law and the electric force
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The study of electrostatics has proven useful in many areas. This module covers just a few of the many
applications of electrostatics.

The Van de Graaff Generator
Van de Graaff generators (or Van de Graaffs) are not only spectacular devices used to demonstrate high
voltage due to static electricity—they are also used for serious research. The first was built by Robert Van de
Graaff in 1931 (based on original suggestions by Lord Kelvin) for use in nuclear physics research. Figure 7.41
shows a schematic of a large research version. Van de Graaffs use both smooth and pointed surfaces, and
conductors and insulators to generate large static charges and, hence, large voltages.

A very large excess charge can be deposited on the sphere because it moves quickly to the outer surface.
Practical limits arise because the large electric fields polarize and eventually ionize surrounding materials,
creating free charges that neutralize excess charge or allow it to escape. Nevertheless, voltages of 15 million
volts are well within practical limits.

Figure 7.41 Schematic of Van de Graaff generator. A battery (A) supplies excess positive charge to a pointed conductor, the points of

which spray the charge onto a moving insulating belt near the bottom. The pointed conductor (B) on top in the large sphere picks up the

charge. (The induced electric field at the points is so large that it removes the charge from the belt.) This can be done because the charge

does not remain inside the conducting sphere but moves to its outside surface. An ion source inside the sphere produces positive ions,

which are accelerated away from the positive sphere to high velocities.

Xerography
Most copy machines use an electrostatic process called xerography—a word coined from the Greek words
xeros for dry and graphos for writing. The heart of the process is shown in simplified form in Figure 7.42.
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Figure 7.42 Xerography is a dry copying process based on electrostatics. The major steps in the process are the charging of the

photoconducting drum, transfer of an image, creating a positive charge duplicate, attraction of toner to the charged parts of the drum, and

transfer of toner to the paper. Not shown are heat treatment of the paper and cleansing of the drum for the next copy.

A selenium-coated aluminum drum is sprayed with positive charge from points on a device called a corotron.
Selenium is a substance with an interesting property—it is a photoconductor. That is, selenium is an insulator
when in the dark and a conductor when exposed to light.

In the first stage of the xerography process, the conducting aluminum drum is grounded so that a negative
charge is induced under the thin layer of uniformly positively charged selenium. In the second stage, the
surface of the drum is exposed to the image of whatever is to be copied. In locations where the image is light,
the selenium becomes conducting, and the positive charge is neutralized. In dark areas, the positive charge
remains, so the image has been transferred to the drum.

The third stage takes a dry black powder, called toner, and sprays it with a negative charge so that it is attracted
to the positive regions of the drum. Next, a blank piece of paper is given a greater positive charge than on the
drum so that it will pull the toner from the drum. Finally, the paper and electrostatically held toner are passed
through heated pressure rollers, which melt and permanently adhere the toner to the fibers of the paper.

Laser Printers
Laser printers use the xerographic process to make high-quality images on paper, employing a laser to
produce an image on the photoconducting drum as shown in Figure 7.43. In its most common application, the
laser printer receives output from a computer, and it can achieve high-quality output because of the precision
with which laser light can be controlled. Many laser printers do significant information processing, such as
making sophisticated letters or fonts, and in the past may have contained a computer more powerful than the
one giving them the raw data to be printed.
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Figure 7.43 In a laser printer, a laser beam is scanned across a photoconducting drum, leaving a positively charged image. The other

steps for charging the drum and transferring the image to paper are the same as in xerography. Laser light can be very precisely controlled,

enabling laser printers to produce high-quality images.

Ink Jet Printers and Electrostatic Painting
The ink jet printer, commonly used to print computer-generated text and graphics, also employs
electrostatics. A nozzle makes a fine spray of tiny ink droplets, which are then given an electrostatic charge
(Figure 7.44).

Once charged, the droplets can be directed, using pairs of charged plates, with great precision to form letters
and images on paper. Ink jet printers can produce color images by using a black jet and three other jets with
primary colors, usually cyan, magenta, and yellow, much as a color television produces color. (This is more
difficult with xerography, requiring multiple drums and toners.)

Figure 7.44 The nozzle of an ink-jet printer produces small ink droplets, which are sprayed with electrostatic charge. Various computer-

driven devices are then used to direct the droplets to the correct positions on a page.

Electrostatic painting employs electrostatic charge to spray paint onto oddly shaped surfaces. Mutual
repulsion of like charges causes the paint to fly away from its source. Surface tension forms drops, which are
then attracted by unlike charges to the surface to be painted. Electrostatic painting can reach hard-to-get-to
places, applying an even coat in a controlled manner. If the object is a conductor, the electric field is
perpendicular to the surface, tending to bring the drops in perpendicularly. Corners and points on conductors
will receive extra paint. Felt can similarly be applied.

Smoke Precipitators and Electrostatic Air Cleaning
Another important application of electrostatics is found in air cleaners, both large and small. The electrostatic
part of the process places excess (usually positive) charge on smoke, dust, pollen, and other particles in the air
and then passes the air through an oppositely charged grid that attracts and retains the charged particles
(Figure 7.45)
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Large electrostatic precipitators are used industrially to remove over of the particles from stack gas
emissions associated with the burning of coal and oil. Home precipitators, often in conjunction with the home
heating and air conditioning system, are very effective in removing polluting particles, irritants, and allergens.

Figure 7.45 (a) Schematic of an electrostatic precipitator. Air is passed through grids of opposite charge. The first grid charges airborne

particles, while the second attracts and collects them. (b) The dramatic effect of electrostatic precipitators is seen by the absence of smoke

from this power plant. (credit b: modification of work by “Cmdalgleish”/Wikimedia Commons)
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CHAPTER REVIEW
Key Terms
electric dipole system of two equal but opposite

charges a fixed distance apart
electric dipole moment quantity defined as

for all dipoles, where the vector points
from the negative to positive charge

electric potential potential energy per unit charge
electric potential difference the change in

potential energy of a charge q moved between two
points, divided by the charge.

electric potential energy potential energy stored
in a system of charged objects due to the charges

electron-volt energy given to a fundamental
charge accelerated through a potential difference
of one volt

electrostatic precipitators filters that apply
charges to particles in the air, then attract those
charges to a filter, removing them from the
airstream

equipotential line two-dimensional
representation of an equipotential surface

equipotential surface surface (usually in three

dimensions) on which all points are at the same
potential

grounding process of attaching a conductor to the
earth to ensure that there is no potential
difference between it and Earth

ink jet printer small ink droplets sprayed with an
electric charge are controlled by electrostatic
plates to create images on paper

photoconductor substance that is an insulator
until it is exposed to light, when it becomes a
conductor

Van de Graaff generator machine that produces a
large amount of excess charge, used for
experiments with high voltage

voltage change in potential energy of a charge
moved from one point to another, divided by the
charge; units of potential difference are joules per
coulomb, known as volt

xerography dry copying process based on
electrostatics

Key Equations

Potential energy of a two-charge system

Work done to assemble a system of charges

Potential difference

Electric potential

Potential difference between two points

Electric potential of a point charge

Electric potential of a system of point charges

Electric dipole moment

Electric potential due to a dipole
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Electric potential of a continuous charge distribution

Electric field components

Del operator in Cartesian coordinates

Electric field as gradient of potential

Del operator in cylindrical coordinates

Del operator in spherical coordinates

Summary
7.1 Electric Potential Energy

• The work done to move a charge from point A to
B in an electric field is path independent, and
the work around a closed path is zero.
Therefore, the electric field and electric force
are conservative.

• We can define an electric potential energy,
which between point charges is ,
with the zero reference taken to be at infinity.

• The superposition principle holds for electric
potential energy; the potential energy of a
system of multiple charges is the sum of the
potential energies of the individual pairs.

7.2 Electric Potential and Potential
Difference

• Electric potential is potential energy per unit
charge.

• The potential difference between points A and
B, that is, the change in potential of a
charge q moved from A to B, is equal to the
change in potential energy divided by the
charge.

• Potential difference is commonly called voltage,
represented by the symbol :

• An electron-volt is the energy given to a
fundamental charge accelerated through a
potential difference of 1 V. In equation form,

7.3 Calculations of Electric Potential

• Electric potential is a scalar whereas electric

field is a vector.
• Addition of voltages as numbers gives the

voltage due to a combination of point charges,
allowing us to use the principle of

superposition: .

• An electric dipole consists of two equal and
opposite charges a fixed distance apart, with a
dipole moment .

• Continuous charge distributions may be

calculated with .

7.4 Determining Field from Potential

• Just as we may integrate over the electric field to
calculate the potential, we may take the
derivative of the potential to calculate the
electric field.

• This may be done for individual components of
the electric field, or we may calculate the entire
electric field vector with the gradient operator.

7.5 Equipotential Surfaces and Conductors

• An equipotential surface is the collection of
points in space that are all at the same potential.
Equipotential lines are the two-dimensional
representation of equipotential surfaces.

• Equipotential surfaces are always perpendicular
to electric field lines.

• Conductors in static equilibrium are
equipotential surfaces.

• Topographic maps may be thought of as
showing gravitational equipotential lines.
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7.6 Applications of Electrostatics

• Electrostatics is the study of electric fields in
static equilibrium.

• In addition to research using equipment such as

a Van de Graaff generator, many practical
applications of electrostatics exist, including
photocopiers, laser printers, ink jet printers,
and electrostatic air filters.

Conceptual Questions
7.1 Electric Potential Energy

1. Would electric potential energy be meaningful if
the electric field were not conservative?

2. Why do we need to be careful about work done on
the system versus work done by the system in
calculations?

3. Does the order in which we assemble a system of
point charges affect the total work done?

7.2 Electric Potential and Potential
Difference

4. Discuss how potential difference and electric
field strength are related. Give an example.

5. What is the strength of the electric field in a
region where the electric potential is constant?

6. If a proton is released from rest in an electric
field, will it move in the direction of increasing or
decreasing potential? Also answer this question
for an electron and a neutron. Explain why.

7. Voltage is the common word for potential
difference. Which term is more descriptive,
voltage or potential difference?

8. If the voltage between two points is zero, can a
test charge be moved between them with zero net
work being done? Can this necessarily be done
without exerting a force? Explain.

9. What is the relationship between voltage and
energy? More precisely, what is the relationship
between potential difference and electric
potential energy?

10. Voltages are always measured between two
points. Why?

11. How are units of volts and electron-volts
related? How do they differ?

12. Can a particle move in a direction of increasing
electric potential, yet have its electric potential
energy decrease? Explain

7.3 Calculations of Electric Potential

13. Compare the electric dipole moments of
charges separated by a distance d and
charges separated by a distance d/2.

14. Would Gauss’s law be helpful for determining
the electric field of a dipole? Why?

15. In what region of space is the potential due to a
uniformly charged sphere the same as that of a
point charge? In what region does it differ from
that of a point charge?

16. Can the potential of a nonuniformly charged
sphere be the same as that of a point charge?
Explain.

7.4 Determining Field from Potential

17. If the electric field is zero throughout a region,
must the electric potential also be zero in that
region?

18. Explain why knowledge of is not
sufficient to determine V(x,y,z). What about the
other way around?

7.5 Equipotential Surfaces and Conductors

19. If two points are at the same potential, are there
any electric field lines connecting them?

20. Suppose you have a map of equipotential
surfaces spaced 1.0 V apart. What do the
distances between the surfaces in a particular
region tell you about the strength of the in
that region?

21. Is the electric potential necessarily constant
over the surface of a conductor?

22. Under electrostatic conditions, the excess
charge on a conductor resides on its surface.
Does this mean that all of the conduction
electrons in a conductor are on the surface?

23. Can a positively charged conductor be at a
negative potential? Explain.

24. Can equipotential surfaces intersect?

7.6 Applications of Electrostatics

25. Why are the metal support rods for satellite
network dishes generally grounded?

26. (a) Why are fish reasonably safe in an electrical
storm? (b) Why are swimmers nonetheless
ordered to get out of the water in the same
circumstance?

27. What are the similarities and differences
between the processes in a photocopier and an
electrostatic precipitator?
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28. About what magnitude of potential is used to
charge the drum of a photocopy machine? A

web search for “xerography” may be of use.

Problems
7.1 Electric Potential Energy

29. Consider a charge fixed at a site
with another charge (charge , mass

moving in the neighboring space. (a)
Evaluate the potential energy of when it is
4.0 cm from (b) If starts from rest from a
point 4.0 cm from what will be its speed
when it is 8.0 cm from ? (Note: is held
fixed in its place.)

30. Two charges and
are placed symmetrically along the x-axis at

. Consider a charge of charge
and mass 10.0 mg moving along the

y-axis. If starts from rest at
what is its speed when it reaches

31. To form a hydrogen atom, a proton is fixed at a
point and an electron is brought from far away
to a distance of the average
distance between proton and electron in a
hydrogen atom. How much work is done?

32. (a) What is the average power output of a heart
defibrillator that dissipates 400 J of energy in
10.0 ms? (b) Considering the high-power
output, why doesn’t the defibrillator produce
serious burns?

7.2 Electric Potential and Potential
Difference

33. Find the ratio of speeds of an electron and a
negative hydrogen ion (one having an extra
electron) accelerated through the same voltage,
assuming non-relativistic final speeds. Take the
mass of the hydrogen ion to be

34. An evacuated tube uses an accelerating voltage
of 40 kV to accelerate electrons to hit a copper
plate and produce X-rays. Non-relativistically,
what would be the maximum speed of these
electrons?

35. Show that units of V/m and N/C for electric field
strength are indeed equivalent.

36. What is the strength of the electric field between
two parallel conducting plates separated by
1.00 cm and having a potential difference
(voltage) between them of ?

37. The electric field strength between two parallel
conducting plates separated by 4.00 cm is

. (a) What is the potential
difference between the plates? (b) The plate
with the lowest potential is taken to be zero
volts. What is the potential 1.00 cm from that
plate and 3.00 cm from the other?

38. The voltage across a membrane forming a cell
wall is 80.0 mV and the membrane is 9.00 nm
thick. What is the electric field strength? (The
value is surprisingly large, but correct.) You may
assume a uniform electric field.

39. Two parallel conducting plates are separated by
10.0 cm, and one of them is taken to be at zero
volts. (a) What is the electric field strength
between them, if the potential 8.00 cm from the
zero volt plate (and 2.00 cm from the other) is
450 V? (b) What is the voltage between the
plates?

40. Find the maximum potential difference
between two parallel conducting plates
separated by 0.500 cm of air, given the
maximum sustainable electric field strength in
air to be .

41. An electron is to be accelerated in a uniform
electric field having a strength of

(a) What energy in keV is
given to the electron if it is accelerated through
0.400 m? (b) Over what distance would it have to
be accelerated to increase its energy by 50.0
GeV?

42. Use the definition of potential difference in
terms of electric field to deduce the formula for
potential difference between and
for a point charge located at the origin. Here r is
the spherical radial coordinate.

43. The electric field in a region is pointed away
from the z-axis and the magnitude depends
upon the distance s from the axis. The
magnitude of the electric field is given as
where is a constant. Find the potential
difference between points , explicitly
stating the path over which you conduct the
integration for the line integral.
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44. Singly charged gas ions are accelerated from
rest through a voltage of 13.0 V. At what
temperature will the average kinetic energy of
gas molecules be the same as that given these
ions?

7.3 Calculations of Electric Potential

45. A 0.500-cm-diameter plastic sphere, used in a
static electricity demonstration, has a uniformly
distributed 40.0-pC charge on its surface. What
is the potential near its surface?

46. How far from a point charge is the
potential 100 V? At what distance is it

47. If the potential due to a point charge is
at a distance of 15.0 m, what are

the sign and magnitude of the charge?
48. In nuclear fission, a nucleus splits roughly in

half. (a) What is the potential
from a fragment that has 46 protons in it? (b)
What is the potential energy in MeV of a
similarly charged fragment at this distance?

49. A research Van de Graaff generator has a
2.00-m-diameter metal sphere with a charge of
5.00 mC on it. Assume the potential energy is
zero at a reference point infinitely far away from
the Van de Graaff. (a) What is the potential near
its surface? (b) At what distance from its center
is the potential 1.00 MV? (c) An oxygen atom
with three missing electrons is released near
the Van de Graaff generator. What is its kinetic
energy in MeV when the atom is at the distance
found in part b?

50. An electrostatic paint sprayer has a 0.200-m-
diameter metal sphere at a potential of 25.0 kV
that repels paint droplets onto a grounded
object.
(a) What charge is on the sphere? (b) What
charge must a 0.100-mg drop of paint have to
arrive at the object with a speed of 10.0 m/s?

51. (a) What is the potential between two points
situated 10 cm and 20 cm from a point
charge? (b) To what location should the point at
20 cm be moved to increase this potential
difference by a factor of two?

52. Find the potential at points in
the diagram due to the two given charges.

53. Two charges are separated
by 4.0 cm on the z-axis symmetrically about
origin, with the positive one uppermost. Two
space points of interest are located
3.0 cm and 30 cm from origin at an angle
with respect to the z-axis. Evaluate electric
potentials at in two ways: (a) Using
the exact formula for point charges, and (b)
using the approximate dipole potential formula.

54. (a) Plot the potential of a uniformly charged 1-m
rod with 1 C/m charge as a function of the
perpendicular distance from the center. Draw
your graph from . (b) On
the same graph, plot the potential of a point
charge with a 1-C charge at the origin. (c) Which
potential is stronger near the rod? (d) What
happens to the difference as the distance
increases? Interpret your result.

7.4 Determining Field from Potential

55. Throughout a region, equipotential surfaces are
given by . The surfaces are equally
spaced with for

for
for What is

the electric field in this region?
56. In a particular region, the electric potential is

given by What is the electric
field in this region?

57. Calculate the electric field of an infinite line
charge, throughout space.

7.5 Equipotential Surfaces and Conductors

58. Two very large metal plates are placed 2.0 cm
apart, with a potential difference of 12 V
between them. Consider one plate to be at 12 V,
and the other at 0 V. (a) Sketch the equipotential
surfaces for 0, 4, 8, and 12 V. (b) Next sketch in
some electric field lines, and confirm that they
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are perpendicular to the equipotential lines.
59. A very large sheet of insulating material has had

an excess of electrons placed on it to a surface
charge density of . (a) As the
distance from the sheet increases, does the
potential increase or decrease? Can you explain
why without any calculations? Does the location
of your reference point matter? (b) What is the
shape of the equipotential surfaces? (c) What is
the spacing between surfaces that differ by 1.00
V?

60. A metallic sphere of radius 2.0 cm is charged
with charge, which spreads on the
surface of the sphere uniformly. The metallic
sphere stands on an insulated stand and is
surrounded by a larger metallic spherical shell,
of inner radius 5.0 cm and outer radius 6.0 cm.
Now, a charge of is placed on the
inside of the spherical shell, which spreads out
uniformly on the inside surface of the shell. If
potential is zero at infinity, what is the potential
of (a) the spherical shell, (b) the sphere, (c) the
space between the two, (d) inside the sphere,
and (e) outside the shell?

61. Two large charged plates of charge density
face each other at a separation of

5.0 mm. (a) Find the electric potential
everywhere. (b) An electron is released from
rest at the negative plate; with what speed will it
strike the positive plate?

62. A long cylinder of aluminum of radius R meters
is charged so that it has a uniform charge per
unit length on its surface of .
(a) Find the electric field inside and outside the
cylinder. (b) Find the electric potential inside
and outside the cylinder. (c) Plot electric field
and electric potential as a function of distance

from the center of the rod.
63. Two parallel plates 10 cm on a side are given

equal and opposite charges of magnitude
The plates are 1.5 mm apart.

What is the potential difference between the
plates?

64. The surface charge density on a long straight
metallic pipe is . What is the electric potential
outside and inside the pipe? Assume the pipe
has a diameter of 2a.

65. Concentric conducting spherical shells carry
charges Q and –Q, respectively. The inner shell
has negligible thickness. What is the potential
difference between the shells?

66. Shown below are two concentric spherical
shells of negligible thicknesses and radii
and The inner and outer shell carry net
charges and respectively, where both
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and are positive. What is the electric
potential in the regions (a) (b)

and (c)

67. A solid cylindrical conductor of radius a is
surrounded by a concentric cylindrical shell of
inner radius b. The solid cylinder and the shell
carry charges Q and –Q, respectively. Assuming
that the length L of both conductors is much
greater than a or b, what is the potential
difference between the two conductors?

7.6 Applications of Electrostatics

68. (a) What is the electric field 5.00 m from the
center of the terminal of a Van de Graaff with a
3.00-mC charge, noting that the field is
equivalent to that of a point charge at the center
of the terminal? (b) At this distance, what force
does the field exert on a charge on the
Van de Graaff’s belt?

69. (a) What is the direction and magnitude of an
electric field that supports the weight of a free
electron near the surface of Earth? (b) Discuss
what the small value for this field implies
regarding the relative strength of the
gravitational and electrostatic forces.

70. A simple and common technique for
accelerating electrons is shown in Figure 7.46,
where there is a uniform electric field between
two plates. Electrons are released, usually from
a hot filament, near the negative plate, and
there is a small hole in the positive plate that
allows the electrons to continue moving. (a)
Calculate the acceleration of the electron if the
field strength is . (b) Explain
why the electron will not be pulled back to the
positive plate once it moves through the hole.

Figure 7.46 Parallel conducting plates with opposite

charges on them create a relatively uniform electric field

used to accelerate electrons to the right. Those that go

through the hole can be used to make a TV or computer

screen glow or to produce X- rays.

71. In a Geiger counter, a thin metallic wire at the
center of a metallic tube is kept at a high voltage
with respect to the metal tube. Ionizing
radiation entering the tube knocks electrons off
gas molecules or sides of the tube that then
accelerate towards the center wire, knocking off
even more electrons. This process eventually
leads to an avalanche that is detectable as a
current. A particular Geiger counter has a tube
of radius R and the inner wire of radius a is at a
potential of volts with respect to the outer
metal tube. Consider a point P at a distance s
from the center wire and far away from the
ends. (a) Find a formula for the electric field at a
point P inside using the infinite wire
approximation. (b) Find a formula for the
electric potential at a point P inside. (c) Use

and
find the value of the electric field at a point 1.00
cm from the center.
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72. The practical limit to an electric field in air is
about . Above this strength,
sparking takes place because air begins to
ionize. (a) At this electric field strength, how far
would a proton travel before hitting the speed of
light (ignore relativistic effects)? (b) Is it
practical to leave air in particle accelerators?

73. To form a helium atom, an alpha particle that
contains two protons and two neutrons is fixed
at one location, and two electrons are brought in
from far away, one at a time. The first electron is
placed at from the alpha
particle and held there while the second
electron is brought to from
the alpha particle on the other side from the
first electron. See the final configuration below.
(a) How much work is done in each step? (b)
What is the electrostatic energy of the alpha
particle and two electrons in the final
configuration?

74. Find the electrostatic energy of eight equal
charges each fixed at the corners of a
cube of side 2 cm.

75. The probability of fusion occurring is greatly
enhanced when appropriate nuclei are brought
close together, but mutual Coulomb repulsion
must be overcome. This can be done using the
kinetic energy of high-temperature gas ions or
by accelerating the nuclei toward one another.
(a) Calculate the potential energy of two singly
charged nuclei separated by
(b) At what temperature will atoms of a gas have
an average kinetic energy equal to this needed
electrical potential energy?

76. A bare helium nucleus has two positive charges
and a mass of . (a) Calculate its
kinetic energy in joules at of the speed of
light. (b) What is this in electron-volts? (c) What
voltage would be needed to obtain this energy?

77. An electron enters a region between two large
parallel plates made of aluminum separated by
a distance of 2.0 cm and kept at a potential
difference of 200 V. The electron enters through
a small hole in the negative plate and moves
toward the positive plate. At the time the
electron is near the negative plate, its speed is

Assume the electric field
between the plates to be uniform, and find the
speed of electron at (a) 0.10 cm, (b) 0.50 cm, (c)
1.0 cm, and (d) 1.5 cm from the negative plate,
and (e) immediately before it hits the positive
plate.

78. How far apart are two conducting plates that
have an electric field strength of

between them, if their
potential difference is 15.0 kV?

79. (a) Will the electric field strength between two
parallel conducting plates exceed the
breakdown strength of dry air, which is

, if the plates are separated by
2.00 mm and a potential difference of

is applied? (b) How close together
can the plates be with this applied voltage?

80. Membrane walls of living cells have surprisingly
large electric fields across them due to
separation of ions. What is the voltage across an
8.00-nm-thick membrane if the electric field
strength across it is 5.50 MV/m? You may
assume a uniform electric field.

81. A double charged ion is accelerated to an
energy of 32.0 keV by the electric field between
two parallel conducting plates separated by
2.00 cm. What is the electric field strength
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between the plates?
82. The temperature near the center of the Sun is

thought to be 15 million degrees Celsius
(or kelvin). Through what

voltage must a singly charged ion be accelerated
to have the same energy as the average kinetic
energy of ions at this temperature?

83. A lightning bolt strikes a tree, moving 20.0 C of
charge through a potential difference of

(a) What energy was
dissipated? (b) What mass of water could be
raised from to the boiling point and then
boiled by this energy? (c) Discuss the damage
that could be caused to the tree by the
expansion of the boiling steam.

84. What is the potential from a
proton (the average distance between the
proton and electron in a hydrogen atom)?

85. (a) A sphere has a surface uniformly charged
with 1.00 C. At what distance from its center is
the potential 5.00 MV? (b) What does your
answer imply about the practical aspect of
isolating such a large charge?

86. What are the sign and magnitude of a point
charge that produces a potential of –2.00 V at a
distance of 1.00 mm?

87. In one of the classic nuclear physics
experiments at the beginning of the twentieth
century, an alpha particle was accelerated
toward a gold nucleus, and its path was
substantially deflected by the Coulomb
interaction. If the energy of the doubly charged
alpha nucleus was 5.00 MeV, how close to the
gold nucleus (79 protons) could it come before
being deflected?

Additional Problems
88. A 12.0-V battery-operated bottle warmer heats

50.0 g of glass, of baby formula,
and of aluminum from to

. (a) How much charge is moved by the
battery? (b) How many electrons per second
flow if it takes 5.00 min to warm the formula?
(Hint: Assume that the specific heat of baby
formula is about the same as the specific heat of
water.)

89. A battery-operated car uses a 12.0-V system.
Find the charge the batteries must be able to
move in order to accelerate the 750 kg car from
rest to 25.0 m/s, make it climb a
high hill, and finally cause it to travel at a
constant 25.0 m/s while climbing with

force for an hour.
90. (a) Find the voltage near a 10.0 cm diameter

metal sphere that has 8.00 C of excess positive
charge on it. (b) What is unreasonable about
this result? (c) Which assumptions are
responsible?

91. A uniformly charged half-ring of radius 10 cm is
placed on a nonconducting table. It is found that
3.0 cm above the center of the half-ring the
potential is –3.0 V with respect to zero potential
at infinity. How much charge is in the half-ring?

92. A glass ring of radius 5.0 cm is painted with a
charged paint such that the charge density
around the ring varies continuously given by
the following function of the polar angle

Find the
potential at a point 15 cm above the center.

93. A CD disk of radius ( ) is sprayed with
a charged paint so that the charge varies
continually with radial distance r from the
center in the following manner:

.
Find the potential at a point 4 cm above the
center.

94. (a) What is the final speed of an electron
accelerated from rest through a voltage of 25.0
MV by a negatively charged Van de Graff
terminal? (b) What is unreasonable about this
result? (c) Which assumptions are responsible?

95. A large metal plate is charged uniformly to a
density of . How far apart
are the equipotential surfaces that represent a
potential difference of 25 V?

96. Your friend gets really excited by the idea of
making a lightning rod or maybe just a sparking
toy by connecting two spheres as shown in
Figure 7.39, and making so small that the
electric field is greater than the dielectric
strength of air, just from the usual 150 V/m
electric field near the surface of the Earth. If
is 10 cm, how small does need to be, and
does this seem practical? (Hint: recall the
calculation for electric field at the surface of a
conductor from Gauss’s Law.)

97. (a) Find limit of the potential of a finite
uniformly charged rod and show that it
coincides with that of a point charge formula.
(b) Why would you expect this result?

332 7 • Chapter Review

Access for free at openstax.org.



98. A small spherical pith ball of radius 0.50 cm is
painted with a silver paint and then of
charge is placed on it. The charged pith ball is
put at the center of a gold spherical shell of
inner radius 2.0 cm and outer radius 2.2 cm. (a)
Find the electric potential of the gold shell with
respect to zero potential at infinity. (b) How
much charge should you put on the gold shell if
you want to make its potential 100 V?

99. Two parallel conducting plates, each of cross-
sectional area , are 2.0 cm apart and
uncharged. If electrons are
transferred from one plate to the other, (a) what
is the potential difference between the plates?
(b) What is the potential difference between the
positive plate and a point 1.25 cm from it that is
between the plates?

100. A point charge of is placed
at the center of an uncharged spherical
conducting shell of inner radius 6.0 cm and
outer radius 9.0 cm. Find the electric potential
at (a) (b) (c)

101. Earth has a net charge that produces an
electric field of approximately 150 N/C
downward at its surface. (a) What is the
magnitude and sign of the excess charge,
noting the electric field of a conducting sphere
is equivalent to a point charge at its center? (b)
What acceleration will the field produce on a
free electron near Earth’s surface? (c) What
mass object with a single extra electron will
have its weight supported by this field?

102. Point charges of are
placed 0.500 m apart.
(a) At what point along the line between them
is the electric field zero?
(b) What is the electric field halfway between
them?

103. What can you say about two charges ,
if the electric field one-fourth of the way from

is zero?
104. Calculate the angular velocity of an electron

orbiting a proton in the hydrogen atom, given
the radius of the orbit is . You
may assume that the proton is stationary and
the centripetal force is supplied by Coulomb
attraction.

105. An electron has an initial velocity of
in a uniform

electric field. The field accelerates the electron
in the direction opposite to its initial velocity.
(a) What is the direction of the electric field?
(b) How far does the electron travel before
coming to rest? (c) How long does it take the
electron to come to rest? (d) What is the
electron’s velocity when it returns to its
starting point?

Challenge Problems
106. Three and three ions are placed

alternately and equally spaced around a circle
of radius 50 nm. Find the electrostatic energy
stored.

107. Look up (presumably online, or by dismantling
an old device and making measurements) the
magnitude of the potential deflection plates
(and the space between them) in an ink jet
printer. Then look up the speed with which the
ink comes out the nozzle. Can you calculate the
typical mass of an ink drop?

108. Use the electric field of a finite sphere with
constant volume charge density to calculate
the electric potential, throughout space. Then
check your results by calculating the electric
field from the potential.

109. Calculate the electric field of a dipole
throughout space from the potential.
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INTRODUCTION

CHAPTER 8
Capacitance

8.1 Capacitors and Capacitance

8.2 Capacitors in Series and in Parallel

8.3 Energy Stored in a Capacitor

8.4 Capacitor with a Dielectric

8.5 Molecular Model of a Dielectric

Capacitors are important components of electrical circuits in many electronic devices,
including pacemakers, cell phones, and computers. In this chapter, we study their properties, and, over the
next few chapters, we examine their function in combination with other circuit elements. By themselves,
capacitors are often used to store electrical energy and release it when needed; with other circuit components,
capacitors often act as part of a filter that allows some electrical signals to pass while blocking others. You can
see why capacitors are considered one of the fundamental components of electrical circuits.

Figure 8.1 The tree-like branch patterns in this clear Plexiglas® block are known as a Lichtenberg figure, named for
the German physicist Georg Christof Lichtenberg (1742–1799), who was the first to study these patterns. The
“branches” are created by the dielectric breakdown produced by a strong electric field. (credit: modification of work
by Bert Hickman)

Chapter Outline



8.1 Capacitors and Capacitance
Learning Objectives
By the end of this section, you will be able to:

• Explain the concepts of a capacitor and its capacitance
• Describe how to evaluate the capacitance of a system of conductors

A capacitor is a device used to store electrical charge and electrical energy. Capacitors are generally with two
electrical conductors separated by a distance. (Note that such electrical conductors are sometimes referred to
as “electrodes,” but more correctly, they are “capacitor plates.”) The space between capacitors may simply be a
vacuum, and, in that case, a capacitor is then known as a “vacuum capacitor.” However, the space is usually
filled with an insulating material known as a dielectric. (You will learn more about dielectrics in the sections
on dielectrics later in this chapter.) The amount of storage in a capacitor is determined by a property called
capacitance, which you will learn more about a bit later in this section.

Capacitors have applications ranging from filtering static from radio reception to energy storage in heart
defibrillators. Typically, commercial capacitors have two conducting parts close to one another but not
touching, such as those in Figure 8.2. Most of the time, a dielectric is used between the two plates. When
battery terminals are connected to an initially uncharged capacitor, the battery potential moves a small
amount of charge of magnitude Q from the positive plate to the negative plate. The capacitor remains neutral
overall, but with charges and residing on opposite plates.

Figure 8.2 Both capacitors shown here were initially uncharged before being connected to a battery. They now have charges of and

(respectively) on their plates. (a) A parallel-plate capacitor consists of two plates of opposite charge with area A separated by distance

d. (b) A rolled capacitor has a dielectric material between its two conducting sheets (plates).

A system composed of two identical parallel-conducting plates separated by a distance is called a parallel-
plate capacitor (Figure 8.3). The magnitude of the electrical field in the space between the parallel plates is

, where denotes the surface charge density on one plate (recall that is the charge Q per the surface
area A). Thus, the magnitude of the field is directly proportional to Q.
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Figure 8.3 The charge separation in a capacitor shows that the charges remain on the surfaces of the capacitor plates. Electrical field

lines in a parallel-plate capacitor begin with positive charges and end with negative charges. The magnitude of the electrical field in the

space between the plates is in direct proportion to the amount of charge on the capacitor.

Capacitors with different physical characteristics (such as shape and size of their plates) store different
amounts of charge for the same applied voltage V across their plates. The capacitance C of a capacitor is
defined as the ratio of the maximum charge Q that can be stored in a capacitor to the applied voltage V across
its plates. In other words, capacitance is the largest amount of charge per volt that can be stored on the device:

The SI unit of capacitance is the farad (F), named after Michael Faraday (1791–1867). Since capacitance is the
charge per unit voltage, one farad is one coulomb per one volt, or

By definition, a 1.0-F capacitor is able to store 1.0 C of charge (a very large amount of charge) when the
potential difference between its plates is only 1.0 V. One farad is therefore a very large capacitance. Typical
capacitance values range from picofarads to millifarads , which also
includes microfarads ( ). Capacitors can be produced in various shapes and sizes (Figure 8.4).

8.1
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Figure 8.4 These are some typical capacitors used in electronic devices. A capacitor’s size is not necessarily related to its capacitance

value. (credit: Windell Oskay)

Calculation of Capacitance
We can calculate the capacitance of a pair of conductors with the standard approach that follows.

PROBLEM-SOLVING STRATEGY

Calculating Capacitance
1. Assume that the capacitor has a charge Q.
2. Determine the electrical field between the conductors. If symmetry is present in the arrangement of

conductors, you may be able to use Gauss’s law for this calculation.
3. Find the potential difference between the conductors from

where the path of integration leads from one conductor to the other. The magnitude of the potential
difference is then .

4. With V known, obtain the capacitance directly from Equation 8.1.

To show how this procedure works, we now calculate the capacitances of parallel-plate, spherical, and
cylindrical capacitors. In all cases, we assume vacuum capacitors (empty capacitors) with no dielectric
substance in the space between conductors.

Parallel-Plate Capacitor
The parallel-plate capacitor (Figure 8.5) has two identical conducting plates, each having a surface area A,
separated by a distance d. When a voltage V is applied to the capacitor, it stores a charge Q, as shown. We can
see how its capacitance may depend on A and d by considering characteristics of the Coulomb force. We know
that force between the charges increases with charge values and decreases with the distance between them.
We should expect that the bigger the plates are, the more charge they can store. Thus, C should be greater for a
larger value of A. Similarly, the closer the plates are together, the greater the attraction of the opposite charges
on them. Therefore, C should be greater for a smaller d.

8.2
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Figure 8.5 In a parallel-plate capacitor with plates separated by a distance d, each plate has the same surface area A.

We define the surface charge density on the plates as

We know from previous chapters that when d is small, the electrical field between the plates is fairly uniform
(ignoring edge effects) and that its magnitude is given by

where the constant is the permittivity of free space, The SI unit of F/m is
equivalent to Since the electrical field between the plates is uniform, the potential difference
between the plates is

Therefore Equation 8.1 gives the capacitance of a parallel-plate capacitor as

Notice from this equation that capacitance is a function only of the geometry and what material fills the space
between the plates (in this case, vacuum) of this capacitor. In fact, this is true not only for a parallel-plate
capacitor, but for all capacitors: The capacitance is independent of Q or V. If the charge changes, the potential
changes correspondingly so that Q/V remains constant.

EXAMPLE 8.1

Capacitance and Charge Stored in a Parallel-Plate Capacitor
(a) What is the capacitance of an empty parallel-plate capacitor with metal plates that each have an area of

, separated by 1.00 mm? (b) How much charge is stored in this capacitor if a voltage of is

8.3
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applied to it?

Strategy
Finding the capacitance C is a straightforward application of Equation 8.3. Once we find C, we can find the
charge stored by using Equation 8.1.

Solution

a. Entering the given values into Equation 8.3 yields

This small capacitance value indicates how difficult it is to make a device with a large capacitance.
b. Inverting Equation 8.1 and entering the known values into this equation gives

Significance
This charge is only slightly greater than those found in typical static electricity applications. Since air breaks
down (becomes conductive) at an electrical field strength of about 3.0 MV/m, no more charge can be stored on
this capacitor by increasing the voltage.

EXAMPLE 8.2

A 1-F Parallel-Plate Capacitor
Suppose you wish to construct a parallel-plate capacitor with a capacitance of 1.0 F. What area must you use
for each plate if the plates are separated by 1.0 mm?

Solution
Rearranging Equation 8.3, we obtain

Each square plate would have to be 10 km across. It used to be a common prank to ask a student to go to the
laboratory stockroom and request a 1-F parallel-plate capacitor, until stockroom attendants got tired of the
joke.

CHECK YOUR UNDERSTANDING 8.1

The capacitance of a parallel-plate capacitor is 2.0 pF. If the area of each plate is , what is the plate
separation?

CHECK YOUR UNDERSTANDING 8.2

Verify that and have the same physical units.

Spherical Capacitor
A spherical capacitor is another set of conductors whose capacitance can be easily determined (Figure 8.6). It
consists of two concentric conducting spherical shells of radii (inner shell) and (outer shell). The shells
are given equal and opposite charges and , respectively. From symmetry, the electrical field between
the shells is directed radially outward. We can obtain the magnitude of the field by applying Gauss’s law over a
spherical Gaussian surface of radius r concentric with the shells. The enclosed charge is ; therefore we
have
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Thus, the electrical field between the conductors is

We substitute this into Equation 8.2 and integrate along a radial path between the shells:

 

In this equation, the potential difference between the plates is . We substitute this
result into Equation 8.1 to find the capacitance of a spherical capacitor:

Figure 8.6 A spherical capacitor consists of two concentric conducting spheres. Note that the charges on a conductor reside on its

surface.

EXAMPLE 8.3

Capacitance of an Isolated Sphere
Calculate the capacitance of a single isolated conducting sphere of radius and compare it with Equation 8.4
in the limit as ∞ .

Strategy
We assume that the charge on the sphere is Q, and so we follow the four steps outlined earlier. We also assume
the other conductor to be a concentric hollow sphere of infinite radius.

Solution
On the outside of an isolated conducting sphere, the electrical field is given by Equation 8.2. The magnitude of
the potential difference between the surface of an isolated sphere and infinity is

∞ ∞ ∞

8.4

8.1 • Capacitors and Capacitance 341



The capacitance of an isolated sphere is therefore

Significance

The same result can be obtained by taking the limit of Equation 8.4 as ∞ . A single isolated sphere is

therefore equivalent to a spherical capacitor whose outer shell has an infinitely large radius.

CHECK YOUR UNDERSTANDING 8.3

The radius of the outer sphere of a spherical capacitor is five times the radius of its inner shell. What are the
dimensions of this capacitor if its capacitance is 5.00 pF?

Cylindrical Capacitor
A cylindrical capacitor consists of two concentric, conducting cylinders (Figure 8.7). The inner cylinder, of
radius , may either be a shell or be completely solid. The outer cylinder is a shell of inner radius . We
assume that the length of each cylinder is l and that the excess charges and reside on the inner and
outer cylinders, respectively.

Figure 8.7 A cylindrical capacitor consists of two concentric, conducting cylinders. Here, the charge on the outer surface of the inner

cylinder is positive (indicated by ) and the charge on the inner surface of the outer cylinder is negative (indicated by ).

With edge effects ignored, the electrical field between the conductors is directed radially outward from the
common axis of the cylinders. Using the Gaussian surface shown in Figure 8.7, we have

Therefore, the electrical field between the cylinders is

Here is the unit radial vector along the radius of the cylinder. We can substitute into Equation 8.2 and find
the potential difference between the cylinders:

Thus, the capacitance of a cylindrical capacitor is

8.5
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As in other cases, this capacitance depends only on the geometry of the conductor arrangement. An important
application of Equation 8.6 is the determination of the capacitance per unit length of a coaxial cable, which is
commonly used to transmit time-varying electrical signals. A coaxial cable consists of two concentric,
cylindrical conductors separated by an insulating material. (Here, we assume a vacuum between the
conductors, but the physics is qualitatively almost the same when the space between the conductors is filled by
a dielectric.) This configuration shields the electrical signal propagating down the inner conductor from stray
electrical fields external to the cable. Current flows in opposite directions in the inner and the outer
conductors, with the outer conductor usually grounded. Now, from Equation 8.6, the capacitance per unit
length of the coaxial cable is given by

In practical applications, it is important to select specific values of C/l. This can be accomplished with
appropriate choices of radii of the conductors and of the insulating material between them.

CHECK YOUR UNDERSTANDING 8.4

When a cylindrical capacitor is given a charge of 0.500 nC, a potential difference of 20.0 V is measured
between the cylinders. (a) What is the capacitance of this system? (b) If the cylinders are 1.0 m long, what is the
ratio of their radii?

Several types of practical capacitors are shown in Figure 8.4. Common capacitors are often made of two small
pieces of metal foil separated by two small pieces of insulation (see Figure 8.2(b)). The metal foil and insulation
are encased in a protective coating, and two metal leads are used for connecting the foils to an external circuit.
Some common insulating materials are mica, ceramic, paper, and Teflon™ non-stick coating.

Another popular type of capacitor is an electrolytic capacitor. It consists of an oxidized metal in a conducting
paste. The main advantage of an electrolytic capacitor is its high capacitance relative to other common types of
capacitors. For example, capacitance of one type of aluminum electrolytic capacitor can be as high as 1.0 F.
However, you must be careful when using an electrolytic capacitor in a circuit, because it only functions
correctly when the metal foil is at a higher potential than the conducting paste. When reverse polarization
occurs, electrolytic action destroys the oxide film. This type of capacitor cannot be connected across an
alternating current source, because half of the time, ac voltage would have the wrong polarity, as an alternating
current reverses its polarity (see Alternating-Current Circuts on alternating-current circuits).

A variable air capacitor (Figure 8.8) has two sets of parallel plates. One set of plates is fixed (indicated as
“stator”), and the other set of plates is attached to a shaft that can be rotated (indicated as “rotor”). By turning
the shaft, the cross-sectional area in the overlap of the plates can be changed; therefore, the capacitance of this
system can be tuned to a desired value. Capacitor tuning has applications in any type of radio transmission
and in receiving radio signals from electronic devices. Any time you tune your car radio to your favorite
station, think of capacitance.

8.6
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Figure 8.8 In a variable air capacitor, capacitance can be tuned by changing the effective area of the plates. (credit: modification of work

by Robbie Sproule)

The symbols shown in Figure 8.9 are circuit representations of various types of capacitors. We generally use
the symbol shown in Figure 8.9(a). The symbol in Figure 8.9(c) represents a variable-capacitance capacitor.
Notice the similarity of these symbols to the symmetry of a parallel-plate capacitor. An electrolytic capacitor is
represented by the symbol in part Figure 8.9(b), where the curved plate indicates the negative terminal.

Figure 8.9 This shows three different circuit representations of capacitors. The symbol in (a) is the most commonly used one. The symbol

in (b) represents an electrolytic capacitor. The symbol in (c) represents a variable-capacitance capacitor.

An interesting applied example of a capacitor model comes from cell biology and deals with the electrical
potential in the plasma membrane of a living cell (Figure 8.10). Cell membranes separate cells from their
surroundings but allow some selected ions to pass in or out of the cell. The potential difference across a
membrane is about 70 mV. The cell membrane may be 7 to 10 nm thick. Treating the cell membrane as a
nano-sized capacitor, the estimate of the smallest electrical field strength across its ‘plates’ yields the value

.

This magnitude of electrical field is great enough to create an electrical spark in the air.
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Figure 8.10 The semipermeable membrane of a biological cell has different concentrations of ions on its interior surface than on its

exterior. Diffusion moves the (potassium) and (chloride) ions in the directions shown, until the Coulomb force halts further transfer.

In this way, the exterior of the membrane acquires a positive charge and its interior surface acquires a negative charge, creating a potential

difference across the membrane. The membrane is normally impermeable to Na+ (sodium ions).

INTERACTIVE

Visit the PhET Explorations: Capacitor Lab (https://openstax.org/l/21phetcapacitor) to explore how a capacitor
works. Change the size of the plates and add a dielectric to see the effect on capacitance. Change the voltage
and see charges built up on the plates. Observe the electrical field in the capacitor. Measure the voltage and the
electrical field.

8.2 Capacitors in Series and in Parallel
Learning Objectives
By the end of this section, you will be able to:

• Explain how to determine the equivalent capacitance of capacitors in series and in parallel combinations
• Compute the potential difference across the plates and the charge on the plates for a capacitor in a network

and determine the net capacitance of a network of capacitors

Several capacitors can be connected together to be used in a variety of applications. Multiple connections of
capacitors behave as a single equivalent capacitor. The total capacitance of this equivalent single capacitor
depends both on the individual capacitors and how they are connected. Capacitors can be arranged in two
simple and common types of connections, known as series and parallel, for which we can easily calculate the
total capacitance. These two basic combinations, series and parallel, can also be used as part of more complex
connections.

The Series Combination of Capacitors
Figure 8.11 illustrates a series combination of three capacitors, arranged in a row within the circuit. As for any
capacitor, the capacitance of the combination is related to the charge and voltage by using Equation 8.1. When
this series combination is connected to a battery with voltage V, each of the capacitors acquires an identical
charge Q. To explain, first note that the charge on the plate connected to the positive terminal of the battery is

and the charge on the plate connected to the negative terminal is . Charges are then induced on the
other plates so that the sum of the charges on all plates, and the sum of charges on any pair of capacitor plates,
is zero. However, the potential drop on one capacitor may be different from the potential drop

on another capacitor, because, generally, the capacitors may have different capacitances. The
series combination of two or three capacitors resembles a single capacitor with a smaller capacitance.
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Generally, any number of capacitors connected in series is equivalent to one capacitor whose capacitance
(called the equivalent capacitance) is smaller than the smallest of the capacitances in the series combination.
Charge on this equivalent capacitor is the same as the charge on any capacitor in a series combination: That is,
all capacitors of a series combination have the same charge. This occurs due to the conservation of charge in
the circuit. When a charge Q in a series circuit is removed from a plate of the first capacitor (which we denote
as ), it must be placed on a plate of the second capacitor (which we denote as and so on.

Figure 8.11 (a) Three capacitors are connected in series. The magnitude of the charge on each plate is Q. (b) The network of capacitors in

(a) is equivalent to one capacitor that has a smaller capacitance than any of the individual capacitances in (a), and the charge on its plates is

Q.

We can find an expression for the total (equivalent) capacitance by considering the voltages across the
individual capacitors. The potentials across capacitors 1, 2, and 3 are, respectively, , ,
and . These potentials must sum up to the voltage of the battery, giving the following potential
balance:

Potential V is measured across an equivalent capacitor that holds charge Q and has an equivalent capacitance
. Entering the expressions for , , and , we get

Canceling the charge Q, we obtain an expression containing the equivalent capacitance, , of three capacitors
connected in series:

This expression can be generalized to any number of capacitors in a series network.

Series Combination

For capacitors connected in a series combination, the reciprocal of the equivalent capacitance is the sum
of reciprocals of individual capacitances:

8.7

346 8 • Capacitance

Access for free at openstax.org.



EXAMPLE 8.4

Equivalent Capacitance of a Series Network
Find the total capacitance for three capacitors connected in series, given their individual capacitances are

, , and .

Strategy
Because there are only three capacitors in this network, we can find the equivalent capacitance by using
Equation 8.7 with three terms.

Solution
We enter the given capacitances into Equation 8.7:

Now we invert this result and obtain

Significance
Note that in a series network of capacitors, the equivalent capacitance is always less than the smallest
individual capacitance in the network.

The Parallel Combination of Capacitors
A parallel combination of three capacitors, with one plate of each capacitor connected to one side of the circuit
and the other plate connected to the other side, is illustrated in Figure 8.12(a). Since the capacitors are
connected in parallel, they all have the same voltage V across their plates. However, each capacitor in the
parallel network may store a different charge. To find the equivalent capacitance of the parallel network,
we note that the total charge Q stored by the network is the sum of all the individual charges:

On the left-hand side of this equation, we use the relation , which holds for the entire network. On the
right-hand side of the equation, we use the relations and for the three
capacitors in the network. In this way we obtain

This equation, when simplified, is the expression for the equivalent capacitance of the parallel network of
three capacitors:

This expression is easily generalized to any number of capacitors connected in parallel in the network.

Parallel Combination

For capacitors connected in a parallel combination, the equivalent (net) capacitance is the sum of all
individual capacitances in the network,

8.8
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Figure 8.12 (a) Three capacitors are connected in parallel. Each capacitor is connected directly to the battery. (b) The charge on the

equivalent capacitor is the sum of the charges on the individual capacitors.

EXAMPLE 8.5

Equivalent Capacitance of a Parallel Network
Find the net capacitance for three capacitors connected in parallel, given their individual capacitances are

Strategy
Because there are only three capacitors in this network, we can find the equivalent capacitance by using
Equation 8.8 with three terms.

Solution
Entering the given capacitances into Equation 8.8 yields

Significance
Note that in a parallel network of capacitors, the equivalent capacitance is always larger than any of the
individual capacitances in the network.

Capacitor networks are usually some combination of series and parallel connections, as shown in Figure 8.13.
To find the net capacitance of such combinations, we identify parts that contain only series or only parallel
connections, and find their equivalent capacitances. We repeat this process until we can determine the
equivalent capacitance of the entire network. The following example illustrates this process.
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Figure 8.13 (a) This circuit contains both series and parallel connections of capacitors. (b) and are in series; their equivalent

capacitance is (c) The equivalent capacitance is connected in parallel with Thus, the equivalent capacitance of the entire

network is the sum of and

EXAMPLE 8.6

Equivalent Capacitance of a Network
Find the total capacitance of the combination of capacitors shown in Figure 8.13. Assume the capacitances are
known to three decimal places Round your answer to three
decimal places.

Strategy
We first identify which capacitors are in series and which are in parallel. Capacitors and are in series.
Their combination, labeled is in parallel with

Solution
Since are in series, their equivalent capacitance is obtained with Equation 8.7:

Capacitance is connected in parallel with the third capacitance , so we use Equation 8.8 to find the
equivalent capacitance C of the entire network:

EXAMPLE 8.7

Network of Capacitors
Determine the net capacitance C of the capacitor combination shown in Figure 8.14 when the capacitances are

and . When a 12.0-V potential difference is maintained across the
combination, find the charge and the voltage across each capacitor.
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Figure 8.14 (a) A capacitor combination. (b) An equivalent two-capacitor combination.

Strategy
We first compute the net capacitance of the parallel connection and . Then C is the net capacitance
of the series connection and . We use the relation to find the charges , , and , and the
voltages , , and , across capacitors 1, 2, and 3, respectively.

Solution
The equivalent capacitance for and is

The entire three-capacitor combination is equivalent to two capacitors in series,

Consider the equivalent two-capacitor combination in Figure 8.14(b). Since the capacitors are in series, they
have the same charge, . Also, the capacitors share the 12.0-V potential difference, so

Now the potential difference across capacitor 1 is

Because capacitors 2 and 3 are connected in parallel, they are at the same potential difference:

Hence, the charges on these two capacitors are, respectively,

Significance
As expected, the net charge on the parallel combination of and is

CHECK YOUR UNDERSTANDING 8.5

Determine the net capacitance C of each network of capacitors shown below. Assume that ,
, , and . Find the charge on each capacitor, assuming there is a potential

difference of 12.0 V across each network.
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8.3 Energy Stored in a Capacitor
Learning Objectives
By the end of this section, you will be able to:

• Explain how energy is stored in a capacitor
• Use energy relations to determine the energy stored in a capacitor network

Most of us have seen dramatizations of medical personnel using a defibrillator to pass an electrical current
through a patient’s heart to get it to beat normally. Often realistic in detail, the person applying the shock
directs another person to “make it 400 joules this time.” The energy delivered by the defibrillator is stored in a
capacitor and can be adjusted to fit the situation. SI units of joules are often employed. Less dramatic is the use
of capacitors in microelectronics to supply energy when batteries are charged (Figure 8.15). Capacitors are
also used to supply energy for flash lamps on cameras.
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Figure 8.15 The capacitors on the circuit board for an electronic device follow a labeling convention that identifies each one with a code

that begins with the letter “C.” (credit: Windell Oskay)

The energy stored in a capacitor is electrostatic potential energy and is thus related to the charge Q and
voltage V between the capacitor plates. A charged capacitor stores energy in the electrical field between its
plates. As the capacitor is being charged, the electrical field builds up. When a charged capacitor is
disconnected from a battery, its energy remains in the field in the space between its plates.

To gain insight into how this energy may be expressed (in terms of Q and V), consider a charged, empty,
parallel-plate capacitor; that is, a capacitor without a dielectric but with a vacuum between its plates. The
space between its plates has a volume Ad, and it is filled with a uniform electrostatic field E. The total energy

of the capacitor is contained within this space. The energy density in this space is simply divided
by the volume Ad. If we know the energy density, the energy can be found as . We will learn in
Electromagnetic Waves (after completing the study of Maxwell’s equations) that the energy density in a
region of free space occupied by an electrical field E depends only on the magnitude of the field and is

If we multiply the energy density by the volume between the plates, we obtain the amount of energy stored
between the plates of a parallel-plate

capacitor: .

In this derivation, we used the fact that the electrical field between the plates is uniform so that and
Because , we can express this result in other equivalent forms:

The expression in Equation 8.10 for the energy stored in a parallel-plate capacitor is generally valid for all
types of capacitors. To see this, consider any uncharged capacitor (not necessarily a parallel-plate type). At
some instant, we connect it across a battery, giving it a potential difference between its plates.
Initially, the charge on the plates is As the capacitor is being charged, the charge gradually builds up on
its plates, and after some time, it reaches the value Q. To move an infinitesimal charge dq from the negative
plate to the positive plate (from a lower to a higher potential), the amount of work dW that must be done on dq
is .

This work becomes the energy stored in the electrical field of the capacitor. In order to charge the capacitor to
a charge Q, the total work required is

Since the geometry of the capacitor has not been specified, this equation holds for any type of capacitor. The

8.9

8.10
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total work W needed to charge a capacitor is the electrical potential energy stored in it, or . When
the charge is expressed in coulombs, potential is expressed in volts, and the capacitance is expressed in
farads, this relation gives the energy in joules.

Knowing that the energy stored in a capacitor is , we can now find the energy density stored
in a vacuum between the plates of a charged parallel-plate capacitor. We just have to divide by the volume
Ad of space between its plates and take into account that for a parallel-plate capacitor, we have and

. Therefore, we obtain

We see that this expression for the density of energy stored in a parallel-plate capacitor is in accordance with
the general relation expressed in Equation 8.9. We could repeat this calculation for either a spherical capacitor
or a cylindrical capacitor—or other capacitors—and in all cases, we would end up with the general relation
given by Equation 8.9.

EXAMPLE 8.8

Energy Stored in a Capacitor
Calculate the energy stored in the capacitor network in Figure 8.14(a) when the capacitors are fully charged
and when the capacitances are and respectively.

Strategy
We use Equation 8.10 to find the energy , , and stored in capacitors 1, 2, and 3, respectively. The total
energy is the sum of all these energies.

Solution
We identify and , and , and The
energies stored in these capacitors are

The total energy stored in this network is

Significance
We can verify this result by calculating the energy stored in the single capacitor, which is found to be
equivalent to the entire network. The voltage across the network is 12.0 V. The total energy obtained in this
way agrees with our previously obtained result, .

CHECK YOUR UNDERSTANDING 8.6

The potential difference across a 5.0-pF capacitor is 0.40 V. (a) What is the energy stored in this capacitor? (b)
The potential difference is now increased to 1.20 V. By what factor is the stored energy increased?

In a cardiac emergency, a portable electronic device known as an automated external defibrillator (AED) can be
a lifesaver. A defibrillator (Figure 8.16) delivers a large charge in a short burst, or a shock, to a person’s heart
to correct abnormal heart rhythm (an arrhythmia). A heart attack can arise from the onset of fast, irregular
beating of the heart—called cardiac or ventricular fibrillation. Applying a large shock of electrical energy can
terminate the arrhythmia and allow the body’s natural pacemaker to resume its normal rhythm. Today, it is
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common for ambulances to carry AEDs. AEDs are also found in many public places. These are designed to be
used by lay persons. The device automatically diagnoses the patient’s heart rhythm and then applies the shock
with appropriate energy and waveform. CPR (cardiopulmonary resuscitation) is recommended in many cases
before using a defibrillator.

Figure 8.16 Automated external defibrillators are found in many public places. These portable units provide verbal instructions for use in

the important first few minutes for a person suffering a cardiac attack. (credit: Owain Davies)

EXAMPLE 8.9

Capacitance of a Heart Defibrillator
A heart defibrillator delivers of energy by discharging a capacitor initially at What
is its capacitance?

Strategy
We are given and V, and we are asked to find the capacitance C. We solve Equation 8.10 for C and
substitute.

Solution

Solving this expression for C and entering the given values yields

8.4 Capacitor with a Dielectric
Learning Objectives
By the end of this section, you will be able to:

• Describe the effects a dielectric in a capacitor has on capacitance and other properties
• Calculate the capacitance of a capacitor containing a dielectric

As we discussed earlier, an insulating material placed between the plates of a capacitor is called a dielectric.
Inserting a dielectric between the plates of a capacitor affects its capacitance. To see why, let’s consider an
experiment described in Figure 8.17. Initially, a capacitor with capacitance when there is air between its
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plates is charged by a battery to voltage . When the capacitor is fully charged, the battery is disconnected. A
charge then resides on the plates, and the potential difference between the plates is measured to be .
Now, suppose we insert a dielectric that totally fills the gap between the plates. If we monitor the voltage, we
find that the voltmeter reading has dropped to a smaller value V. We write this new voltage value as a fraction
of the original voltage , with a positive number , :

The constant in this equation is called the dielectric constant of the material between the plates, and its
value is characteristic for the material. A detailed explanation for why the dielectric reduces the voltage is
given in the next section. Different materials have different dielectric constants (a table of values for typical
materials is provided in the next section). Once the battery becomes disconnected, there is no path for a
charge to flow to the battery from the capacitor plates. Hence, the insertion of the dielectric has no effect on the
charge on the plate, which remains at a value of . Therefore, we find that the capacitance of the capacitor
with a dielectric is

This equation tells us that the capacitance of an empty (vacuum) capacitor can be increased by a factor of
when we insert a dielectric material to completely fill the space between its plates. Note that Equation 8.11 can
also be used for an empty capacitor by setting . In other words, we can say that the dielectric constant of
the vacuum is 1, which is a reference value.

Figure 8.17 (a) When fully charged, a vacuum capacitor has a voltage and charge (the charges remain on plate’s inner surfaces; the

schematic indicates the sign of charge on each plate). (b) In step 1, the battery is disconnected. Then, in step 2, a dielectric (that is

electrically neutral) is inserted into the charged capacitor. When the voltage across the capacitor is now measured, it is found that the

voltage value has decreased to . The schematic indicates the sign of the induced charge that is now present on the surfaces of the

dielectric material between the plates.

The principle expressed by Equation 8.11 is widely used in the construction industry (Figure 8.18). Metal
plates in an electronic stud finder act effectively as a capacitor. You place a stud finder with its flat side on the
wall and move it continually in the horizontal direction. When the finder moves over a wooden stud, the
capacitance of its plates changes, because wood has a different dielectric constant than a gypsum wall. This
change triggers a signal in a circuit, and thus the stud is detected.

8.11
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Figure 8.18 An electronic stud finder is used to detect wooden studs behind drywall. (credit top: modification of work by Jane Whitney)

The electrical energy stored by a capacitor is also affected by the presence of a dielectric. When the energy
stored in an empty capacitor is , the energy U stored in a capacitor with a dielectric is smaller by a factor of

,

As a dielectric material sample is brought near an empty charged capacitor, the sample reacts to the electrical
field of the charges on the capacitor plates. Just as we learned in Electric Charges and Fields on electrostatics,
there will be the induced charges on the surface of the sample; however, they are not free charges like in a
conductor, because a perfect insulator does not have freely moving charges. These induced charges on the
dielectric surface are of an opposite sign to the free charges on the plates of the capacitor, and so they are
attracted by the free charges on the plates. Consequently, the dielectric is “pulled” into the gap, and the work to
polarize the dielectric material between the plates is done at the expense of the stored electrical energy, which
is reduced, in accordance with Equation 8.12.

EXAMPLE 8.10

Inserting a Dielectric into an Isolated Capacitor
An empty 20.0-pF capacitor is charged to a potential difference of 40.0 V. The charging battery is then
disconnected, and a piece of Teflon™ with a dielectric constant of 2.1 is inserted to completely fill the space
between the capacitor plates (see Figure 8.17). What are the values of (a) the capacitance, (b) the charge of the
plate, (c) the potential difference between the plates, and (d) the energy stored in the capacitor with and
without dielectric?

8.12
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Strategy
We identify the original capacitance and the original potential difference between
the plates. We combine Equation 8.11 with other relations involving capacitance and substitute.

Solution

a. The capacitance increases to

b. Without dielectric, the charge on the plates is

Since the battery is disconnected before the dielectric is inserted, the plate charge is unaffected by the
dielectric and remains at 0.8 nC.

c. With the dielectric, the potential difference becomes

d. The stored energy without the dielectric is

With the dielectric inserted, we use Equation 8.12 to find that the stored energy decreases to

Significance
Notice that the effect of a dielectric on the capacitance of a capacitor is a drastic increase of its capacitance.
This effect is far more profound than a mere change in the geometry of a capacitor.

CHECK YOUR UNDERSTANDING 8.7

When a dielectric is inserted into an isolated and charged capacitor, the stored energy decreases to 33% of its
original value. (a) What is the dielectric constant? (b) How does the capacitance change?

8.5 Molecular Model of a Dielectric
Learning Objectives
By the end of this section, you will be able to:

• Explain the polarization of a dielectric in a uniform electrical field
• Describe the effect of a polarized dielectric on the electrical field between capacitor plates
• Explain dielectric breakdown

We can understand the effect of a dielectric on capacitance by looking at its behavior at the molecular level. As
we have seen in earlier chapters, in general, all molecules can be classified as either polar or nonpolar. There
is a net separation of positive and negative charges in an isolated polar molecule, whereas there is no charge
separation in an isolated nonpolar molecule (Figure 8.19). In other words, polar molecules have permanent
electric-dipole moments and nonpolar molecules do not. For example, a molecule of water is polar, and a
molecule of oxygen is nonpolar. Nonpolar molecules can become polar in the presence of an external electrical
field, which is called induced polarization.
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Figure 8.19 The concept of polarization: In an unpolarized atom or molecule, a negatively charged electron cloud is evenly distributed

around positively charged centers, whereas a polarized atom or molecule has an excess of negative charge at one side so that the other

side has an excess of positive charge. However, the entire system remains electrically neutral. The charge polarization may be caused by an

external electrical field. Some molecules and atoms are permanently polarized (electric dipoles) even in the absence of an external

electrical field (polar molecules and atoms).

Let’s first consider a dielectric composed of polar molecules. In the absence of any external electrical field, the
electric dipoles are oriented randomly, as illustrated in Figure 8.20(a). However, if the dielectric is placed in an
external electrical field , the polar molecules align with the external field, as shown in part (b) of the figure.
Opposite charges on adjacent dipoles within the volume of dielectric neutralize each other, so there is no net
charge within the dielectric (see the dashed circles in part (b)). However, this is not the case very close to the
upper and lower surfaces that border the dielectric (the region enclosed by the dashed rectangles in part (b)),
where the alignment does produce a net charge. Since the external electrical field merely aligns the dipoles,
the dielectric as a whole is neutral, and the surface charges induced on its opposite faces are equal and
opposite. These induced surface charges and produce an additional electrical field (an induced
electrical field), which opposes the external field , as illustrated in part (c).

Figure 8.20 A dielectric with polar molecules: (a) In the absence of an external electrical field; (b) in the presence of an external electrical
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field . The dashed lines indicate the regions immediately adjacent to the capacitor plates. (c) The induced electrical field inside the

dielectric produced by the induced surface charge of the dielectric. Note that, in reality, the individual molecules are not perfectly

aligned with an external field because of thermal fluctuations; however, the average alignment is along the field lines as shown.

The same effect is produced when the molecules of a dielectric are nonpolar. In this case, a nonpolar molecule
acquires an induced electric-dipole moment because the external field causes a separation between its
positive and negative charges. The induced dipoles of the nonpolar molecules align with in the same way as
the permanent dipoles of the polar molecules are aligned (shown in part (b)). Hence, the electrical field within
the dielectric is weakened regardless of whether its molecules are polar or nonpolar.

Therefore, when the region between the parallel plates of a charged capacitor, such as that shown in Figure
8.21(a), is filled with a dielectric, within the dielectric there is an electrical field due to the free charge
on the capacitor plates and an electrical field due to the induced charge on the surfaces of the dielectric.
Their vector sum gives the net electrical field within the dielectric between the capacitor plates (shown in
part (b) of the figure):

This net field can be considered to be the field produced by an effective charge on the capacitor.

Figure 8.21 Electrical field: (a) In an empty capacitor, electrical field . (b) In a dielectric-filled capacitor, electrical field .

In most dielectrics, the net electrical field is proportional to the field produced by the free charge. In
terms of these two electrical fields, the dielectric constant of the material is defined as

Since and point in opposite directions, the magnitude E is smaller than the magnitude and therefore
Combining Equation 8.14 with Equation 8.13, and rearranging the terms, yields the following

expression for the induced electrical field in a dielectric:

When the magnitude of an external electrical field becomes too large, the molecules of dielectric material start

8.13

8.14

8.15
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to become ionized. A molecule or an atom is ionized when one or more electrons are removed from it and
become free electrons, no longer bound to the molecular or atomic structure. When this happens, the material
can conduct, thereby allowing charge to move through the dielectric from one capacitor plate to the other. This
phenomenon is called dielectric breakdown. (Figure 8.1 shows typical random-path patterns of electrical
discharge during dielectric breakdown.) The critical value, , of the electrical field at which the molecules of
an insulator become ionized is called the dielectric strength of the material. The dielectric strength imposes a
limit on the voltage that can be applied for a given plate separation in a capacitor. For example, the dielectric
strength of air is , so for an air-filled capacitor with a plate separation of the limit
on the potential difference that can be safely applied across its plates without causing dielectric breakdown is

  .

However, this limit becomes 60.0 kV when the same capacitor is filled with Teflon™, whose dielectric strength
is about . Because of this limit imposed by the dielectric strength, the amount of charge that an air-
filled capacitor can store is only and the charge stored on the same Teflon™-filled
capacitor can be as much as

which is about 42 times greater than a charge stored on an air-filled capacitor. Typical values of dielectric
constants and dielectric strengths for various materials are given in Table 8.1. Notice that the dielectric
constant is exactly 1.0 for a vacuum (the empty space serves as a reference condition) and very close to 1.0
for air under normal conditions (normal pressure at room temperature). These two values are so close that, in
fact, the properties of an air-filled capacitor are essentially the same as those of an empty capacitor.

Material Dielectric constant Dielectric strength

Vacuum 1 ∞

Dry air (1 atm) 1.00059 3.0

Teflon™ 2.1 60 to 173

Paraffin 2.3 11

Silicon oil 2.5 10 to 15

Polystyrene 2.56 19.7

Nylon 3.4 14

Paper 3.7 16

Fused quartz 3.78 8

Glass 4 to 6 9.8 to 13.8

Concrete 4.5 –

Bakelite 4.9 24

Diamond 5.5 2,000
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Material Dielectric constant Dielectric strength

Pyrex glass 5.6 14

Mica 6.0 118

Neoprene rubber 6.7 15.7 to 26.7

Water 80

Sulfuric acid 84 to 100

Titanium dioxide 86 to 173 –

Strontium titanate 310 8

Barium titanate 1,200 to 10,000 –

Calcium copper titanate > 250,000 –

Table 8.1 Representative Values of Dielectric Constants and Dielectric Strengths of Various Materials at Room
Temperature

Not all substances listed in the table are good insulators, despite their high dielectric constants. Water, for
example, consists of polar molecules and has a large dielectric constant of about 80. In a water molecule,
electrons are more likely found around the oxygen nucleus than around the hydrogen nuclei. This makes the
oxygen end of the molecule slightly negative and leaves the hydrogens end slightly positive, which makes the
molecule easy to align along an external electrical field, and thus water has a large dielectric constant.
However, the polar nature of water molecules also makes water a good solvent for many substances, which
produces undesirable effects, because any concentration of free ions in water conducts electricity.

EXAMPLE 8.11

Electrical Field and Induced Surface Charge
Suppose that the distance between the plates of the capacitor in Example 8.10 is 2.0 mm and the area of each
plate is . Determine: (a) the electrical field between the plates before and after the Teflon™ is
inserted, and (b) the surface charge induced on the Teflon™ surfaces.

Strategy
In part (a), we know that the voltage across the empty capacitor is , so to find the electrical fields we
use the relation and Equation 8.14. In part (b), knowing the magnitude of the electrical field, we use
the expression for the magnitude of electrical field near a charged plate , where is a uniform surface
charge density caused by the surface charge. We use the value of free charge obtained in
Example 8.10.

Solution

a. The electrical field between the plates of an empty capacitor is

The electrical field E with the Teflon™ in place is
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b. The effective charge on the capacitor is the difference between the free charge and the induced charge
. The electrical field in the Teflon™ is caused by this effective charge. Thus

We invert this equation to obtain , which yields

EXAMPLE 8.12

Inserting a Dielectric into a Capacitor Connected to a Battery
When a battery of voltage is connected across an empty capacitor of capacitance , the charge on its
plates is , and the electrical field between its plates is . A dielectric of dielectric constant is inserted
between the plates while the battery remains in place, as shown in Figure 8.22. (a) Find the capacitance C, the
voltage V across the capacitor, and the electrical field E between the plates after the dielectric is inserted. (b)
Obtain an expression for the free charge Q on the plates of the filled capacitor and the induced charge on
the dielectric surface in terms of the original plate charge .

Figure 8.22 A dielectric is inserted into the charged capacitor while the capacitor remains connected to the battery.

Strategy
We identify the known values: , , , , and . Our task is to express the unknown values in terms of
these known values.

Solution
(a) The capacitance of the filled capacitor is . Since the battery is always connected to the capacitor
plates, the potential difference between them does not change; hence, . Because of that, the electrical
field in the filled capacitor is the same as the field in the empty capacitor, so we can obtain directly that
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(b) For the filled capacitor, the free charge on the plates is

The electrical field E in the filled capacitor is due to the effective charge (Figure 8.22(b)). Since ,
we have

Solving this equation for , we obtain for the induced charge

Significance
Notice that for materials with dielectric constants larger than 2 (see Table 8.1), the induced charge on the
surface of dielectric is larger than the charge on the plates of a vacuum capacitor. The opposite is true for
gasses like air whose dielectric constant is smaller than 2.

CHECK YOUR UNDERSTANDING 8.8

Continuing with Example 8.12, show that when the battery is connected across the plates the energy stored in
dielectric-filled capacitor is (larger than the energy of an empty capacitor kept at the same
voltage). Compare this result with the result found previously for an isolated, charged capacitor.

CHECK YOUR UNDERSTANDING 8.9

Repeat the calculations of Example 8.10 for the case in which the battery remains connected while the
dielectric is placed in the capacitor.
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CHAPTER REVIEW
Key Terms
capacitance amount of charge stored per unit volt
capacitor device that stores electrical charge and

electrical energy
dielectric insulating material used to fill the space

between two plates
dielectric breakdown phenomenon that occurs

when an insulator becomes a conductor in a
strong electrical field

dielectric constant factor by which capacitance
increases when a dielectric is inserted between
the plates of a capacitor

dielectric strength critical electrical field strength
above which molecules in insulator begin to
break down and the insulator starts to conduct

energy density energy stored in a capacitor
divided by the volume between the plates

induced electric-dipole moment dipole moment
that a nonpolar molecule may acquire when it is
placed in an electrical field

induced electrical field electrical field in the
dielectric due to the presence of induced charges

induced surface charges charges that occur on a
dielectric surface due to its polarization

parallel combination components in a circuit
arranged with one side of each component
connected to one side of the circuit and the other
sides of the components connected to the other
side of the circuit

parallel-plate capacitor system of two identical
parallel conducting plates separated by a distance

series combination components in a circuit
arranged in a row one after the other in a circuit

Key Equations

Capacitance

Capacitance of a parallel-plate capacitor

Capacitance of a vacuum spherical capacitor

Capacitance of a vacuum cylindrical capacitor

Capacitance of a series combination

Capacitance of a parallel combination

Energy density

Energy stored in a capacitor

Capacitance of a capacitor with dielectric

Energy stored in an isolated capacitor with
dielectric

Dielectric constant

Induced electrical field in a dielectric
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Summary
8.1 Capacitors and Capacitance

• A capacitor is a device that stores an electrical
charge and electrical energy. The amount of
charge a vacuum capacitor can store depends
on two major factors: the voltage applied and
the capacitor’s physical characteristics, such as
its size and geometry.

• The capacitance of a capacitor is a parameter
that tells us how much charge can be stored in
the capacitor per unit potential difference
between its plates. Capacitance of a system of
conductors depends only on the geometry of
their arrangement and physical properties of
the insulating material that fills the space
between the conductors. The unit of capacitance
is the farad, where

8.2 Capacitors in Series and in Parallel

• When several capacitors are connected in a
series combination, the reciprocal of the
equivalent capacitance is the sum of the
reciprocals of the individual capacitances.

• When several capacitors are connected in a
parallel combination, the equivalent
capacitance is the sum of the individual
capacitances.

• When a network of capacitors contains a
combination of series and parallel connections,
we identify the series and parallel networks, and
compute their equivalent capacitances step by
step until the entire network becomes reduced
to one equivalent capacitance.

8.3 Energy Stored in a Capacitor

• Capacitors are used to supply energy to a variety
of devices, including defibrillators,
microelectronics such as calculators, and flash
lamps.

• The energy stored in a capacitor is the work
required to charge the capacitor, beginning with
no charge on its plates. The energy is stored in
the electrical field in the space between the

capacitor plates. It depends on the amount of
electrical charge on the plates and on the
potential difference between the plates.

• The energy stored in a capacitor network is the
sum of the energies stored on individual
capacitors in the network. It can be computed as
the energy stored in the equivalent capacitor of
the network.

8.4 Capacitor with a Dielectric

• The capacitance of an empty capacitor is
increased by a factor of when the space
between its plates is completely filled by a
dielectric with dielectric constant .

• Each dielectric material has its specific
dielectric constant.

• The energy stored in an empty isolated
capacitor is decreased by a factor of when the
space between its plates is completely filled with
a dielectric with dielectric constant while
disconnecting the battery and keeping the
charge on the capacitor constant.

8.5 Molecular Model of a Dielectric

• When a dielectric is inserted between the plates
of a capacitor, equal and opposite surface
charge is induced on the two faces of the
dielectric. The induced surface charge produces
an induced electrical field that opposes the field
of the free charge on the capacitor plates.

• The dielectric constant of a material is the ratio
of the electrical field in vacuum to the net
electrical field in the material. A capacitor filled
with dielectric has a larger capacitance than an
empty capacitor.

• The dielectric strength of an insulator
represents a critical value of electrical field at
which the molecules in an insulating material
start to become ionized. When this happens, the
material can conduct and dielectric breakdown
is observed.

Conceptual Questions
8.1 Capacitors and Capacitance

1. Does the capacitance of a device depend on the
applied voltage? Does the capacitance of a device
depend on the charge residing on it?

2. Would you place the plates of a parallel-plate
capacitor closer together or farther apart to

increase their capacitance?
3. The value of the capacitance is zero if the plates

are not charged. True or false?
4. If the plates of a capacitor have different areas,

will they acquire the same charge when the
capacitor is connected across a battery?
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5. Does the capacitance of a spherical capacitor
depend on which sphere is charged positively or
negatively?

8.2 Capacitors in Series and in Parallel

6. If you wish to store a large amount of charge in a
capacitor bank, would you connect capacitors in
series or in parallel? Explain.

7. What is the maximum capacitance you can get by
connecting three capacitors? What is the
minimum capacitance?

8.3 Energy Stored in a Capacitor

8. If you wish to store a large amount of energy in a
capacitor bank, would you connect capacitors in
series or parallel? Explain.

8.4 Capacitor with a Dielectric

9. Discuss what would happen if a conducting slab
rather than a dielectric were inserted into the gap
between the capacitor plates.

10. Discuss how the energy stored in an empty but
charged capacitor changes when a dielectric is
inserted if (a) the capacitor is isolated so that its
charge does not change; (b) the capacitor
remains connected to a battery so that the
potential difference between its plates does not
change.

8.5 Molecular Model of a Dielectric

11. Distinguish between dielectric strength and
dielectric constant.

12. Water is a good solvent because it has a high
dielectric constant. Explain.

13. Water has a high dielectric constant. Explain
why it is then not used as a dielectric material in
capacitors.

14. Elaborate on why molecules in a dielectric
material experience net forces on them in a
non-uniform electrical field but not in a uniform
field.

15. Explain why the dielectric constant of a
substance containing permanent molecular
electric dipoles decreases with increasing
temperature.

16. Give a reason why a dielectric material
increases capacitance compared with what it
would be with air between the plates of a
capacitor. How does a dielectric material also
allow a greater voltage to be applied to a
capacitor? (The dielectric thus increases C and
permits a greater V.)

17. Elaborate on the way in which the polar
character of water molecules helps to explain
water’s relatively large dielectric constant.

18. Sparks will occur between the plates of an air-
filled capacitor at a lower voltage when the air is
humid than when it is dry. Discuss why,
considering the polar character of water
molecules.

Problems
8.1 Capacitors and Capacitance

19. What charge is stored in a capacitor
when 120.0 V is applied to it?

20. Find the charge stored when 5.50 V is applied to
an 8.00-pF capacitor.

21. Calculate the voltage applied to a
capacitor when it holds of charge.

22. What voltage must be applied to an 8.00-nF
capacitor to store 0.160 mC of charge?

23. What capacitance is needed to store of
charge at a voltage of 120 V?

24. What is the capacitance of a large Van de Graaff
generator’s terminal, given that it stores 8.00
mC of charge at a voltage of 12.0 MV?

25. The plates of an empty parallel-plate capacitor
of capacitance 5.0 pF are 2.0 mm apart. What is
the area of each plate?

26. A 60.0-pF vacuum capacitor has a plate area of

. What is the separation between its
plates?

27. A set of parallel plates has a capacitance of
. How much charge must be added to the

plates to increase the potential difference
between them by 100 V?

28. Consider Earth to be a spherical conductor of
radius 6400 km and calculate its capacitance.

29. If the capacitance per unit length of a
cylindrical capacitor is 20 pF/m, what is the
ratio of the radii of the two cylinders?

30. An empty parallel-plate capacitor has a
capacitance of . How much charge must
leak off its plates before the voltage across them
is reduced by 100 V?

8.2 Capacitors in Series and in Parallel

31. A 4.00-pF is connected in series with an
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8.00-pF capacitor and a 400-V potential
difference is applied across the pair. (a) What is
the charge on each capacitor? (b) What is the
voltage across each capacitor?

32. Three capacitors, with capacitances of
, and

respectively, are connected in parallel. A 500-V
potential difference is applied across the
combination. Determine the voltage across each
capacitor and the charge on each capacitor.

33. Find the total capacitance of this combination of
series and parallel capacitors shown below.

34. Suppose you need a capacitor bank with a total
capacitance of 0.750 F but you have only
1.50-mF capacitors at your disposal. What is the
smallest number of capacitors you could
connect together to achieve your goal, and how
would you connect them?

35. What total capacitances can you make by
connecting a and a capacitor?

36. Find the equivalent capacitance of the
combination of series and parallel capacitors
shown below.

37. Find the net capacitance of the combination of
series and parallel capacitors shown below.

38. A 40-pF capacitor is charged to a potential
difference of 500 V. Its terminals are then
connected to those of an uncharged 10-pF
capacitor. Calculate: (a) the original charge on
the 40-pF capacitor; (b) the charge on each

capacitor after the connection is made; and (c)
the potential difference across the plates of
each capacitor after the connection.

39. A capacitor and a capacitor are
connected in series across a 1.0-kV potential.
The charged capacitors are then disconnected
from the source and connected to each other
with terminals of like sign together. Find the
charge on each capacitor and the voltage across
each capacitor.

8.3 Energy Stored in a Capacitor

40. How much energy is stored in an
capacitor whose plates are at a potential
difference of 6.00 V?

41. A capacitor has a charge of when
connected to a 6.0-V battery. How much energy
is stored in this capacitor?

42. How much energy is stored in the electrical field
of a metal sphere of radius 2.0 m that is kept at
a 10.0-V potential?

43. (a) What is the energy stored in the
capacitor of a heart defibrillator charged to

? (b) Find the amount of the
stored charge.

44. In open-heart surgery, a much smaller amount
of energy will defibrillate the heart. (a) What
voltage is applied to the capacitor of a
heart defibrillator that stores 40.0 J of energy?
(b) Find the amount of the stored charge.

45. A capacitor is used in conjunction with
a dc motor. How much energy is stored in it
when 119 V is applied?

46. Suppose you have a 9.00-V battery, a
capacitor, and a capacitor. (a) Find the
charge and energy stored if the capacitors are
connected to the battery in series. (b) Do the
same for a parallel connection.

47. An anxious physicist worries that the two metal
shelves of a wood frame bookcase might obtain
a high voltage if charged by static electricity,
perhaps produced by friction. (a) What is the
capacitance of the empty shelves if they have
area and are 0.200 m apart? (b)
What is the voltage between them if opposite
charges of magnitude 2.00 nC are placed on
them? (c) To show that this voltage poses a
small hazard, calculate the energy stored. (d)
The actual shelves have an area 100 times
smaller than these hypothetical shelves with a
connection to the same voltage. Are his fears
justified?

48. A parallel-plate capacitor is made of two square
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plates 25 cm on a side and 1.0 mm apart. The
capacitor is connected to a 50.0-V battery. With
the battery still connected, the plates are pulled
apart to a separation of 2.00 mm. What are the
energies stored in the capacitor before and after
the plates are pulled farther apart? Why does
the energy decrease even though work is done
in separating the plates?

49. Suppose that the capacitance of a variable
capacitor can be manually changed from 100
pF to 800 pF by turning a dial, connected to one
set of plates by a shaft, from to . With the
dial set at (corresponding to ),
the capacitor is connected to a 500-V source.
After charging, the capacitor is disconnected
from the source, and the dial is turned to . If
friction is negligible, how much work is
required to turn the dial from to ?

8.4 Capacitor with a Dielectric

50. Show that for a given dielectric material, the
maximum energy a parallel-plate capacitor can
store is directly proportional to the volume of
dielectric.

51. An air-filled capacitor is made from two flat
parallel plates 1.0 mm apart. The inside area of
each plate is . (a) What is the
capacitance of this set of plates? (b) If the region
between the plates is filled with a material
whose dielectric constant is 6.0, what is the new
capacitance?

52. A capacitor is made from two concentric
spheres, one with radius 5.00 cm, the other with
radius 8.00 cm. (a) What is the capacitance of
this set of conductors? (b) If the region between
the conductors is filled with a material whose
dielectric constant is 6.00, what is the
capacitance of the system?

53. A parallel-plate capacitor has charge of
magnitude on each plate and
capacitance when there is air between
the plates. The plates are separated by 2.00
mm. With the charge on the plates kept
constant, a dielectric with is inserted
between the plates, completely filling the
volume between the plates. (a) What is the
potential difference between the plates of the
capacitor, before and after the dielectric has
been inserted? (b) What is the electrical field at
the point midway between the plates before and
after the dielectric is inserted?

54. Some cell walls in the human body have a layer
of negative charge on the inside surface.

Suppose that the surface charge densities are
, the cell wall is

thick, and the cell wall material
has a dielectric constant of . (a) Find the
magnitude of the electric field in the wall
between two charge layers. (b) Find the
potential difference between the inside and the
outside of the cell. Which is at higher potential?
(c) A typical cell in the human body has volume

Estimate the total electrical field
energy stored in the wall of a cell of this size
when assuming that the cell is spherical. (Hint:
Calculate the volume of the cell wall.)

55. A parallel-plate capacitor with only air between
its plates is charged by connecting the capacitor
to a battery. The capacitor is then disconnected
from the battery, without any of the charge
leaving the plates. (a) A voltmeter reads 45.0 V
when placed across the capacitor. When a
dielectric is inserted between the plates,
completely filling the space, the voltmeter reads
11.5 V. What is the dielectric constant of the
material? (b) What will the voltmeter read if the
dielectric is now pulled away out so it fills only
one-third of the space between the plates?

8.5 Molecular Model of a Dielectric

56. Two flat plates containing equal and opposite
charges are separated by material 4.0 mm thick
with a dielectric constant of 5.0. If the electrical
field in the dielectric is 1.5 MV/m, what are (a)
the charge density on the capacitor plates, and
(b) the induced charge density on the surfaces
of the dielectric?

57. For a Teflon™-filled, parallel-plate capacitor, the
area of the plate is and the spacing
between the plates is 0.50 mm. If the capacitor
is connected to a 200-V battery, find (a) the free
charge on the capacitor plates, (b) the electrical
field in the dielectric, and (c) the induced charge
on the dielectric surfaces.

58. Find the capacitance of a parallel-plate
capacitor having plates with a surface area of

and separated by 0.100 mm of Teflon™.
59. (a) What is the capacitance of a parallel-plate

capacitor with plates of area that are
separated by 0.0200 mm of neoprene rubber?
(b) What charge does it hold when 9.00 V is
applied to it?

60. Two parallel plates have equal and opposite
charges. When the space between the plates is
evacuated, the electrical field is
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. When the space is filled
with dielectric, the electrical field is

. (a) What is the surface
charge density on each surface of the dielectric?
(b) What is the dielectric constant?

61. The dielectric to be used in a parallel-plate
capacitor has a dielectric constant of 3.60 and a
dielectric strength of . The
capacitor has to have a capacitance of 1.25 nF
and must be able to withstand a maximum
potential difference 5.5 kV. What is the
minimum area the plates of the capacitor may
have?

62. When a 360-nF air capacitor is connected to a
power supply, the energy stored in the capacitor
is . While the capacitor is connected to

the power supply, a slab of dielectric is inserted
that completely fills the space between the
plates. This increases the stored energy by

. (a) What is the potential difference
between the capacitor plates? (b) What is the
dielectric constant of the slab?

63. A parallel-plate capacitor has square plates that
are 8.00 cm on each side and 3.80 mm apart.
The space between the plates is completely
filled with two square slabs of dielectric, each
8.00 cm on a side and 1.90 mm thick. One slab
is Pyrex glass and the other slab is polystyrene.
If the potential difference between the plates is
86.0 V, find how much electrical energy can be
stored in this capacitor.

Additional Problems
64. A capacitor is made from two flat parallel plates

placed 0.40 mm apart. When a charge of
is placed on the plates the potential

difference between them is 250 V. (a) What is
the capacitance of the plates? (b) What is the
area of each plate? (c) What is the charge on the
plates when the potential difference between
them is 500 V? (d) What maximum potential
difference can be applied between the plates so
that the magnitude of electrical fields between
the plates does not exceed 3.0 MV/m?

65. An air-filled (empty) parallel-plate capacitor is
made from two square plates that are 25 cm on
each side and 1.0 mm apart. The capacitor is
connected to a 50-V battery and fully charged. It
is then disconnected from the battery and its
plates are pulled apart to a separation of 2.00
mm. (a) What is the capacitance of this new
capacitor? (b) What is the charge on each plate?
(c) What is the electrical field between the
plates?

66. Suppose that the capacitance of a variable
capacitor can be manually changed from 100 to
800 pF by turning a dial connected to one set of
plates by a shaft, from to . With the dial
set at (corresponding to ), the
capacitor is connected to a 500-V source. After
charging, the capacitor is disconnected from
the source, and the dial is turned to . (a) What
is the charge on the capacitor? (b) What is the
voltage across the capacitor when the dial is set
to

67. Earth can be considered as a spherical
capacitor with two plates, where the negative
plate is the surface of Earth and the positive
plate is the bottom of the ionosphere, which is
located at an altitude of approximately 70 km.
The potential difference between Earth’s
surface and the ionosphere is about 350,000 V.
(a) Calculate the capacitance of this system. (b)
Find the total charge on this capacitor. (c) Find
the energy stored in this system.

68. A capacitor and a capacitor are
connected in parallel across a 600-V supply
line. (a) Find the charge on each capacitor and
voltage across each. (b) The charged capacitors
are disconnected from the line and from each
other. They are then reconnected to each other
with terminals of unlike sign together. Find the
final charge on each capacitor and the voltage
across each.

69. Three capacitors having capacitances of 8.40,
8.40, and 4.20 , respectively, are connected in
series across a 36.0-V potential difference. (a)
What is the charge on the capacitor? (b)
The capacitors are disconnected from the
potential difference without allowing them to
discharge. They are then reconnected in
parallel with each other with the positively
charged plates connected together. What is the
voltage across each capacitor in the parallel
combination?

70. A parallel-plate capacitor with capacitance
is charged with a 12.0-V battery, after

which the battery is disconnected. Determine
the minimum work required to increase the
separation between the plates by a factor of 3.
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71. (a) How much energy is stored in the electrical
fields in the capacitors (in total) shown below?
(b) Is this energy equal to the work done by the
400-V source in charging the capacitors?

Figure 8.23

72. Three capacitors having capacitances 8.4, 8.4,
and 4.2 are connected in series across a
36.0-V potential difference. (a) What is the total
energy stored in all three capacitors? (b) The
capacitors are disconnected from the potential
difference without allowing them to discharge.
They are then reconnected in parallel with each
other with the positively charged plates
connected together. What is the total energy
now stored in the capacitors?

73. (a) An capacitor is connected in parallel
to another capacitor, producing a total
capacitance of . What is the capacitance
of the second capacitor? (b) What is
unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

74. (a) On a particular day, it takes of
electrical energy to start a truck’s engine.
Calculate the capacitance of a capacitor that
could store that amount of energy at 12.0 V. (b)
What is unreasonable about this result? (c)
Which assumptions are responsible?

75. (a) A certain parallel-plate capacitor has plates
of area , separated by 0.0100 mm of
nylon, and stores 0.170 C of charge. What is the
applied voltage? (b) What is unreasonable about
this result? (c) Which assumptions are
responsible or inconsistent?

76. A prankster applies 450 V to an
capacitor and then tosses it to an unsuspecting
victim. The victim’s finger is burned by the
discharge of the capacitor through 0.200 g of
flesh. Estimate, what is the temperature
increase of the flesh? Is it reasonable to assume
that no thermodynamic phase change
happened?

Challenge Problems
77. A spherical capacitor is formed from two

concentric spherical conducting spheres
separated by vacuum. The inner sphere has
radius 12.5 cm and the outer sphere has radius
14.8 cm. A potential difference of 120 V is
applied to the capacitor. (a) What is the
capacitance of the capacitor? (b) What is the
magnitude of the electrical field at ,
just outside the inner sphere? (c) What is the
magnitude of the electrical field at ,
just inside the outer sphere? (d) For a parallel-
plate capacitor the electrical field is uniform in
the region between the plates, except near the
edges of the plates. Is this also true for a
spherical capacitor?
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78. The network of capacitors shown below are all
uncharged when a 300-V potential is applied
between points A and B with the switch S open.
(a) What is the potential difference ?
(b) What is the potential at point E after the
switch is closed? (c) How much charge flows
through the switch after it is closed?

79. Electronic flash units for cameras contain a
capacitor for storing the energy used to produce
the flash. In one such unit the flash lasts for 1/
675 fraction of a second with an average light
power output of 270 kW. (a) If the conversion of
electrical energy to light is 95% efficient
(because the rest of the energy goes to thermal
energy), how much energy must be stored in the
capacitor for one flash? (b) The capacitor has a
potential difference between its plates of 125 V
when the stored energy equals the value stored
in part (a). What is the capacitance?

80. A spherical capacitor is formed from two
concentric spherical conducting shells
separated by a vacuum. The inner sphere has
radius 12.5 cm and the outer sphere has radius
14.8 cm. A potential difference of 120 V is
applied to the capacitor. (a) What is the energy
density at , just outside the inner
sphere? (b) What is the energy density at

, just inside the outer sphere? (c)
For the parallel-plate capacitor the energy
density is uniform in the region between the
plates, except near the edges of the plates. Is
this also true for the spherical capacitor?

81. A metal plate of thickness t is held in place
between two capacitor plates by plastic pegs, as
shown below. The effect of the pegs on the
capacitance is negligible. The area of each
capacitor plate and the area of the top and
bottom surfaces of the inserted plate are all A.
What is the capacitance of this system?

82. A parallel-plate capacitor is filled with two
dielectrics, as shown below. When the plate area
is A and separation between plates is d, show
that the capacitance is given by

83. A parallel-plate capacitor is filled with two
dielectrics, as shown below. Show that the
capacitance is given by
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84. A capacitor has parallel plates of area
separated by 2.0 mm. The space between the
plates is filled with polystyrene. (a) Find the
maximum permissible voltage across the
capacitor to avoid dielectric breakdown. (b)
When the voltage equals the value found in part
(a), find the surface charge density on the
surface of the dielectric.
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INTRODUCTION

CHAPTER 9
Current and Resistance

9.1 Electrical Current

9.2 Model of Conduction in Metals

9.3 Resistivity and Resistance

9.4 Ohm's Law

9.5 Electrical Energy and Power

9.6 Superconductors

In this chapter, we study the electrical current through a material, where the electrical
current is the rate of flow of charge. We also examine a characteristic of materials known as the resistance.
Resistance is a measure of how much a material impedes the flow of charge, and it will be shown that the
resistance depends on temperature. In general, a good conductor, such as copper, gold, or silver, has very low
resistance. Some materials, called superconductors, have zero resistance at very low temperatures.

Figure 9.1 Magnetic resonance imaging (MRI) uses superconducting magnets and produces high-resolution
images without the danger of radiation. The image on the left shows the spacing of vertebrae along a human spinal
column, with the circle indicating where the vertebrae are too close due to a ruptured disc. On the right is a picture
of the MRI instrument, which surrounds the patient on all sides. A large amount of electrical current is required to
operate the electromagnets (credit right: modification of work by “digital cat”/Flickr).

Chapter Outline



High currents are required for the operation of electromagnets. Superconductors can be used to make
electromagnets that are 10 times stronger than the strongest conventional electromagnets. These
superconducting magnets are used in the construction of magnetic resonance imaging (MRI) devices that can
be used to make high-resolution images of the human body. The chapter-opening picture shows an MRI image
of the vertebrae of a human subject and the MRI device itself. Superconducting magnets have many other uses.
For example, superconducting magnets are used in the Large Hadron Collider (LHC) to curve the path of
protons in the ring.

9.1 Electrical Current
Learning Objectives
By the end of this section, you will be able to:

• Describe an electrical current
• Define the unit of electrical current
• Explain the direction of current flow

Up to now, we have considered primarily static charges. When charges did move, they were accelerated in
response to an electrical field created by a voltage difference. The charges lost potential energy and gained
kinetic energy as they traveled through a potential difference where the electrical field did work on the charge.

Although charges do not require a material to flow through, the majority of this chapter deals with
understanding the movement of charges through a material. The rate at which the charges flow past a
location—that is, the amount of charge per unit time—is known as the electrical current. When charges flow
through a medium, the current depends on the voltage applied, the material through which the charges flow,
and the state of the material. Of particular interest is the motion of charges in a conducting wire. In previous
chapters, charges were accelerated due to the force provided by an electrical field, losing potential energy and
gaining kinetic energy. In this chapter, we discuss the situation of the force provided by an electrical field in a
conductor, where charges lose kinetic energy to the material reaching a constant velocity, known as the “drift
velocity.” This is analogous to an object falling through the atmosphere and losing kinetic energy to the air,
reaching a constant terminal velocity.

If you have ever taken a course in first aid or safety, you may have heard that in the event of electric shock, it is
the current, not the voltage, which is the important factor on the severity of the shock and the amount of
damage to the human body. Current is measured in units called amperes; you may have noticed that circuit
breakers in your home and fuses in your car are rated in amps (or amperes). But what is the ampere and what
does it measure?

Defining Current and the Ampere
Electrical current is defined to be the rate at which charge flows. When there is a large current present, such as
that used to run a refrigerator, a large amount of charge moves through the wire in a small amount of time. If
the current is small, such as that used to operate a handheld calculator, a small amount of charge moves
through the circuit over a long period of time.

Electrical Current

The average electrical current I is the rate at which charge flows,

where is the amount of net charge passing through a given cross-sectional area in time (Figure 9.2).
The SI unit for current is the ampere (A), named for the French physicist André-Marie Ampère
(1775–1836). Since , we see that an ampere is defined as one coulomb of charge passing through a
given area per second:

9.1
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Most electrical appliances are rated in amperes (or amps) required for proper operation, as are fuses and
circuit breakers.

Figure 9.2 The rate of flow of charge is current. An ampere is the flow of one coulomb of charge through an area in one second. A current

of one amp would result from electrons flowing through the area A each second.

EXAMPLE 9.1

Calculating the Average Current
The main purpose of a battery in a car or truck is to run the electric starter motor, which starts the engine. The
operation of starting the vehicle requires a large current to be supplied by the battery. Once the engine starts, a
device called an alternator takes over supplying the electric power required for running the vehicle and for
charging the battery.

(a) What is the average current involved when a truck battery sets in motion 720 C of charge in 4.00 s while
starting an engine? (b) How long does it take 1.00 C of charge to flow from the battery?

Strategy

We can use the definition of the average current in the equation to find the average current in part (a),

since charge and time are given. For part (b), once we know the average current, we can its definition
to find the time required for 1.00 C of charge to flow from the battery.

Solution
a. Entering the given values for charge and time into the definition of current gives

b. Solving the relationship for time and entering the known values for charge and current gives

Significance
a. This large value for current illustrates the fact that a large charge is moved in a small amount of time. The
currents in these “starter motors” are fairly large to overcome the inertia of the engine. b. A high current
requires a short time to supply a large amount of charge. This large current is needed to supply the large
amount of energy needed to start the engine.

The instantaneous electrical current, or simply the electrical current, is the time derivative of the charge
that flows and is found by taking the limit of the average electrical current as :

9.2

9.3
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EXAMPLE 9.2

Calculating Instantaneous Currents
Consider a charge moving through a cross-section of a wire where the charge is modeled as

. Here, is the charge after a long period of time, as time approaches infinity, with
units of coulombs, and is a time constant with units of seconds (see Figure 9.3). What is the current through
the wire?

Figure 9.3 A graph of the charge moving through a cross-section of a wire over time.

Strategy

The current through the cross-section can be found from . Notice from the figure that the charge
increases to and the derivative decreases, approaching zero, as time increases (Figure 9.4).

Solution
The derivative can be found using .

Figure 9.4 A graph of the current flowing through the wire over time.

Significance
The current through the wire in question decreases exponentially, as shown in Figure 9.4. In later chapters, it
will be shown that a time-dependent current appears when a capacitor charges or discharges through a
resistor. Recall that a capacitor is a device that stores charge. You will learn about the resistor in Model of
Conduction in Metals.

CHECK YOUR UNDERSTANDING 9.1

376 9 • Current and Resistance

Access for free at openstax.org.



Handheld calculators often use small solar cells to supply the energy required to complete the calculations
needed to complete your next physics exam. The current needed to run your calculator can be as small as 0.30
mA. How long would it take for 1.00 C of charge to flow from the solar cells? Can solar cells be used, instead of
batteries, to start traditional internal combustion engines presently used in most cars and trucks?

CHECK YOUR UNDERSTANDING 9.2

Circuit breakers in a home are rated in amperes, normally in a range from 10 amps to 30 amps, and are used
to protect the residents from harm and their appliances from damage due to large currents. A single 15-amp
circuit breaker may be used to protect several outlets in the living room, whereas a single 20-amp circuit
breaker may be used to protect the refrigerator in the kitchen. What can you deduce from this about current
used by the various appliances?

Current in a Circuit
In the previous paragraphs, we defined the current as the charge that flows through a cross-sectional area per
unit time. In order for charge to flow through an appliance, such as the headlight shown in Figure 9.5, there
must be a complete path (or circuit) from the positive terminal to the negative terminal. Consider a simple
circuit of a car battery, a switch, a headlight lamp, and wires that provide a current path between the
components. In order for the lamp to light, there must be a complete path for current flow. In other words, a
charge must be able to leave the positive terminal of the battery, travel through the component, and back to the
negative terminal of the battery. The switch is there to control the circuit. Part (a) of the figure shows the
simple circuit of a car battery, a switch, a conducting path, and a headlight lamp. Also shown is the schematic
of the circuit [part (b)]. A schematic is a graphical representation of a circuit and is very useful in visualizing
the main features of a circuit. Schematics use standardized symbols to represent the components in a circuits
and solid lines to represent the wires connecting the components. The battery is shown as a series of long and
short lines, representing the historic voltaic pile. The lamp is shown as a circle with a loop inside, representing
the filament of an incandescent bulb. The switch is shown as two points with a conducting bar to connect the
two points and the wires connecting the components are shown as solid lines. The schematic in part (c) shows
the direction of current flow when the switch is closed.

Figure 9.5 (a) A simple electric circuit of a headlight (lamp), a battery, and a switch. When the switch is closed, an uninterrupted path for

current to flow through is supplied by conducting wires connecting a load to the terminals of a battery. (b) In this schematic, the battery is

represented by parallel lines, which resemble plates in the original design of a battery. The longer lines indicate the positive terminal. The

conducting wires are shown as solid lines. The switch is shown, in the open position, as two terminals with a line representing a conducting

bar that can make contact between the two terminals. The lamp is represented by a circle encompassing a filament, as would be seen in an

incandescent light bulb. (c) When the switch is closed, the circuit is complete and current flows from the positive terminal to the negative

terminal of the battery.
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When the switch is closed in Figure 9.5(c), there is a complete path for charges to flow, from the positive
terminal of the battery, through the switch, then through the headlight and back to the negative terminal of the
battery. Note that the direction of current flow is from positive to negative. The direction of conventional
current is always represented in the direction that positive charge would flow, from the positive terminal to
the negative terminal.

The conventional current flows from the positive terminal to the negative terminal, but depending on the
actual situation, positive charges, negative charges, or both may move. In metal wires, for example, current is
carried by electrons—that is, negative charges move. In ionic solutions, such as salt water, both positive and
negative charges move. This is also true in nerve cells. A Van de Graaff generator, used for nuclear research,
can produce a current of pure positive charges, such as protons. In the Tevatron Accelerator at Fermilab,
before it was shut down in 2011, beams of protons and antiprotons traveling in opposite directions were
collided. The protons are positive and therefore their current is in the same direction as they travel. The
antiprotons are negativity charged and thus their current is in the opposite direction that the actual particles
travel.

A closer look at the current flowing through a wire is shown in Figure 9.6. The figure illustrates the movement
of charged particles that compose a current. The fact that conventional current is taken to be in the direction
that positive charge would flow can be traced back to American scientist and statesman Benjamin Franklin in
the 1700s. Having no knowledge of the particles that make up the atom (namely the proton, electron, and
neutron), Franklin believed that electrical current flowed from a material that had more of an “electrical fluid”
and to a material that had less of this “electrical fluid.” He coined the term positive for the material that had
more of this electrical fluid and negative for the material that lacked the electrical fluid. He surmised that
current would flow from the material with more electrical fluid—the positive material—to the negative material,
which has less electrical fluid. Franklin called this direction of current a positive current flow. This was pretty
advanced thinking for a man who knew nothing about the atom.

Figure 9.6 Current I is the rate at which charge moves through an area A, such as the cross-section of a wire. Conventional current is

defined to move in the direction of the electrical field. (a) Positive charges move in the direction of the electrical field, which is the same

direction as conventional current. (b) Negative charges move in the direction opposite to the electrical field. Conventional current is in the

direction opposite to the movement of negative charge. The flow of electrons is sometimes referred to as electronic flow.

We now know that a material is positive if it has a greater number of protons than electrons, and it is negative if
it has a greater number of electrons than protons. In a conducting metal, the current flow is due primarily to
electrons flowing from the negative material to the positive material, but for historical reasons, we consider the
positive current flow and the current is shown to flow from the positive terminal of the battery to the negative
terminal.

It is important to realize that an electrical field is present in conductors and is responsible for producing the
current (Figure 9.6). In previous chapters, we considered the static electrical case, where charges in a
conductor quickly redistribute themselves on the surface of the conductor in order to cancel out the external
electrical field and restore equilibrium. In the case of an electrical circuit, the charges are prevented from ever
reaching equilibrium by an external source of electric potential, such as a battery. The energy needed to move
the charge is supplied by the electric potential from the battery.

Although the electrical field is responsible for the motion of the charges in the conductor, the work done on the
charges by the electrical field does not increase the kinetic energy of the charges. We will show that the
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electrical field is responsible for keeping the electric charges moving at a “drift velocity.”

9.2 Model of Conduction in Metals
Learning Objectives
By the end of this section, you will be able to:

• Define the drift velocity of charges moving through a metal
• Define the vector current density
• Describe the operation of an incandescent lamp

When electrons move through a conducting wire, they do not move at a constant velocity, that is, the electrons
do not move in a straight line at a constant speed. Rather, they interact with and collide with atoms and other
free electrons in the conductor. Thus, the electrons move in a zig-zag fashion and drift through the wire. We
should also note that even though it is convenient to discuss the direction of current, current is a scalar
quantity. When discussing the velocity of charges in a current, it is more appropriate to discuss the current
density. We will come back to this idea at the end of this section.

Drift Velocity
Electrical signals move very rapidly. Telephone conversations carried by currents in wires cover large
distances without noticeable delays. Lights come on as soon as a light switch is moved to the ‘on’ position. Most
electrical signals carried by currents travel at speeds on the order of , a significant fraction of the speed
of light. Interestingly, the individual charges that make up the current move much slower on average, typically
drifting at speeds on the order of . How do we reconcile these two speeds, and what does it tell us
about standard conductors?

The high speed of electrical signals results from the fact that the force between charges acts rapidly at a
distance. Thus, when a free charge is forced into a wire, as in Figure 9.7, the incoming charge pushes other
charges ahead of it due to the repulsive force between like charges. These moving charges push on charges
farther down the line. The density of charge in a system cannot easily be increased, so the signal is passed on
rapidly. The resulting electrical shock wave moves through the system at nearly the speed of light. To be
precise, this fast-moving signal, or shock wave, is a rapidly propagating change in the electrical field.

Figure 9.7 When charged particles are forced into this volume of a conductor, an equal number are quickly forced to leave. The repulsion

between like charges makes it difficult to increase the number of charges in a volume. Thus, as one charge enters, another leaves almost

immediately, carrying the signal rapidly forward.

Good conductors have large numbers of free charges. In metals, the free charges are free electrons. (In fact,
good electrical conductors are often good heat conductors too, because large numbers of free electrons can
transport thermal energy as well as carry electrical current.) Figure 9.8 shows how free electrons move
through an ordinary conductor. The distance that an individual electron can move between collisions with
atoms or other electrons is quite small. The electron paths thus appear nearly random, like the motion of
atoms in a gas. But there is an electrical field in the conductor that causes the electrons to drift in the direction
shown (opposite to the field, since they are negative). The drift velocity is the average velocity of the free
charges. Drift velocity is quite small, since there are so many free charges. If we have an estimate of the density
of free electrons in a conductor, we can calculate the drift velocity for a given current. The larger the density,
the lower the velocity required for a given current.
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Figure 9.8 Free electrons moving in a conductor make many collisions with other electrons and other particles. A typical path of one

electron is shown. The average velocity of the free charges is called the drift velocity and for electrons, it is in the direction opposite to

the electrical field. The collisions normally transfer energy to the conductor, requiring a constant supply of energy to maintain a steady

current.

Free-electron collisions transfer energy to the atoms of the conductor. The electrical field does work in moving
the electrons through a distance, but that work does not increase the kinetic energy (nor speed) of the
electrons. The work is transferred to the conductor’s atoms, often increasing temperature. Thus, a continuous
power input is required to keep a current flowing. (An exception is superconductors, for reasons we shall
explore in a later chapter. Superconductors can have a steady current without a continual supply of energy—a
great energy savings.) For a conductor that is not a superconductor, the supply of energy can be useful, as in an
incandescent light bulb filament (Figure 9.9). The supply of energy is necessary to increase the temperature of
the tungsten filament, so that the filament glows.

Figure 9.9 The incandescent lamp is a simple design. A tungsten filament is placed in a partially evacuated glass envelope. One end of the

filament is attached to the screw base, which is made out of a conducting material. The second end of the filament is attached to a second

contact in the base of the bulb. The two contacts are separated by an insulating material. Current flows through the filament, and the

temperature of the filament becomes large enough to cause the filament to glow and produce light. However, these bulbs are not very

energy efficient, as evident from the heat coming from the bulb. In the year 2012, the United States, along with many other countries,

began to phase out incandescent lamps in favor of more energy-efficient lamps, such as light-emitting diode (LED) lamps and compact

fluorescent lamps (CFL) (credit right: modification of work by Serge Saint).

We can obtain an expression for the relationship between current and drift velocity by considering the number
of free charges in a segment of wire, as illustrated in Figure 9.10. The number of free charges per unit volume,
or the number density of free charges, is given the symbol n where . The value of n
depends on the material. The shaded segment has a volume , so that the number of free charges in the
volume is . The charge dQ in this segment is thus , where q is the amount of charge on each
carrier. (The magnitude of the charge of electrons is .) Current is charge moved per unit
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time; thus, if all the original charges move out of this segment in time dt, the current is

Rearranging terms gives

where is the drift velocity, n is the free charge density, A is the cross-sectional area of the wire, and I is the
current through the wire. The carriers of the current each have charge q and move with a drift velocity of
magnitude .

Figure 9.10 All the charges in the shaded volume of this wire move out in a time dt, having a drift velocity of magnitude .

Note that simple drift velocity is not the entire story. The speed of an electron is sometimes much greater than
its drift velocity. In addition, not all of the electrons in a conductor can move freely, and those that do move
might move somewhat faster or slower than the drift velocity. So what do we mean by free electrons?

Atoms in a metallic conductor are packed in the form of a lattice structure. Some electrons are far enough
away from the atomic nuclei that they do not experience the attraction of the nuclei as strongly as the inner
electrons do. These are the free electrons. They are not bound to a single atom but can instead move freely
among the atoms in a “sea” of electrons. When an electrical field is applied, these free electrons respond by
accelerating. As they move, they collide with the atoms in the lattice and with other electrons, generating
thermal energy, and the conductor gets warmer. In an insulator, the organization of the atoms and the
structure do not allow for such free electrons.

As you know, electric power is usually supplied to equipment and appliances through round wires made of a
conducting material (copper, aluminum, silver, or gold) that are stranded or solid. The diameter of the wire
determines the current-carrying capacity—the larger the diameter, the greater the current-carrying capacity.
Even though the current-carrying capacity is determined by the diameter, wire is not normally characterized
by the diameter directly. Instead, wire is commonly sold in a unit known as “gauge.” Wires are manufactured
by passing the material through circular forms called “drawing dies.” In order to make thinner wires,
manufacturers draw the wires through multiple dies of successively thinner diameter. Historically, the gauge
of the wire was related to the number of drawing processes required to manufacture the wire. For this reason,
the larger the gauge, the smaller the diameter. In the United States, the American Wire Gauge (AWG) was
developed to standardize the system. Household wiring commonly consists of 10-gauge (2.588-mm diameter)
to 14-gauge (1.628-mm diameter) wire. A device used to measure the gauge of wire is shown in Figure 9.11.

9.4
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Figure 9.11 A device for measuring the gauge of electrical wire. As you can see, higher gauge numbers indicate thinner wires. (credit:

Joseph J. Trout)

EXAMPLE 9.3

Calculating Drift Velocity in a Common Wire
Calculate the drift velocity of electrons in a copper wire with a diameter of 2.053 mm (12-gauge) carrying a
20.0-A current, given that there is one free electron per copper atom. (Household wiring often contains
12-gauge copper wire, and the maximum current allowed in such wire is usually 20.0 A.) The density of copper
is and the atomic mass of copper is 63.54 g/mol.

Strategy
We can calculate the drift velocity using the equation . The current is and

is the charge of an electron. We can calculate the area of a cross-section of the wire using
the formula , where r is one-half the diameter. The given diameter is 2.053 mm, so r is 1.0265 mm. We
are given the density of copper, , and the atomic mass of copper is . We can use
these two quantities along with Avogadro’s number, , to determine n, the number of
free electrons per cubic meter.

Solution
First, we calculate the density of free electrons in copper. There is one free electron per copper atom.
Therefore, the number of free electrons is the same as the number of copper atoms per . We can now find n
as follows:

The cross-sectional area of the wire is

Rearranging to isolate drift velocity gives
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Significance
The minus sign indicates that the negative charges are moving in the direction opposite to conventional
current. The small value for drift velocity (on the order of confirms that the signal moves on the
order of times faster (about than the charges that carry it.

CHECK YOUR UNDERSTANDING 9.3

In Example 9.4, the drift velocity was calculated for a 2.053-mm diameter (12-gauge) copper wire carrying a
20-amp current. Would the drift velocity change for a 1.628-mm diameter (14-gauge) wire carrying the same
20-amp current?

Current Density
Although it is often convenient to attach a negative or positive sign to indicate the overall direction of motion of
the charges, current is a scalar quantity, . It is often necessary to discuss the details of the motion of the
charge, instead of discussing the overall motion of the charges. In such cases, it is necessary to discuss the
current density, , a vector quantity. The current density is the flow of charge through an infinitesimal area,
divided by the area. The current density must take into account the local magnitude and direction of the
charge flow, which varies from point to point. The unit of current density is ampere per meter squared, and the
direction is defined as the direction of net flow of positive charges through the area.

The relationship between the current and the current density can be seen in Figure 9.12. The differential
current flow through the area is found as

where is the angle between the area and the current density. The total current passing through area can
be found by integrating over the area,

Consider the magnitude of the current density, which is the current divided by the area:

Thus, the current density is . If q is positive, is in the same direction as the electrical field . If q is
negative, is in the opposite direction of . Either way, the direction of the current density is in the
direction of the electrical field .

Figure 9.12 The current density is defined as the current passing through an infinitesimal cross-sectional area divided by the area. The

direction of the current density is the direction of the net flow of positive charges and the magnitude is equal to the current divided by the

infinitesimal area.

9.5
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EXAMPLE 9.4

Calculating the Current Density in a Wire
The current supplied to a lamp with a 100-W light bulb is 0.87 amps. The lamp is wired using a copper wire
with diameter 2.588 mm (10-gauge). Find the magnitude of the current density.

Strategy
The current density is the current moving through an infinitesimal cross-sectional area divided by the area.
We can calculate the magnitude of the current density using . The current is given as 0.87 A. The cross-
sectional area can be calculated to be .

Solution
Calculate the current density using the given current and the area, found to be .

Significance
The current density in a conducting wire depends on the current through the conducting wire and the cross-
sectional area of the wire. For a given current, as the diameter of the wire increases, the charge density
decreases.

CHECK YOUR UNDERSTANDING 9.4

The current density is proportional to the current and inversely proportional to the area. If the current density
in a conducting wire increases, what would happen to the drift velocity of the charges in the wire?

What is the significance of the current density? The current density is proportional to the current, and the
current is the number of charges that pass through a cross-sectional area per second. The charges move
through the conductor, accelerated by the electric force provided by the electrical field. The electrical field is
created when a voltage is applied across the conductor. In Ohm’s Law, we will use this relationship between the
current density and the electrical field to examine the relationship between the current through a conductor
and the voltage applied.

9.3 Resistivity and Resistance
Learning Objectives
By the end of this section, you will be able to:

• Differentiate between resistance and resistivity
• Define the term conductivity
• Describe the electrical component known as a resistor
• State the relationship between resistance of a resistor and its length, cross-sectional area, and resistivity
• State the relationship between resistivity and temperature

What drives current? We can think of various devices—such as batteries, generators, wall outlets, and so
on—that are necessary to maintain a current. All such devices create a potential difference and are referred to
as voltage sources. When a voltage source is connected to a conductor, it applies a potential difference V that
creates an electrical field. The electrical field, in turn, exerts force on free charges, causing current. The
amount of current depends not only on the magnitude of the voltage, but also on the characteristics of the
material that the current is flowing through. The material can resist the flow of the charges, and the measure of
how much a material resists the flow of charges is known as the resistivity. This resistivity is crudely analogous
to the friction between two materials that resists motion.
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Resistivity
When a voltage is applied to a conductor, an electrical field is created, and charges in the conductor feel a
force due to the electrical field. The current density that results depends on the electrical field and the
properties of the material. This dependence can be very complex. In some materials, including metals at a
given temperature, the current density is approximately proportional to the electrical field. In these cases, the
current density can be modeled as

where is the electrical conductivity. The electrical conductivity is analogous to thermal conductivity and is a
measure of a material’s ability to conduct or transmit electricity. Conductors have a higher electrical
conductivity than insulators. Since the electrical conductivity is , the units are

Here, we define a unit named the ohm with the Greek symbol uppercase omega, . The unit is named after
Georg Simon Ohm, whom we will discuss later in this chapter. The is used to avoid confusion with the
number 0. One ohm equals one volt per amp: . The units of electrical conductivity are therefore

.

Conductivity is an intrinsic property of a material. Another intrinsic property of a material is the resistivity, or
electrical resistivity. The resistivity of a material is a measure of how strongly a material opposes the flow of
electrical current. The symbol for resistivity is the lowercase Greek letter rho, , and resistivity is the
reciprocal of electrical conductivity:

The unit of resistivity in SI units is the ohm-meter . We can define the resistivity in terms of the
electrical field and the current density,

The greater the resistivity, the larger the field needed to produce a given current density. The lower the
resistivity, the larger the current density produced by a given electrical field. Good conductors have a high
conductivity and low resistivity. Good insulators have a low conductivity and a high resistivity. Table 9.1 lists
resistivity and conductivity values for various materials.

Material
Conductivity, Resistivity,

Temperature
Coefficient,

Conductors

Silver 0.0038

Copper 0.0039

Gold 0.0034

Aluminum 0.0039

Tungsten 0.0045
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Material
Conductivity, Resistivity,

Temperature
Coefficient,

Iron 0.0065

Platinum 0.0039

Steel

Lead

Manganin (Cu, Mn, Ni alloy) 0.000002

Constantan (Cu, Ni alloy) 0.00003

Mercury 0.0009

Nichrome (Ni, Fe, Cr alloy) 0.0004

Semiconductors[1]

Carbon (pure) −0.0005

Carbon −0.0005

Germanium (pure) −0.048

Germanium −0.050

Silicon (pure) 2300 −0.075

Silicon −0.07

Insulators

Amber

Glass

Lucite

Mica

Quartz (fused)

Rubber (hard)

Sulfur

386 9 • Current and Resistance

Access for free at openstax.org.



Material
Conductivity, Resistivity,

Temperature
Coefficient,

TeflonTM

Wood

Table 9.1 Resistivities and Conductivities of Various Materials at 20 °C [1] Values depend strongly on amounts
and types of impurities.

The materials listed in the table are separated into categories of conductors, semiconductors, and insulators,
based on broad groupings of resistivity. Conductors have the smallest resistivity, and insulators have the
largest; semiconductors have intermediate resistivity. Conductors have varying but large, free charge
densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors
are intermediate, having far fewer free charges than conductors, but having properties that make the number
of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique
properties of semiconductors are put to use in modern electronics, as we will explore in later chapters.

CHECK YOUR UNDERSTANDING 9.5

Copper wires use routinely used for extension cords and house wiring for several reasons. Copper has the
highest electrical conductivity rating, and therefore the lowest resistivity rating, of all nonprecious metals. Also
important is the tensile strength, where the tensile strength is a measure of the force required to pull an object
to the point where it breaks. The tensile strength of a material is the maximum amount of tensile stress it can
take before breaking. Copper has a high tensile strength, . A third important characteristic is

ductility. Ductility is a measure of a material’s ability to be drawn into wires and a measure of the flexibility of
the material, and copper has a high ductility. Summarizing, for a conductor to be a suitable candidate for
making wire, there are at least three important characteristics: low resistivity, high tensile strength, and high
ductility. What other materials are used for wiring and what are the advantages and disadvantages?

INTERACTIVE

View this interactive simulation (https://openstax.org/l/21resistwire) to see what the effects of the cross-
sectional area, the length, and the resistivity of a wire are on the resistance of a conductor. Adjust the variables
using slide bars and see if the resistance becomes smaller or larger.

Temperature Dependence of Resistivity
Looking back at Table 9.1, you will see a column labeled “Temperature Coefficient.” The resistivity of some
materials has a strong temperature dependence. In some materials, such as copper, the resistivity increases
with increasing temperature. In fact, in most conducting metals, the resistivity increases with increasing
temperature. The increasing temperature causes increased vibrations of the atoms in the lattice structure of
the metals, which impede the motion of the electrons. In other materials, such as carbon, the resistivity
decreases with increasing temperature. In many materials, the dependence is approximately linear and can be
modeled using a linear equation:

where is the resistivity of the material at temperature T, is the temperature coefficient of the material, and
is the resistivity at , usually taken as .

Note also that the temperature coefficient is negative for the semiconductors listed in Table 9.1, meaning

9.7
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that their resistivity decreases with increasing temperature. They become better conductors at higher
temperature, because increased thermal agitation increases the number of free charges available to carry
current. This property of decreasing with temperature is also related to the type and amount of impurities
present in the semiconductors.

Resistance
We now consider the resistance of a wire or component. The resistance is a measure of how difficult it is to
pass current through a wire or component. Resistance depends on the resistivity. The resistivity is a
characteristic of the material used to fabricate a wire or other electrical component, whereas the resistance is
a characteristic of the wire or component.

To calculate the resistance, consider a section of conducting wire with cross-sectional area A, length L, and
resistivity A battery is connected across the conductor, providing a potential difference across it (Figure
9.13). The potential difference produces an electrical field that is proportional to the current density, according
to .

Figure 9.13 A potential provided by a battery is applied to a segment of a conductor with a cross-sectional area A and a length L.

The magnitude of the electrical field across the segment of the conductor is equal to the voltage divided by the
length, , and the magnitude of the current density is equal to the current divided by the cross-
sectional area, Using this information and recalling that the electrical field is proportional to the
resistivity and the current density, we can see that the voltage is proportional to the current:

The unit of resistance is the ohm, . For a given voltage, the higher the resistance, the lower the current.

Resistors
A common component in electronic circuits is the resistor. The resistor can be used to reduce current flow or

Resistance

The ratio of the voltage to the current is defined as the resistance R:

The resistance of a cylindrical segment of a conductor is equal to the resistivity of the material times the
length divided by the area:

9.8
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provide a voltage drop. Figure 9.14 shows the symbols used for a resistor in schematic diagrams of a circuit.
Two commonly used standards for circuit diagrams are provided by the American National Standard Institute
(ANSI, pronounced “AN-see”) and the International Electrotechnical Commission (IEC). Both systems are
commonly used. We use the ANSI standard in this text for its visual recognition, but we note that for larger,
more complex circuits, the IEC standard may have a cleaner presentation, making it easier to read.

Figure 9.14 Symbols for a resistor used in circuit diagrams. (a) The ANSI symbol; (b) the IEC symbol.

Material and shape dependence of resistance
A resistor can be modeled as a cylinder with a cross-sectional area A and a length L, made of a material with a
resistivity (Figure 9.15). The resistance of the resistor is .

Figure 9.15 A model of a resistor as a uniform cylinder of length L and cross-sectional area A. Its resistance to the flow of current is

analogous to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional

area A, the smaller its resistance.

The most common material used to make a resistor is carbon. A carbon track is wrapped around a ceramic
core, and two copper leads are attached. A second type of resistor is the metal film resistor, which also has a
ceramic core. The track is made from a metal oxide material, which has semiconductive properties similar to
carbon. Again, copper leads are inserted into the ends of the resistor. The resistor is then painted and marked
for identification. A resistor has four colored bands, as shown in Figure 9.16.

Figure 9.16 Many resistors resemble the figure shown above. The four bands are used to identify the resistor. The first two colored bands

represent the first two digits of the resistance of the resistor. The third color is the multiplier. The fourth color represents the tolerance of

9.3 • Resistivity and Resistance 389



the resistor. The resistor shown has a resistance of .

Resistances range over many orders of magnitude. Some ceramic insulators, such as those used to support
power lines, have resistances of or more. A dry person may have a hand-to-foot resistance of ,
whereas the resistance of the human heart is about . A meter-long piece of large-diameter copper wire
may have a resistance of , and superconductors have no resistance at all at low temperatures. As we
have seen, resistance is related to the shape of an object and the material of which it is composed.

EXAMPLE 9.5

Current Density, Resistance, and Electrical field for a Current-Carrying Wire
Calculate the current density, resistance, and electrical field of a 5-m length of copper wire with a diameter of
2.053 mm (12-gauge) carrying a current of .

Strategy
We can calculate the current density by first finding the cross-sectional area of the wire, which is

and the definition of current density . The resistance can be found using the length of
the wire , the area, and the resistivity of copper , where . The
resistivity and current density can be used to find the electrical field.

Solution
First, we calculate the current density:

The resistance of the wire is

Finally, we can find the electrical field:

Significance
From these results, it is not surprising that copper is used for wires for carrying current because the resistance
is quite small. Note that the current density and electrical field are independent of the length of the wire, but
the voltage depends on the length.

The resistance of an object also depends on temperature, since is directly proportional to For a cylinder,
we know , so if L and A do not change greatly with temperature, R has the same temperature
dependence as (Examination of the coefficients of linear expansion shows them to be about two orders of
magnitude less than typical temperature coefficients of resistivity, so the effect of temperature on L and A is
about two orders of magnitude less than on Thus,

is the temperature dependence of the resistance of an object, where is the original resistance (usually
taken to be and R is the resistance after a temperature change The color code gives the
resistance of the resistor at a temperature of .

Numerous thermometers are based on the effect of temperature on resistance (Figure 9.17). One of the most
common thermometers is based on the thermistor, a semiconductor crystal with a strong temperature
dependence, the resistance of which is measured to obtain its temperature. The device is small, so that it
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quickly comes into thermal equilibrium with the part of a person it touches.

Figure 9.17 These familiar thermometers are based on the automated measurement of a thermistor’s temperature-dependent

resistance.

EXAMPLE 9.6

Calculating Resistance
Although caution must be used in applying and for temperature changes
greater than , for tungsten, the equations work reasonably well for very large temperature changes. A
tungsten filament at has a resistance of . What would the resistance be if the temperature is
increased to ?

Strategy
This is a straightforward application of , since the original resistance of the filament is given
as and the temperature change is .

Solution
The resistance of the hotter filament R is obtained by entering known values into the above equation:

Significance
Notice that the resistance changes by more than a factor of 10 as the filament warms to the high temperature
and the current through the filament depends on the resistance of the filament and the voltage applied. If the
filament is used in an incandescent light bulb, the initial current through the filament when the bulb is first
energized will be higher than the current after the filament reaches the operating temperature.

CHECK YOUR UNDERSTANDING 9.6

A strain gauge is an electrical device to measure strain, as shown below. It consists of a flexible, insulating
backing that supports a conduction foil pattern. The resistance of the foil changes as the backing is stretched.
How does the strain gauge resistance change? Is the strain gauge affected by temperature changes?
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EXAMPLE 9.7

The Resistance of Coaxial Cable
Long cables can sometimes act like antennas, picking up electronic noise, which are signals from other
equipment and appliances. Coaxial cables are used for many applications that require this noise to be
eliminated. For example, they can be found in the home in cable TV connections or other audiovisual
connections. Coaxial cables consist of an inner conductor of radius surrounded by a second, outer
concentric conductor with radius (Figure 9.18). The space between the two is normally filled with an
insulator such as polyethylene plastic. A small amount of radial leakage current occurs between the two
conductors. Determine the resistance of a coaxial cable of length L.

Figure 9.18 Coaxial cables consist of two concentric conductors separated by insulation. They are often used in cable TV or other

audiovisual connections.

Strategy
We cannot use the equation directly. Instead, we look at concentric cylindrical shells, with thickness
dr, and integrate.

Solution
We first find an expression for dR and then integrate from to ,
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Significance
The resistance of a coaxial cable depends on its length, the inner and outer radii, and the resistivity of the
material separating the two conductors. Since this resistance is not infinite, a small leakage current occurs
between the two conductors. This leakage current leads to the attenuation (or weakening) of the signal being
sent through the cable.

CHECK YOUR UNDERSTANDING 9.7

The resistance between the two conductors of a coaxial cable depends on the resistivity of the material
separating the two conductors, the length of the cable and the inner and outer radius of the two conductor. If
you are designing a coaxial cable, how does the resistance between the two conductors depend on these
variables?

INTERACTIVE

View this simulation (https://openstax.org/l/21batteryresist) to see how the voltage applied and the resistance
of the material the current flows through affects the current through the material. You can visualize the
collisions of the electrons and the atoms of the material effect the temperature of the material.

9.4 Ohm's Law
Learning Objectives
By the end of this section, you will be able to:

• Describe Ohm’s law
• Recognize when Ohm’s law applies and when it does not

We have been discussing three electrical properties so far in this chapter: current, voltage, and resistance. It
turns out that many materials exhibit a simple relationship among the values for these properties, known as
Ohm’s law. Many other materials do not show this relationship, so despite being called Ohm’s law, it is not
considered a law of nature, like Newton’s laws or the laws of thermodynamics. But it is very useful for
calculations involving materials that do obey Ohm’s law.

Description of Ohm’s Law
The current that flows through most substances is directly proportional to the voltage V applied to it. The
German physicist Georg Simon Ohm (1787–1854) was the first to demonstrate experimentally that the current
in a metal wire is directly proportional to the voltage applied:

This important relationship is the basis for Ohm’s law. It can be viewed as a cause-and-effect relationship,
with voltage the cause and current the effect. This is an empirical law, which is to say that it is an
experimentally observed phenomenon, like friction. Such a linear relationship doesn’t always occur. Any
material, component, or device that obeys Ohm’s law, where the current through the device is proportional to
the voltage applied, is known as an ohmic material or ohmic component. Any material or component that does
not obey Ohm’s law is known as a nonohmic material or nonohmic component.
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Ohm’s Experiment
In a paper published in 1827, Georg Ohm described an experiment in which he measured voltage across and
current through various simple electrical circuits containing various lengths of wire. A similar experiment is
shown in Figure 9.19. This experiment is used to observe the current through a resistor that results from an
applied voltage. In this simple circuit, a resistor is connected in series with a battery. The voltage is measured
with a voltmeter, which must be placed across the resistor (in parallel with the resistor). The current is
measured with an ammeter, which must be in line with the resistor (in series with the resistor).

Figure 9.19 The experimental set-up used to determine if a resistor is an ohmic or nonohmic device. (a) When the battery is attached, the

current flows in the clockwise direction and the voltmeter and ammeter have positive readings. (b) When the leads of the battery are

switched, the current flows in the counterclockwise direction and the voltmeter and ammeter have negative readings.

In this updated version of Ohm’s original experiment, several measurements of the current were made for
several different voltages. When the battery was hooked up as in Figure 9.19(a), the current flowed in the
clockwise direction and the readings of the voltmeter and ammeter were positive. Does the behavior of the
current change if the current flowed in the opposite direction? To get the current to flow in the opposite
direction, the leads of the battery can be switched. When the leads of the battery were switched, the readings
of the voltmeter and ammeter readings were negative because the current flowed in the opposite direction, in
this case, counterclockwise. Results of a similar experiment are shown in Figure 9.20.

Figure 9.20 A resistor is placed in a circuit with a battery. The voltage applied varies from −10.00 V to +10.00 V, increased by 1.00-V

394 9 • Current and Resistance

Access for free at openstax.org.



increments. A plot shows values of the voltage versus the current typical of what a casual experimenter might find.

In this experiment, the voltage applied across the resistor varies from −10.00 to +10.00 V, by increments of
1.00 V. The current through the resistor and the voltage across the resistor are measured. A plot is made of the
voltage versus the current, and the result is approximately linear. The slope of the line is the resistance, or the
voltage divided by the current. This result is known as Ohm’s law:

where V is the voltage measured in volts across the object in question, I is the current measured through the
object in amps, and R is the resistance in units of ohms. As stated previously, any device that shows a linear
relationship between the voltage and the current is known as an ohmic device. A resistor is therefore an ohmic
device.

EXAMPLE 9.8

Measuring Resistance
A carbon resistor at room temperature is attached to a 9.00-V battery and the current measured
through the resistor is 3.00 mA. (a) What is the resistance of the resistor measured in ohms? (b) If the
temperature of the resistor is increased to by heating the resistor, what is the current through the
resistor?

Strategy
(a) The resistance can be found using Ohm’s law. Ohm’s law states that , so the resistance can be found
using .

(b) First, the resistance is temperature dependent so the new resistance after the resistor has been heated can
be found using . The current can be found using Ohm’s law in the form .

Solution

a. Using Ohm’s law and solving for the resistance yields the resistance at room temperature:

b. The resistance at can be found using where the temperature coefficient for
carbon is . .
The current through the heated resistor is

Significance
A change in temperature of resulted in a 2.00% change in current. This may not seem like a very great
change, but changing electrical characteristics can have a strong effect on the circuits. For this reason, many
electronic appliances, such as computers, contain fans to remove the heat dissipated by components in the
electric circuits.

CHECK YOUR UNDERSTANDING 9.8

The voltage supplied to your house varies as . If a resistor is connected across this
voltage, will Ohm’s law still be valid?

INTERACTIVE

See how the equation form of Ohm’s law (https://openstax.org/l/21ohmslaw) relates to a simple circuit. Adjust

9.11
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the voltage and resistance, and see the current change according to Ohm’s law. The sizes of the symbols in the
equation change to match the circuit diagram.

Nonohmic devices do not exhibit a linear relationship between the voltage and the current. One such device is
the semiconducting circuit element known as a diode. A diode is a circuit device that allows current flow in
only one direction. A diagram of a simple circuit consisting of a battery, a diode, and a resistor is shown in
Figure 9.21. Although we do not cover the theory of the diode in this section, the diode can be tested to see if it
is an ohmic or a nonohmic device.

Figure 9.21 A diode is a semiconducting device that allows current flow only if the diode is forward biased, which means that the anode is

positive and the cathode is negative.

A plot of current versus voltage is shown in Figure 9.22. Note that the behavior of the diode is shown as current
versus voltage, whereas the resistor operation was shown as voltage versus current. A diode consists of an
anode and a cathode. When the anode is at a negative potential and the cathode is at a positive potential, as
shown in part (a), the diode is said to have reverse bias. With reverse bias, the diode has an extremely large
resistance and there is very little current flow—essentially zero current—through the diode and the resistor. As
the voltage applied to the circuit increases, the current remains essentially zero, until the voltage reaches the
breakdown voltage and the diode conducts current, as shown in Figure 9.22. When the battery and the
potential across the diode are reversed, making the anode positive and the cathode negative, the diode
conducts and current flows through the diode if the voltage is greater than 0.7 V. The resistance of the diode is
close to zero. (This is the reason for the resistor in the circuit; if it were not there, the current would become
very large.) You can see from the graph in Figure 9.22 that the voltage and the current do not have a linear
relationship. Thus, the diode is an example of a nonohmic device.

Figure 9.22 When the voltage across the diode is negative and small, there is very little current flow through the diode. As the voltage

reaches the breakdown voltage, the diode conducts. When the voltage across the diode is positive and greater than 0.7 V (the actual

voltage value depends on the diode), the diode conducts. As the voltage applied increases, the current through the diode increases, but the

voltage across the diode remains approximately 0.7 V.

Ohm’s law is commonly stated as , but originally it was stated as a microscopic view, in terms of the
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current density, the conductivity, and the electrical field. This microscopic view suggests the proportionality
comes from the drift velocity of the free electrons in the metal that results from an applied electrical

field. As stated earlier, the current density is proportional to the applied electrical field. The reformulation of
Ohm’s law is credited to Gustav Kirchhoff, whose name we will see again in the next chapter.

9.5 Electrical Energy and Power
Learning Objectives
By the end of this section, you will be able to:

• Express electrical power in terms of the voltage and the current
• Describe the power dissipated by a resistor in an electric circuit
• Calculate the energy efficiency and cost effectiveness of appliances and equipment

In an electric circuit, electrical energy is continuously converted into other forms of energy. For example, when
a current flows in a conductor, electrical energy is converted into thermal energy within the conductor. The
electrical field, supplied by the voltage source, accelerates the free electrons, increasing their kinetic energy
for a short time. This increased kinetic energy is converted into thermal energy through collisions with the
ions of the lattice structure of the conductor. In Work and Kinetic Energy, we defined power as the rate at which
work is done by a force measured in watts. Power can also be defined as the rate at which energy is transferred.
In this section, we discuss the time rate of energy transfer, or power, in an electric circuit.

Power in Electric Circuits
Power is associated by many people with electricity. Power transmission lines might come to mind. We also
think of light bulbs in terms of their power ratings in watts. What is the expression for electric power?

Let us compare a 25-W bulb with a 60-W bulb (Figure 9.23(a)). The 60-W bulb glows brighter than the 25-W
bulb. Although it is not shown, a 60-W light bulb is also warmer than the 25-W bulb. The heat and light is
produced by from the conversion of electrical energy. The kinetic energy lost by the electrons in collisions is
converted into the internal energy of the conductor and radiation. How are voltage, current, and resistance
related to electric power?

Figure 9.23 (a) Pictured above are two incandescent bulbs: a 25-W bulb (left) and a 60-W bulb (right). The 60-W bulb provides a higher

intensity light than the 25-W bulb. The electrical energy supplied to the light bulbs is converted into heat and light. (b) This compact

fluorescent light (CFL) bulb puts out the same intensity of light as the 60-W bulb, but at 1/4 to 1/10 the input power. (credit a: modification

of works by “Dickbauch”/Wikimedia Commons and Greg Westfall; credit b: modification of work by “dbgg1979”/Flickr)

To calculate electric power, consider a voltage difference existing across a material (Figure 9.24). The electric
potential is higher than the electric potential at , and the voltage difference is negative . As
discussed in Electric Potential, an electrical field exists between the two potentials, which points from the
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higher potential to the lower potential. Recall that the electrical potential is defined as the potential energy per
charge, , and the charge loses potential energy moving through the potential difference.

Figure 9.24 When there is a potential difference across a conductor, an electrical field is present that points in the direction from the

higher potential to the lower potential.

If the charge is positive, the charge experiences a force due to the electrical field . This force is
necessary to keep the charge moving. This force does not act to accelerate the charge through the entire
distance because of the interactions of the charge with atoms and free electrons in the material. The
speed, and therefore the kinetic energy, of the charge do not increase during the entire trip across , and
charge passing through area has the same drift velocity as the charge that passes through area .
However, work is done on the charge, by the electrical field, which changes the potential energy. Since the
change in the electrical potential difference is negative, the electrical field is found to be

The work done on the charge is equal to the electric force times the length at which the force is applied,

The charge moves at a drift velocity so the work done on the charge results in a loss of potential energy, but
the average kinetic energy remains constant. The lost electrical potential energy appears as thermal energy in
the material. On a microscopic scale, the energy transfer is due to collisions between the charge and the
molecules of the material, which leads to an increase in temperature in the material. The loss of potential
energy results in an increase in the temperature of the material, which is dissipated as radiation. In a resistor,
it is dissipated as heat, and in a light bulb, it is dissipated as heat and light.

The power dissipated by the material as heat and light is equal to the time rate of change of the work:

With a resistor, the voltage drop across the resistor is dissipated as heat. Ohm’s law states that the voltage
across the resistor is equal to the current times the resistance, . The power dissipated by the resistor is
therefore

If a resistor is connected to a battery, the power dissipated as radiant energy by the wires and the resistor is

equal to . The power supplied from the battery is equal to current times the voltage,
.
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Different insights can be gained from the three different expressions for electric power. For example,
implies that the lower the resistance connected to a given voltage source, the greater the power

delivered. Furthermore, since voltage is squared in , the effect of applying a higher voltage is
perhaps greater than expected. Thus, when the voltage is doubled to a 25-W bulb, its power nearly quadruples
to about 100 W, burning it out. If the bulb’s resistance remained constant, its power would be exactly 100 W,
but at the higher temperature, its resistance is higher, too.

EXAMPLE 9.9

Calculating Power in Electric Devices
A DC winch motor is rated at 20.00 A with a voltage of 115 V. When the motor is running at its maximum
power, it can lift an object with a weight of 4900.00 N a distance of 10.00 m, in 30.00 s, at a constant speed. (a)
What is the power consumed by the motor? (b) What is the power used in lifting the object? Ignore air
resistance. (c) Assuming that the difference in the power consumed by the motor and the power used lifting the
object are dissipated as heat by the resistance of the motor, estimate the resistance of the motor?

Strategy
(a) The power consumed by the motor can be found using . (b) The power used in lifting the object at a
constant speed can be found using , where the speed is the distance divided by the time. The upward
force supplied by the motor is equal to the weight of the object because the acceleration is zero. (c) The
resistance of the motor can be found using .

Solution

a. The power consumed by the motor is equal to and the current is given as 20.00 A and the voltage
is 115.00 V:

b. The power used lifting the object is equal to where the force is equal to the weight of the object
(1960 N) and the magnitude of the velocity is ,

c. The difference in the power equals and the resistance can be found
using :

Significance
The resistance of the motor is quite small. The resistance of the motor is due to many windings of copper wire.
The power dissipated by the motor can be significant since the thermal power dissipated by the motor is
proportional to the square of the current .

CHECK YOUR UNDERSTANDING 9.9

Electric Power

The electric power gained or lost by any device has the form

The power dissipated by a resistor has the form

9.12
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Electric motors have a reasonably high efficiency. A 100-hp motor can have an efficiency of 90% and a 1-hp
motor can have an efficiency of 80%. Why is it important to use high-performance motors?

A fuse (Figure 9.25) is a device that protects a circuit from currents that are too high. A fuse is basically a short
piece of wire between two contacts. As we have seen, when a current is running through a conductor, the
kinetic energy of the charge carriers is converted into thermal energy in the conductor. The piece of wire in the
fuse is under tension and has a low melting point. The wire is designed to heat up and break at the rated
current. The fuse is destroyed and must be replaced, but it protects the rest of the circuit. Fuses act quickly,
but there is a small time delay while the wire heats up and breaks.

Figure 9.25 A fuse consists of a piece of wire between two contacts. When a current passes through the wire that is greater than the rated

current, the wire melts, breaking the connection. Pictured is a “blown” fuse where the wire broke protecting a circuit (credit: modification of

work by “Shardayyy”/Flickr).

Circuit breakers are also rated for a maximum current, and open to protect the circuit, but can be reset. Circuit
breakers react much faster. The operation of circuit breakers is not within the scope of this chapter and will be
discussed in later chapters. Another method of protecting equipment and people is the ground fault circuit
interrupter (GFCI), which is common in bathrooms and kitchens. The GFCI outlets respond very quickly to
changes in current. These outlets open when there is a change in magnetic field produced by current-carrying
conductors, which is also beyond the scope of this chapter and is covered in a later chapter.

The Cost of Electricity
The more electric appliances you use and the longer they are left on, the higher your electric bill. This familiar
fact is based on the relationship between energy and power. You pay for the energy used. Since , we see
that

is the energy used by a device using power P for a time interval t. If power is delivered at a constant rate, then
then the energy can be found by . For example, the more light bulbs burning, the greater P used; the
longer they are on, the greater t is.

The energy unit on electric bills is the kilowatt-hour , consistent with the relationship . It is easy
to estimate the cost of operating electrical appliances if you have some idea of their power consumption rate in
watts or kilowatts, the time they are on in hours, and the cost per kilowatt-hour for your electric utility.
Kilowatt-hours, like all other specialized energy units such as food calories, can be converted into joules. You
can prove to yourself that .

The electrical energy (E) used can be reduced either by reducing the time of use or by reducing the power
consumption of that appliance or fixture. This not only reduces the cost but also results in a reduced impact on
the environment. Improvements to lighting are some of the fastest ways to reduce the electrical energy used in
a home or business. About 20% of a home’s use of energy goes to lighting, and the number for commercial
establishments is closer to 40%. Fluorescent lights are about four times more efficient than incandescent
lights—this is true for both the long tubes and the compact fluorescent lights (CFLs). (See Figure 9.23(b).) Thus,
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a 60-W incandescent bulb can be replaced by a 15-W CFL, which has the same brightness and color. CFLs have
a bent tube inside a globe or a spiral-shaped tube, all connected to a standard screw-in base that fits standard
incandescent light sockets. (Original problems with color, flicker, shape, and high initial investment for CFLs
have been addressed in recent years.)

The heat transfer from these CFLs is less, and they last up to 10 times longer than incandescent bulbs. The
significance of an investment in such bulbs is addressed in the next example. New white LED lights (which are
clusters of small LED bulbs) are even more efficient (twice that of CFLs) and last five times longer than CFLs.

EXAMPLE 9.10

Calculating the Cost Effectiveness of LED Bulb
The typical replacement for a 100-W incandescent bulb is a 20-W LED bulb. The 20-W LED bulb can provide
the same amount of light output as the 100-W incandescent light bulb. What is the cost savings for using the
LED bulb in place of the incandescent bulb for one year, assuming $0.10 per kilowatt-hour is the average
energy rate charged by the power company? Assume that the bulb is turned on for three hours a day.

Strategy
(a) Calculate the energy used during the year for each bulb, using .

(b) Multiply the energy by the cost.

Solution

a. Calculate the power for each bulb.

b. Calculate the cost for each.

Significance
A LED bulb uses 80% less energy than the incandescent bulb, saving $8.76 over the incandescent bulb for one
year. The LED bulb can cost $20.00 and the 100-W incandescent bulb can cost $0.75, which should be
calculated into the computation. A typical lifespan of an incandescent bulb is 1200 hours and is 50,000 hours
for the LED bulb. The incandescent bulb would last 1.08 years at 3 hours a day and the LED bulb would last
45.66 years. The initial cost of the LED bulb is high, but the cost to the home owner will be $0.69 for the
incandescent bulbs versus $0.44 for the LED bulbs per year. (Note that the LED bulbs are coming down in
price.) The cost savings per year is approximately $8.50, and that is just for one bulb.

CHECK YOUR UNDERSTANDING 9.10

Is the efficiency of the various light bulbs the only consideration when comparing the various light bulbs?

Changing light bulbs from incandescent bulbs to CFL or LED bulbs is a simple way to reduce energy
consumption in homes and commercial sites. CFL bulbs operate with a much different mechanism than do
incandescent lights. The mechanism is complex and beyond the scope of this chapter, but here is a very
general description of the mechanism. CFL bulbs contain argon and mercury vapor housed within a spiral-
shaped tube. The CFL bulbs use a “ballast” that increases the voltage used by the CFL bulb. The ballast produce
an electrical current, which passes through the gas mixture and excites the gas molecules. The excited gas
molecules produce ultraviolet (UV) light, which in turn stimulates the fluorescent coating on the inside of the
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tube. This coating fluoresces in the visible spectrum, emitting visible light. Traditional fluorescent tubes and
CFL bulbs had a short time delay of up to a few seconds while the mixture was being “warmed up” and the
molecules reached an excited state. It should be noted that these bulbs do contain mercury, which is
poisonous, but if the bulb is broken, the mercury is never released. Even if the bulb is broken, the mercury
tends to remain in the fluorescent coating. The amount is also quite small and the advantage of the energy
saving may outweigh the disadvantage of using mercury.

The CFL light bulbs are being replaced with LED light bulbs, where LED stands for “light-emitting diode.” The
diode was briefly discussed as a nonohmic device, made of semiconducting material, which essentially
permits current flow in one direction. LEDs are a special type of diode made of semiconducting materials
infused with impurities in combinations and concentrations that enable the extra energy from the movement
of the electrons during electrical excitation to be converted into visible light. Semiconducting devices will be
explained in greater detail in Condensed Matter Physics.

Commercial LEDs are quickly becoming the standard for commercial and residential lighting, replacing
incandescent and CFL bulbs. They are designed for the visible spectrum and are constructed from gallium
doped with arsenic and phosphorous atoms. The color emitted from an LED depends on the materials used in
the semiconductor and the current. In the early years of LED development, small LEDs found on circuit boards
were red, green, and yellow, but LED light bulbs can now be programmed to produce millions of colors of light
as well as many different hues of white light.

Comparison of Incandescent, CFL, and LED Light Bulbs
The energy savings can be significant when replacing an incandescent light bulb or a CFL light bulb with an
LED light. Light bulbs are rated by the amount of power that the bulb consumes, and the amount of light output
is measured in lumens. The lumen (lm) is the SI -derived unit of luminous flux and is a measure of the total
quantity of visible light emitted by a source. A 60-W incandescent light bulb can be replaced with a 13- to 15-W
CFL bulb or a 6- to 8-W LED bulb, all three of which have a light output of approximately 800 lm. A table of light
output for some commonly used light bulbs appears in Table 9.2.

The life spans of the three types of bulbs are significantly different. An LED bulb has a life span of 50,000
hours, whereas the CFL has a lifespan of 8000 hours and the incandescent lasts a mere 1200 hours. The LED
bulb is the most durable, easily withstanding rough treatment such as jarring and bumping. The incandescent
light bulb has little tolerance to the same treatment since the filament and glass can easily break. The CFL bulb
is also less durable than the LED bulb because of its glass construction. The amount of heat emitted is 3.4 btu/h
for the 8-W LED bulb, 85 btu/h for the 60-W incandescent bulb, and 30 btu/h for the CFL bulb. As mentioned
earlier, a major drawback of the CFL bulb is that it contains mercury, a neurotoxin, and must be disposed of as
hazardous waste. From these data, it is easy to understand why the LED light bulb is quickly becoming the
standard in lighting.

Light Output
(lumens)

LED Light Bulbs
(watts)

Incandescent Light Bulbs
(watts)

CFL Light Bulbs
(watts)

450 4−5 40 9−13

800 6−8 60 13−15

1100 9−13 75 18−25

1600 16−20 100 23−30

2600 25−28 150 30−55

Table 9.2 Light Output of LED, Incandescent, and CFL Light Bulbs
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Summary of Relationships
In this chapter, we have discussed relationships between voltages, current, resistance, and power. Figure 9.26
shows a summary of the relationships between these measurable quantities for ohmic devices. (Recall that
ohmic devices follow Ohm’s law .) For example, if you need to calculate the power, use the pink section,

which shows that , , and .

Figure 9.26 This circle shows a summary of the equations for the relationships between power, current, voltage, and resistance.

Which equation you use depends on what values you are given, or you measure. For example if you are given
the current and the resistance, use . Although all the possible combinations may seem overwhelming,
don’t forget that they all are combinations of just two equations, Ohm’s law and power .

9.6 Superconductors
Learning Objectives
By the end of this section, you will be able to:

• Describe the phenomenon of superconductivity
• List applications of superconductivity

Touch the power supply of your laptop computer or some other device. It probably feels slightly warm. That
heat is an unwanted byproduct of the process of converting household electric power into a current that can be
used by your device. Although electric power is reasonably efficient, other losses are associated with it. As
discussed in the section on power and energy, transmission of electric power produces line losses. These
line losses exist whether the power is generated from conventional power plants (using coal, oil, or gas),
nuclear plants, solar plants, hydroelectric plants, or wind farms. These losses can be reduced, but not
eliminated, by transmitting using a higher voltage. It would be wonderful if these line losses could be
eliminated, but that would require transmission lines that have zero resistance. In a world that has a global
interest in not wasting energy, the reduction or elimination of this unwanted thermal energy would be a
significant achievement. Is this possible?

The Resistance of Mercury
In 1911, Heike Kamerlingh Onnes of Leiden University, a Dutch physicist, was looking at the temperature
dependence of the resistance of the element mercury. He cooled the sample of mercury and noticed the
familiar behavior of a linear dependence of resistance on temperature; as the temperature decreased, the
resistance decreased. Kamerlingh Onnes continued to cool the sample of mercury, using liquid helium. As the
temperature approached , the resistance abruptly went to zero (Figure 9.27). This
temperature is known as the critical temperature for mercury. The sample of mercury entered into a
phase where the resistance was absolutely zero. This phenomenon is known as superconductivity. (Note: If
you connect the leads of a three-digit ohmmeter across a conductor, the reading commonly shows up as
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. The resistance of the conductor is not actually zero, it is less than .) There are various methods
to measure very small resistances, such as the four-point method, but an ohmmeter is not an acceptable
method to use for testing resistance in superconductivity.

Figure 9.27 The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to the temperature of

about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.

Other Superconducting Materials
As research continued, several other materials were found to enter a superconducting phase, when the
temperature reached near absolute zero. In 1941, an alloy of niobium-nitride was found that could become
superconducting at and in 1953, vanadium-silicon was found to become
superconductive at The temperatures for the transition into superconductivity were
slowly creeping higher. Strangely, many materials that make good conductors, such as copper, silver, and gold,
do not exhibit superconductivity. Imagine the energy savings if transmission lines for electric power-
generating stations could be made to be superconducting at temperatures near room temperature! A
resistance of zero ohms means no losses and a great boost to reducing energy consumption. The problem
is that is still very cold and in the range of liquid helium temperatures. At this temperature, it is
not cost effective to transmit electrical energy because of the cooling requirements.

A large jump was seen in 1986, when a team of researchers, headed by Dr. Ching Wu Chu of Houston
University, fabricated a brittle, ceramic compound with a transition temperature of . The
ceramic material, composed of yttrium barium copper oxide (YBCO), was an insulator at room temperature.
Although this temperature still seems quite cold, it is near the boiling point of liquid nitrogen, a liquid
commonly used in refrigeration. You may have noticed refrigerated trucks traveling down the highway labeled
as “Liquid Nitrogen Cooled.”

YBCO ceramic is a material that could be useful for transmitting electrical energy because the cost saving of
reducing the losses are larger than the cost of cooling the superconducting cable, making it financially
feasible. There were and are many engineering problems to overcome. For example, unlike traditional
electrical cables, which are flexible and have a decent tensile strength, ceramics are brittle and would break
rather than stretch under pressure. Processes that are rather simple with traditional cables, such as making
connections, become difficult when working with ceramics. The problems are difficult and complex, and
material scientists and engineers are coming up with innovative solutions.

An interesting consequence of the resistance going to zero is that once a current is established in a
superconductor, it persists without an applied voltage source. Current loops in a superconductor have been set
up and the current loops have been observed to persist for years without decaying.

Zero resistance is not the only interesting phenomenon that occurs as the materials reach their transition
temperatures. A second effect is the exclusion of magnetic fields. This is known as the Meissner effect (Figure
9.28). A light, permanent magnet placed over a superconducting sample will levitate in a stable position above
the superconductor. High-speed trains have been developed that levitate on strong superconducting magnets,
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eliminating the friction normally experienced between the train and the tracks. In Japan, the Yamanashi
Maglev test line opened on April 3, 1997. In April 2015, the MLX01 test vehicle attained a speed of 374 mph
(603 km/h).

Figure 9.28 A small, strong magnet levitates over a superconductor cooled to liquid nitrogen temperature. The magnet levitates because

the superconductor excludes magnetic fields. (credit: Joseph J. Trout)

Table 9.3 shows a select list of elements, compounds, and high-temperature superconductors, along with the
critical temperatures for which they become superconducting. Each section is sorted from the highest critical
temperature to the lowest. Also listed is the critical magnetic field for some of the materials. This is the
strength of the magnetic field that destroys superconductivity. Finally, the type of the superconductor is listed.

There are two types of superconductors. There are 30 pure metals that exhibit zero resistivity below their
critical temperature and exhibit the Meissner effect, the property of excluding magnetic fields from the
interior of the superconductor while the superconductor is at a temperature below the critical temperature.
These metals are called Type I superconductors. The superconductivity exists only below their critical
temperatures and below a critical magnetic field strength. Type I superconductors are well described by the
BCS theory (described next). Type I superconductors have limited practical applications because the strength
of the critical magnetic field needed to destroy the superconductivity is quite low.

Type II superconductors are found to have much higher critical magnetic fields and therefore can carry much
higher current densities while remaining in the superconducting state. A collection of various ceramics
containing barium-copper-oxide have much higher critical temperatures for the transition into a
superconducting state. Superconducting materials that belong to this subcategory of the Type II
superconductors are often categorized as high-temperature superconductors.

Introduction to BCS Theory
Type I superconductors, along with some Type II superconductors can be modeled using the BCS theory,
proposed by John Bardeen, Leon Cooper, and Robert Schrieffer. Although the theory is beyond the scope of
this chapter, a short summary of the theory is provided here. (More detail is provided in Condensed Matter
Physics.) The theory considers pairs of electrons and how they are coupled together through lattice-vibration
interactions. Through the interactions with the crystalline lattice, electrons near the Fermi energy level feel a
small attractive force and form pairs (Cooper pairs), and the coupling is known as a phonon interaction. Single
electrons are fermions, which are particles that obey the Pauli exclusion principle. The Pauli exclusion
principle in quantum mechanics states that two identical fermions (particles with half-integer spin) cannot
occupy the same quantum state simultaneously. Each electron has four quantum numbers . The
principal quantum number (n) describes the energy of the electron, the orbital angular momentum quantum
number (l) indicates the most probable distance from the nucleus, the magnetic quantum number
describes the energy levels in the subshell, and the electron spin quantum number describes the
orientation of the spin of the electron, either up or down. As the material enters a superconducting state, pairs
of electrons act more like bosons, which can condense into the same energy level and need not obey the Pauli
exclusion principle. The electron pairs have a slightly lower energy and leave an energy gap above them on the
order of 0.001 eV. This energy gap inhibits collision interactions that lead to ordinary resistivity. When the
material is below the critical temperature, the thermal energy is less than the band gap and the material
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exhibits zero resistivity.

Material Symbol or Formula
Critical Temperature

Tc (K)

Critical
Magnetic Field

Hc (T)
Type

Elements

Lead Pb 7.19 0.08 I

Lanthanum La ( ) 4.90 − ( ) 6.30 I

Tantalum Ta 4.48 0.09 I

Mercury Hg ( ) 4.15 − ( ) 3.95 0.04 I

Tin Sn 3.72 0.03 I

Indium In 3.40 0.03 I

Thallium Tl 2.39 0.03 I

Rhenium Re 2.40 0.03 I

Thorium Th 1.37 0.013 I

Protactinium Pa 1.40 I

Aluminum Al 1.20 0.01 I

Gallium Ga 1.10 0.005 I

Zinc Zn 0.86 0.014 I

Titanium Ti 0.39 0.01 I

Uranium U ( ) 0.68 − ( ) 1.80 I

Cadmium Cd 11.4 4.00 I

Compounds

Niobium-germanium Nb3Ge 23.20 37.00 II

Niobium-tin Nb3Sn 18.30 30.00 II

Niobium-nitrite NbN 16.00 II

Niobium-titanium NbTi 10.00 15.00 II

High-Temperature Oxides
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Material Symbol or Formula
Critical Temperature

Tc (K)

Critical
Magnetic Field

Hc (T)
Type

HgBa2CaCu2O8 134.00 II

Tl2Ba2Ca2Cu3O10 125.00 II

YBa2Cu3O7 92.00 120.00 II

Table 9.3 Superconductor Critical Temperatures

Applications of Superconductors
Superconductors can be used to make superconducting magnets. These magnets are 10 times stronger than
the strongest electromagnets. These magnets are currently in use in magnetic resonance imaging (MRI), which
produces high-quality images of the body interior without dangerous radiation.

Another interesting application of superconductivity is the SQUID (superconducting quantum interference
device). A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields. The
operation of the SQUID is based on superconducting loops containing Josephson junctions. A Josephson
junction is the result of a theoretical prediction made by B. D. Josephson in an article published in 1962. In the
article, Josephson described how a supercurrent can flow between two pieces of superconductor separated by
a thin layer of insulator. This phenomenon is now called the Josephson effect. The SQUID consists of a
superconducting current loop containing two Josephson junctions, as shown in Figure 9.29. When the loop is
placed in even a very weak magnetic field, there is an interference effect that depends on the strength of the
magnetic field.

Figure 9.29 The SQUID (superconducting quantum interference device) uses a superconducting current loop and two Josephson

junctions to detect magnetic fields as low as (Earth’s magnet field is on the order of ).

Superconductivity is a fascinating and useful phenomenon. At critical temperatures near the boiling point of
liquid nitrogen, superconductivity has special applications in MRIs, particle accelerators, and high-speed
trains. Will we reach a state where we can have materials enter the superconducting phase at near room
temperatures? It seems a long way off, but if scientists in 1911 were asked if we would reach liquid-nitrogen
temperatures with a ceramic, they might have thought it implausible.
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CHAPTER REVIEW
Key Terms
ampere (amp) SI unit for current;
circuit complete path that an electrical current

travels along
conventional current current that flows through a

circuit from the positive terminal of a battery
through the circuit to the negative terminal of the
battery

critical temperature temperature at which a
material reaches superconductivity

current density flow of charge through a cross-
sectional area divided by the area

diode nonohmic circuit device that allows current
flow in only one direction

drift velocity velocity of a charge as it moves
nearly randomly through a conductor,
experiencing multiple collisions, averaged over a
length of a conductor, whose magnitude is the
length of conductor traveled divided by the time it
takes for the charges to travel the length

electrical conductivity measure of a material’s
ability to conduct or transmit electricity

electrical current rate at which charge flows,

electrical power time rate of change of energy in
an electric circuit

Josephson junction junction of two pieces of
superconducting material separated by a thin
layer of insulating material, which can carry a
supercurrent

Meissner effect phenomenon that occurs in a
superconducting material where all magnetic

fields are expelled
nonohmic type of a material for which Ohm’s law is

not valid
ohm unit of electrical resistance,

Ohm’s law empirical relation stating that the
current I is proportional to the potential
difference V; it is often written as , where
R is the resistance

ohmic type of a material for which Ohm’s law is
valid, that is, the voltage drop across the device is
equal to the current times the resistance

resistance electric property that impedes current;
for ohmic materials, it is the ratio of voltage to
current,

resistivity intrinsic property of a material,
independent of its shape or size, directly
proportional to the resistance, denoted by

schematic graphical representation of a circuit
using standardized symbols for components and
solid lines for the wire connecting the
components

SQUID (Superconducting Quantum Interference
Device) device that is a very sensitive
magnetometer, used to measure extremely subtle
magnetic fields

superconductivity phenomenon that occurs in
some materials where the resistance goes to
exactly zero and all magnetic fields are expelled,
which occurs dramatically at some low critical
temperature

Key Equations

Average electrical current

Definition of an ampere

Electrical current

Drift velocity

Current density

Resistivity
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Common expression of Ohm’s law

Resistivity as a function of temperature

Definition of resistance

Resistance of a cylinder of material

Temperature dependence of resistance

Electric power

Power dissipated by a resistor

Summary
9.1 Electrical Current

• The average electrical current is the rate at
which charge flows, given by , where

is the amount of charge passing through an
area in time .

• The instantaneous electrical current, or simply
the current I, is the rate at which charge flows.
Taking the limit as the change in time
approaches zero, we have , where is
the time derivative of the charge.

• The direction of conventional current is taken as
the direction in which positive charge moves. In
a simple direct-current (DC) circuit, this will be
from the positive terminal of the battery to the
negative terminal.

• The SI unit for current is the ampere, or simply
the amp (A), where .

• Current consists of the flow of free charges, such
as electrons, protons, and ions.

9.2 Model of Conduction in Metals

• The current through a conductor depends
mainly on the motion of free electrons.

• When an electrical field is applied to a
conductor, the free electrons in a conductor do
not move through a conductor at a constant
speed and direction; instead, the motion is
almost random due to collisions with atoms and
other free electrons.

• Even though the electrons move in a nearly
random fashion, when an electrical field is
applied to the conductor, the overall velocity of
the electrons can be defined in terms of a drift
velocity.

• The current density is a vector quantity defined
as the current through an infinitesimal area
divided by the area.

• The current can be found from the current

density, .

• An incandescent light bulb is a filament of wire
enclosed in a glass bulb that is partially
evacuated. Current runs through the filament,
where the electrical energy is converted to light
and heat.

9.3 Resistivity and Resistance

• Resistance has units of ohms , related to
volts and amperes by .

• The resistance R of a cylinder of length L and
cross-sectional area A is , where is the
resistivity of the material.

• Values of in Table 9.1 show that materials fall
into three groups—conductors, semiconductors,
and insulators.

• Temperature affects resistivity; for relatively
small temperature changes , resistivity is

, where is the original
resistivity and is the temperature coefficient of
resistivity.

• The resistance R of an object also varies with
temperature: , where is
the original resistance, and R is the resistance
after the temperature change.

9.4 Ohm's Law

• Ohm’s law is an empirical relationship for
current, voltage, and resistance for some
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common types of circuit elements, including
resistors. It does not apply to other devices, such
as diodes.

• One statement of Ohm’s law gives the
relationship among current I, voltage V, and
resistance R in a simple circuit as .

• Another statement of Ohm’s law, on a
microscopic level, is .

9.5 Electrical Energy and Power

• Electric power is the rate at which electric
energy is supplied to a circuit or consumed by a
load.

• Power dissipated by a resistor depends on the
square of the current through the resistor and is

equal to .
• The SI unit for electric power is the watt and the

SI unit for electric energy is the joule. Another
common unit for electric energy, used by power
companies, is the kilowatt-hour (kW h).

• The total energy used over a time interval can

be found by .

9.6 Superconductors

• Superconductivity is a phenomenon that occurs
in some materials when cooled to very low
critical temperatures, resulting in a resistance
of exactly zero and the expulsion of all magnetic
fields.

• Materials that are normally good conductors
(such as copper, gold, and silver) do not
experience superconductivity.

• Superconductivity was first observed in
mercury by Heike Kamerlingh Onnes in 1911. In
1986, Dr. Ching Wu Chu of Houston University
fabricated a brittle, ceramic compound with a
critical temperature close to the temperature of
liquid nitrogen.

• Superconductivity can be used in the
manufacture of superconducting magnets for
use in MRIs and high-speed, levitated trains.

Conceptual Questions
9.1 Electrical Current

1. Can a wire carry a current and still be
neutral—that is, have a total charge of zero?
Explain.

2. Car batteries are rated in ampere-hours .
To what physical quantity do ampere-hours
correspond (voltage, current, charge, energy,
power,…)?

3. When working with high-power electric circuits,
it is advised that whenever possible, you work
“one-handed” or “keep one hand in your pocket.”
Why is this a sensible suggestion?

9.2 Model of Conduction in Metals

4. Incandescent light bulbs are being replaced with
more efficient LED and CFL light bulbs. Is there
any obvious evidence that incandescent light
bulbs might not be that energy efficient? Is
energy converted into anything but visible light?

5. It was stated that the motion of an electron
appears nearly random when an electrical field is
applied to the conductor. What makes the motion
nearly random and differentiates it from the
random motion of molecules in a gas?

6. Electric circuits are sometimes explained using a
conceptual model of water flowing through a
pipe. In this conceptual model, the voltage source
is represented as a pump that pumps water

through pipes and the pipes connect components
in the circuit. Is a conceptual model of water
flowing through a pipe an adequate
representation of the circuit? How are electrons
and wires similar to water molecules and pipes?
How are they different?

7. An incandescent light bulb is partially evacuated.
Why do you suppose that is?

9.3 Resistivity and Resistance

8. The IR drop across a resistor means that there is
a change in potential or voltage across the
resistor. Is there any change in current as it
passes through a resistor? Explain.

9. Do impurities in semiconducting materials listed
in Table 9.1 supply free charges? (Hint: Examine
the range of resistivity for each and determine
whether the pure semiconductor has the higher
or lower conductivity.)

10. Does the resistance of an object depend on the path
current takes through it? Consider, for example, a
rectangular bar—is its resistance the same along its
length as across its width?
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11. If aluminum and copper wires of the same
length have the same resistance, which has the
larger diameter? Why?

9.4 Ohm's Law

12. In Determining Field from Potential, resistance
was defined as . In this section, we
presented Ohm’s law, which is commonly
expressed as . The equations look
exactly alike. What is the difference between
Ohm’s law and the definition of resistance?

13. Shown below are the results of an experiment
where four devices were connected across a
variable voltage source. The voltage is increased
and the current is measured. Which device, if
any, is an ohmic device?

14. The current I is measured through a sample of
an ohmic material as a voltage V is applied. (a)
What is the current when the voltage is doubled
to 2V (assume the change in temperature of the
material is negligible)? (b) What is the voltage
applied is the current measured is 0.2I (assume
the change in temperature of the material is
negligible)? What will happen to the current if
the material if the voltage remains constant, but

the temperature of the material increases
significantly?

9.5 Electrical Energy and Power

15. Common household appliances are rated at 110
V, but power companies deliver voltage in the
kilovolt range and then step the voltage down
using transformers to 110 V to be used in
homes. You will learn in later chapters that
transformers consist of many turns of wire,
which warm up as current flows through them,
wasting some of the energy that is given off as
heat. This sounds inefficient. Why do the power
companies transport electric power using this
method?

16. Your electric bill gives your consumption in
units of kilowatt-hour (kW h). Does this unit
represent the amount of charge, current,
voltage, power, or energy you buy?

17. Resistors are commonly rated at , , ,
1 W and 2 W for use in electrical circuits. If a
current of is accidentally passed
through a resistor rated at 1 W,
what would be the most probable outcome? Is
there anything that can be done to prevent such
an accident?

18. An immersion heater is a small appliance used
to heat a cup of water for tea by passing current
through a resistor. If the voltage applied to the
appliance is doubled, will the time required to
heat the water change? By how much? Is this a
good idea?

9.6 Superconductors

19. What requirement for superconductivity makes
current superconducting devices expensive to
operate?

20. Name two applications for superconductivity
listed in this section and explain how
superconductivity is used in the application.
Can you think of a use for superconductivity
that is not listed?

Problems
9.1 Electrical Current

21. A Van de Graaff generator is one of the original
particle accelerators and can be used to
accelerate charged particles like protons or
electrons. You may have seen it used to make
human hair stand on end or produce large

sparks. One application of the Van de Graaff
generator is to create X-rays by bombarding a
hard metal target with the beam. Consider a
beam of protons at 1.00 keV and a current of
5.00 mA produced by the generator. (a) What is
the speed of the protons? (b) How many protons
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are produced each second?
22. A cathode ray tube (CRT) is a device that

produces a focused beam of electrons in a
vacuum. The electrons strike a phosphor-
coated glass screen at the end of the tube, which
produces a bright spot of light. The position of
the bright spot of light on the screen can be
adjusted by deflecting the electrons with
electrical fields, magnetic fields, or both.
Although the CRT tube was once commonly
found in televisions, computer displays, and
oscilloscopes, newer appliances use a liquid
crystal display (LCD) or plasma screen. You still
may come across a CRT in your study of science.
Consider a CRT with an electron beam average
current of . How many electrons strike
the screen every minute?

23. How many electrons flow through a point in a
wire in 3.00 s if there is a constant current of

?
24. A conductor carries a current that is decreasing

exponentially with time. The current is modeled
as , where is the current
at time and is the time
constant. How much charge flows through the
conductor between and ?

25. The quantity of charge through a conductor is
modeled as .

What is the current at time ?
26. The current through a conductor is modeled as

. Write an equation
for the charge as a function of time.

27. The charge on a capacitor in a circuit is
modeled as . What is
the current through the circuit as a function of
time?

9.2 Model of Conduction in Metals

28. An aluminum wire 1.628 mm in diameter
(14-gauge) carries a current of 3.00 amps. (a)
What is the absolute value of the charge density
in the wire? (b) What is the drift velocity of the
electrons? (c) What would be the drift velocity if
the same gauge copper were used instead of
aluminum? The density of copper is
and the density of aluminum is . The
molar mass of aluminum is 26.98 g/mol and the
molar mass of copper is 63.5 g/mol. Assume
each atom of metal contributes one free
electron.

29. The current of an electron beam has a
measured current of with a radius

of 1.00 mm. What is the magnitude of the
current density of the beam?

30. A high-energy proton accelerator produces a
proton beam with a radius of . The
beam current is and is constant.
The charge density of the beam is

protons per cubic meter. (a)
What is the current density of the beam? (b)
What is the drift velocity of the beam? (c) How
much time does it take for protons
to be emitted by the accelerator?

31. Consider a wire of a circular cross-section with
a radius of . The magnitude of the
current density is modeled as

. What is the

current through the inner section of the wire
from the center to ?

32. A cylindrical wire has a current density from
the center of the wire’s cross section as

where is in meters, is in amps
per square meter, and . This
current density continues to the end of the wire
at a radius of 1.0 mm. Calculate the current just
outside of this wire.

33. The current supplied to an air conditioner unit
is 4.00 amps. The air conditioner is wired using
a 10-gauge (diameter 2.588 mm) wire. The
charge density is . Find

the magnitude of (a) current density and (b) the
drift velocity.

9.3 Resistivity and Resistance

34. What current flows through the bulb of a 3.00-V
flashlight when its hot resistance is ?

35. Calculate the effective resistance of a pocket
calculator that has a 1.35-V battery and through
which 0.200 mA flows.

36. How many volts are supplied to operate an
indicator light on a DVD player that has a
resistance of , given that 25.0 mA passes
through it?

37. What is the resistance of a 20.0-m-long piece of
12-gauge copper wire having a 2.053-mm
diameter?

38. The diameter of 0-gauge copper wire is 8.252
mm. Find the resistance of a 1.00-km length of
such wire used for power transmission.

39. If the 0.100-mm-diameter tungsten filament in
a light bulb is to have a resistance of at

, how long should it be?
40. A lead rod has a length of 30.00 cm and a

resistance of . What is the radius of the
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rod?
41. Find the ratio of the diameter of aluminum to

copper wire, if they have the same resistance
per unit length (as they might in household
wiring).

42. What current flows through a 2.54-cm-diameter
rod of pure silicon that is 20.0 cm long, when

is applied to it? (Such a rod may
be used to make nuclear-particle detectors, for
example.)

43. (a) To what temperature must you raise a
copper wire, originally at , to double its
resistance, neglecting any changes in
dimensions? (b) Does this happen in household
wiring under ordinary circumstances?

44. A resistor made of nichrome wire is used in an
application where its resistance cannot change
more than 1.00% from its value at . Over
what temperature range can it be used?

45. Of what material is a resistor made if its
resistance is 40.0% greater at than at

?
46. An electronic device designed to operate at any

temperature in the range from to
contains pure carbon resistors. By what

factor does their resistance increase over this
range?

47. (a) Of what material is a wire made, if it is 25.0
m long with a diameter of 0.100 mm and has a
resistance of at ? (b) What is its
resistance at

48. Assuming a constant temperature coefficient of
resistivity, what is the maximum percent
decrease in the resistance of a constantan wire
starting at ?

49. A copper wire has a resistance of at
and an iron wire has a resistance of
at the same temperature. At what

temperature are their resistances equal?

9.4 Ohm's Law

50. A resistor is connected across a D cell
battery (1.5 V). What is the current through the
resistor?

51. A resistor rated at is connected across
two D cell batteries (each 1.50 V) in series, with
a total voltage of 3.00 V. The manufacturer
advertises that their resistors are within 5% of
the rated value. What are the possible minimum
current and maximum current through the
resistor?

52. A resistor is connected in series with a power
supply of 20.00 V. The current measure is 0.50

A. What is the resistance of the resistor?
53. A resistor is placed in a circuit with an

adjustable voltage source. The voltage across
and the current through the resistor and the
measurements are shown below. Estimate the
resistance of the resistor.

54. The following table show the measurements of a
current through and the voltage across a sample
of material. Plot the data, and assuming the
object is an ohmic device, estimate the
resistance.

I(A) V(V)

0 3

2 23

4 39

6 58

8 77

10 100

12 119

14 142

16 162

9.5 Electrical Energy and Power

55. A battery is used to supply current to a
resistor. Assume the voltage drop across

any wires used for connections is negligible. (a)
What is the current through the resistor? (b)
What is the power dissipated by the resistor? (c)
What is the power input from the battery,
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assuming all the electrical power is dissipated
by the resistor? (d) What happens to the energy
dissipated by the resistor?

56. What is the maximum voltage that can be
applied to a resistor rated at ?

57. A heater is being designed that uses a coil of
14-gauge nichrome wire to generate 300 W
using a voltage of . How long should
the engineer make the wire?

58. An alternative to CFL bulbs and incandescent
bulbs are light-emitting diode (LED) bulbs. A
100-W incandescent bulb can be replaced by a
16-W LED bulb. Both produce 1600 lumens of
light. Assuming the cost of electricity is $0.10
per kilowatt-hour, how much does it cost to run
the bulb for one year if it runs for four hours a
day?

59. The power dissipated by a resistor with a
resistance of is . What are
the current through and the voltage drop across
the resistor?

60. Running late to catch a plane, a driver
accidentally leaves the headlights on after
parking the car in the airport parking lot.
During takeoff, the driver realizes the mistake.
Having just replaced the battery, the driver
knows that the battery is a 12-V automobile
battery, rated at 100 . The driver, knowing
there is nothing that can be done, estimates how
long the lights will shine, assuming there are
two 12-V headlights, each rated at 40 W. What
did the driver conclude?

61. A physics student has a single-occupancy dorm
room. The student has a small refrigerator that
runs with a current of 3.00 A and a voltage of
110 V, a lamp that contains a 100-W bulb, an
overhead light with a 60-W bulb, and various
other small devices adding up to 3.00 W. (a)
Assuming the power plant that supplies 110 V
electricity to the dorm is 10 km away and the
two aluminum transmission cables use 0-gauge
wire with a diameter of 8.252 mm, estimate the
percentage of the total power supplied by the
power company that is lost in the transmission.
(b) What would be the result is the power

company delivered the electric power at 110
kV?

62. A 0.50-W, resistor carries the maximum
current possible without damaging the resistor.
If the current were reduced to half the value,
what would be the power consumed?

9.6 Superconductors

63. Consider a power plant is located 60 km away
from a residential area uses 0-gauge

wire of copper to transmit
power at a current of . How much
more power is dissipated in the copper wires
than it would be in superconducting wires?

64. A wire is drawn through a die, stretching it to
four times its original length. By what factor
does its resistance increase?

65. Digital medical thermometers determine
temperature by measuring the resistance of a
semiconductor device called a thermistor
(which has ) when it is at the same
temperature as the patient. What is a patient’s
temperature if the thermistor’s resistance at
that temperature is 82.0% of its value at
(normal body temperature)?

66. Electrical power generators are sometimes
“load tested” by passing current through a large
vat of water. A similar method can be used to
test the heat output of a resistor. A
resistor is connected to a 9.0-V battery and the
resistor leads are waterproofed and the resistor
is placed in 1.0 kg of room temperature water

. Current runs through the resistor
for 20 minutes. Assuming all the electrical
energy dissipated by the resistor is converted to
heat, what is the final temperature of the water?

67. A 12-gauge gold wire has a length of 1 meter. (a)
What would be the length of a silver 12-gauge
wire with the same resistance? (b) What are
their respective resistances at the temperature
of boiling water?

68. What is the change in temperature required to
decrease the resistance for a carbon resistor by
10%?
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Additional Problems
69. A coaxial cable consists of an inner conductor

with radius and an outer radius of
and has a length of 10 meters.

Plastic, with a resistivity of
, separates the two

conductors. What is the resistance of the cable?
70. A 10.00-meter long wire cable that is made of

copper has a resistance of 0.051 ohms. (a) What
is the weight if the wire was made of copper? (b)
What is the weight of a 10.00-meter-long wire of
the same gauge made of aluminum? (c)What is
the resistance of the aluminum wire? The
density of copper is and the density
of aluminum is .

71. A nichrome rod that is 3.00 mm long with a
cross-sectional area of is used for a
digital thermometer. (a) What is the resistance
at room temperature? (b) What is the resistance
at body temperature?

72. The temperature in Philadelphia, PA can vary
between and in one summer
day. By what percentage will an aluminum
wire’s resistance change during the day?

73. When 100.0 V is applied across a 5-gauge
(diameter 4.621 mm) wire that is 10 m long, the
magnitude of the current density is

. What is the resistivity of the
wire?

74. A wire with a resistance of is drawn out
through a die so that its new length is twice
times its original length. Find the resistance of
the longer wire. You may assume that the
resistivity and density of the material are
unchanged.

75. What is the resistivity of a wire of 5-gauge wire
), 5.00 m length, and

resistance?
76. Coils are often used in electrical and electronic

circuits. Consider a coil which is formed by
winding 1000 turns of insulated 20-gauge
copper wire (area in a single layer on
a cylindrical non-conducting core of radius 2.0
mm. What is the resistance of the coil? Neglect
the thickness of the insulation.

77. Currents of approximately 0.06 A can be
potentially fatal. Currents in that range can
make the heart fibrillate (beat in an
uncontrolled manner). The resistance of a dry
human body can be approximately . (a)
What voltage can cause 0.06 A through a dry
human body? (b) When a human body is wet,
the resistance can fall to . What voltage
can cause harm to a wet body?

78. A 20.00-ohm, 5.00-watt resistor is placed in
series with a power supply. (a) What is the
maximum voltage that can be applied to the
resistor without harming the resistor? (b) What
would be the current through the resistor?

79. A battery with an emf of 24.00 V delivers a
constant current of 2.00 mA to an appliance.
How much work does the battery do in three
minutes?

80. A 12.00-V battery has an internal resistance of a
tenth of an ohm. (a) What is the current if the
battery terminals are momentarily shorted
together? (b) What is the terminal voltage if the
battery delivers 0.25 amps to a circuit?

Challenge Problems
81. A 10-gauge copper wire has a cross-sectional

area and carries a current of
. The density of copper is

. One mole of copper atoms
has a mass of

approximately 63.50 g. What is the magnitude
of the drift velocity of the electrons, assuming
that each copper atom contributes one free
electron to the current?

82. The current through a 12-gauge wire is given as
. What is the

current density at time 15.00 ms?

83. A particle accelerator produces a beam with a
radius of 1.25 mm with a current of 2.00 mA.
Each proton has a kinetic energy of 10.00 MeV.
(a) What is the velocity of the protons? (b) What
is the number (n) of protons per unit volume?
(b) How many electrons pass a cross sectional
area each second?
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84. In this chapter, most examples and problems
involved direct current (DC). DC circuits have
the current flowing in one direction, from
positive to negative. When the current was
changing, it was changed linearly from

to and the voltage
changed linearly from to

, where . Suppose a
voltage source is placed in series with a resistor
of that supplied a current that
alternated as a sine wave, for example,

. (a) What would a
graph of the voltage drop across the resistor V(t)
versus time look like? (b) What would a plot of
V(t) versus I(t) for one period look like? (Hint: If
you are not sure, try plotting V(t) versus I(t)
using a spreadsheet.)

85. A current of is drawn from a 100-V
battery for 30 seconds. By how much is the
chemical energy reduced?

86. Consider a square rod of material with sides of
length with a current density of

as shown below. Find the current that passes
through the face of the rod.

87. A resistor of an unknown resistance is placed in
an insulated container filled with 0.75 kg of
water. A voltage source is connected in series
with the resistor and a current of 1.2 amps flows
through the resistor for 10 minutes. During this
time, the temperature of the water is measured
and the temperature change during this time is

. (a) What is the resistance of the
resistor? (b) What is the voltage supplied by the
power supply?

88. The charge that flows through a point in a wire
as a function of time is modeled as

. (a) What is the
initial current through the wire at time

? (b) Find the current at time .
(c) At what time t will the current be reduced by
one-half ?

89. Consider a resistor made from a hollow cylinder
of carbon as shown below. The inner radius of
the cylinder is and the outer
radius is . The length of the
resistor is . The resistivity of the
carbon is . (a) Prove that
the resistance perpendicular from the axis is

(b) What is the resistance?

90. What is the current through a cylindrical wire of
radius if the current density is

, where

91. A student uses a 100.00-W, 115.00-V radiant
heater to heat the student’s dorm room, during
the hours between sunset and sunrise, 6:00
p.m. to 7:00 a.m. (a) What current does the
heater operate at? (b) How many electrons move
through the heater? (c) What is the resistance of
the heater? (d) How much heat was added to the
dorm room?

92. A 12-V car battery is used to power a 20.00-W,
12.00-V lamp during the physics club camping
trip/star party. The cable to the lamp is 2.00
meters long, 14-gauge copper wire with a
charge density of . (a)
What is the current draw by the lamp? (b) How
long would it take an electron to get from the
battery to the lamp?
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93. A physics student uses a 115.00-V immersion
heater to heat 400.00 grams (almost two cups)
of water for herbal tea. During the two minutes
it takes the water to heat, the physics student
becomes bored and decides to figure out the
resistance of the heater. The student starts with
the assumption that the water is initially at the
temperature of the room and
reaches . The specific heat of
the water is . What is the

resistance of the heater?
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INTRODUCTION

CHAPTER 10
Direct-Current Circuits

10.1 Electromotive Force

10.2 Resistors in Series and Parallel

10.3 Kirchhoff's Rules

10.4 Electrical Measuring Instruments

10.5 RC Circuits

10.6 Household Wiring and Electrical Safety

In the preceding few chapters, we discussed electric components, including capacitors,
resistors, and diodes. In this chapter, we use these electric components in circuits. A circuit is a collection of
electrical components connected to accomplish a specific task. Figure 10.1 shows an amplifier circuit, which

Figure 10.1 This circuit shown is used to amplify small signals and power the earbud speakers attached to a
cellular phone. This circuit’s components include resistors, capacitors, and diodes, all of which have been covered in
previous chapters, as well as transistors, which are semi-conducting devices covered in Condensed Matter Physics.
Circuits using similar components are found in all types of equipment and appliances you encounter in everyday life,
such as alarm clocks, televisions, computers, and refrigerators.

Chapter Outline



takes a small-amplitude signal and amplifies it to power the speakers in earbuds. Although the circuit looks
complex, it actually consists of a set of series, parallel, and series-parallel circuits. The second section of this
chapter covers the analysis of series and parallel circuits that consist of resistors. Later in this chapter, we
introduce the basic equations and techniques to analyze any circuit, including those that are not reducible
through simplifying parallel and series elements. But first, we need to understand how to power a circuit.

10.1 Electromotive Force
Learning Objectives
By the end of the section, you will be able to:

• Describe the electromotive force (emf) and the internal resistance of a battery
• Explain the basic operation of a battery

If you forget to turn off your car lights, they slowly dim as the battery runs down. Why don’t they suddenly blink
off when the battery’s energy is gone? Their gradual dimming implies that the battery output voltage decreases
as the battery is depleted. The reason for the decrease in output voltage for depleted batteries is that all voltage
sources have two fundamental parts—a source of electrical energy and an internal resistance. In this section,
we examine the energy source and the internal resistance.

Introduction to Electromotive Force
Voltage has many sources, a few of which are shown in Figure 10.2. All such devices create a potential
difference and can supply current if connected to a circuit. A special type of potential difference is known as
electromotive force (emf). The emf is not a force at all, but the term ‘electromotive force’ is used for historical
reasons. It was coined by Alessandro Volta in the 1800s, when he invented the first battery, also known as the
voltaic pile. Because the electromotive force is not a force, it is common to refer to these sources simply as
sources of emf (pronounced as the letters “ee-em-eff”), instead of sources of electromotive force.

Figure 10.2 A variety of voltage sources. (a) The Brazos Wind Farm in Fluvanna, Texas; (b) the Krasnoyarsk Dam in Russia; (c) a solar
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farm; (d) a group of nickel metal hydride batteries. The voltage output of each device depends on its construction and load. The voltage

output equals emf only if there is no load. (credit a: modification of work by Stig Nygaard; credit b: modification of work by

"vadimpl"/Wikimedia Commons; credit c: modification of work by "The tdog"/Wikimedia Commons; credit d: modification of work by

"Itrados"/Wikimedia Commons)

If the electromotive force is not a force at all, then what is the emf and what is a source of emf? To answer these
questions, consider a simple circuit of a 12-V lamp attached to a 12-V battery, as shown in Figure 10.3. The
battery can be modeled as a two-terminal device that keeps one terminal at a higher electric potential than the
second terminal. The higher electric potential is sometimes called the positive terminal and is labeled with a
plus sign. The lower-potential terminal is sometimes called the negative terminal and labeled with a minus
sign. This is the source of the emf.

Figure 10.3 A source of emf maintains one terminal at a higher electric potential than the other terminal, acting as a source of current in a

circuit.

When the emf source is not connected to the lamp, there is no net flow of charge within the emf source. Once
the battery is connected to the lamp, charges flow from one terminal of the battery, through the lamp (causing
the lamp to light), and back to the other terminal of the battery. If we consider positive (conventional) current
flow, positive charges leave the positive terminal, travel through the lamp, and enter the negative terminal.

Positive current flow is useful for most of the circuit analysis in this chapter, but in metallic wires and resistors,
electrons contribute the most to current, flowing in the opposite direction of positive current flow. Therefore, it
is more realistic to consider the movement of electrons for the analysis of the circuit in Figure 10.3. The
electrons leave the negative terminal, travel through the lamp, and return to the positive terminal. In order for
the emf source to maintain the potential difference between the two terminals, negative charges (electrons)
must be moved from the positive terminal to the negative terminal. The emf source acts as a charge pump,
moving negative charges from the positive terminal to the negative terminal to maintain the potential
difference. This increases the potential energy of the charges and, therefore, the electric potential of the
charges.

The force on the negative charge from the electric field is in the opposite direction of the electric field, as
shown in Figure 10.3. In order for the negative charges to be moved to the negative terminal, work must be
done on the negative charges. This requires energy, which comes from chemical reactions in the battery. The
potential is kept high on the positive terminal and low on the negative terminal to maintain the potential
difference between the two terminals. The emf is equal to the work done on the charge per unit charge

when there is no current flowing. Since the unit for work is the joule and the unit for charge is the

coulomb, the unit for emf is the volt

The terminal voltage of a battery is voltage measured across the terminals of the battery. An ideal
battery is an emf source that maintains a constant terminal voltage, independent of the current between the
two terminals. An ideal battery has no internal resistance, and the terminal voltage is equal to the emf of the
battery. In the next section, we will show that a real battery does have internal resistance and the terminal
voltage is always less than the emf of the battery.
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The Origin of Battery Potential
The combination of chemicals and the makeup of the terminals in a battery determine its emf. The lead acid
battery used in cars and other vehicles is one of the most common combinations of chemicals. Figure 10.4
shows a single cell (one of six) of this battery. The cathode (positive) terminal of the cell is connected to a lead
oxide plate, whereas the anode (negative) terminal is connected to a lead plate. Both plates are immersed in
sulfuric acid, the electrolyte for the system.

Figure 10.4 Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode, which is connected to the lead

plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts the charge, as well as

participates in the chemical reaction.

Knowing a little about how the chemicals in a lead-acid battery interact helps in understanding the potential
created by the battery. Figure 10.5 shows the result of a single chemical reaction. Two electrons are placed on
the anode, making it negative, provided that the cathode supplies two electrons. This leaves the cathode
positively charged, because it has lost two electrons. In short, a separation of charge has been driven by a
chemical reaction.

Note that the reaction does not take place unless there is a complete circuit to allow two electrons to be
supplied to the cathode. Under many circumstances, these electrons come from the anode, flow through a
resistance, and return to the cathode. Note also that since the chemical reactions involve substances with
resistance, it is not possible to create the emf without an internal resistance.

Figure 10.5 In a lead-acid battery, two electrons are forced onto the anode of a cell, and two electrons are removed from the cathode of

the cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the cathode. It requires a
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closed circuit to proceed, since the two electrons must be supplied to the cathode.

Internal Resistance and Terminal Voltage
The amount of resistance to the flow of current within the voltage source is called the internal resistance. The
internal resistance r of a battery can behave in complex ways. It generally increases as a battery is depleted,
due to the oxidation of the plates or the reduction of the acidity of the electrolyte. However, internal resistance
may also depend on the magnitude and direction of the current through a voltage source, its temperature, and
even its history. The internal resistance of rechargeable nickel-cadmium cells, for example, depends on how
many times and how deeply they have been depleted. A simple model for a battery consists of an idealized emf
source and an internal resistance r (Figure 10.6).

Figure 10.6 A battery can be modeled as an idealized emf with an internal resistance (r). The terminal voltage of the battery is

.

Suppose an external resistor, known as the load resistance R, is connected to a voltage source such as a battery,
as in Figure 10.7. The figure shows a model of a battery with an emf , an internal resistance r, and a load
resistor R connected across its terminals. Using conventional current flow, positive charges leave the positive
terminal of the battery, travel through the resistor, and return to the negative terminal of the battery. The
terminal voltage of the battery depends on the emf, the internal resistance, and the current, and is equal to

For a given emf and internal resistance, the terminal voltage decreases as the current increases due to the
potential drop Ir of the internal resistance.

10.1
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Figure 10.7 Schematic of a voltage source and its load resistor R. Since the internal resistance r is in series with the load, it can

significantly affect the terminal voltage and the current delivered to the load.

A graph of the potential difference across each element the circuit is shown in Figure 10.8. A current I runs
through the circuit, and the potential drop across the internal resistor is equal to Ir. The terminal voltage is
equal to , which is equal to the potential drop across the load resistor . As with potential
energy, it is the change in voltage that is important. When the term “voltage” is used, we assume that it is
actually the change in the potential, or . However, is often omitted for convenience.

Figure 10.8 A graph of the voltage through the circuit of a battery and a load resistance. The electric potential increases the emf of the

battery due to the chemical reactions doing work on the charges. There is a decrease in the electric potential in the battery due to the

internal resistance. The potential decreases due to the internal resistance , making the terminal voltage of the battery equal to

. The voltage then decreases by (IR). The current is equal to

The current through the load resistor is . We see from this expression that the smaller the internal
resistance r, the greater the current the voltage source supplies to its load R. As batteries are depleted, r
increases. If r becomes a significant fraction of the load resistance, then the current is significantly reduced, as
the following example illustrates.

EXAMPLE 10.1

Analyzing a Circuit with a Battery and a Load
A given battery has a 12.00-V emf and an internal resistance of . (a) Calculate its terminal voltage when
connected to a load. (b) What is the terminal voltage when connected to a load? (c) What
power does the load dissipate? (d) If the internal resistance grows to , find the current,
terminal voltage, and power dissipated by a load.

Strategy
The analysis above gave an expression for current when internal resistance is taken into account. Once the
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current is found, the terminal voltage can be calculated by using the equation . Once current
is found, we can also find the power dissipated by the resistor.

Solution

a. Entering the given values for the emf, load resistance, and internal resistance into the expression above
yields

Enter the known values into the equation to get the terminal voltage:

The terminal voltage here is only slightly lower than the emf, implying that the current drawn by this light
load is not significant.

b. Similarly, with , the current is

The terminal voltage is no

The terminal voltage exhibits a more significant reduction compared with emf, implying is a
heavy load for this battery. A “heavy load” signifies a larger draw of current from the source but not a
larger resistance.

c. The power dissipated by the load can be found using the formula . Entering the known
values gives

Note that this power can also be obtained using the expression , where V is the terminal voltage
(10.0 V in this case).

d. Here, the internal resistance has increased, perhaps due to the depletion of the battery, to the point where
it is as great as the load resistance. As before, we first find the current by entering the known values into
the expression, yielding

Now the terminal voltage is

and the power dissipated by the load is

We see that the increased internal resistance has significantly decreased the terminal voltage, current,
and power delivered to a load.

Significance
The internal resistance of a battery can increase for many reasons. For example, the internal resistance of a
rechargeable battery increases as the number of times the battery is recharged increases. The increased
internal resistance may have two effects on the battery. First, the terminal voltage will decrease. Second, the
battery may overheat due to the increased power dissipated by the internal resistance.

CHECK YOUR UNDERSTANDING 10.1

If you place a wire directly across the two terminal of a battery, effectively shorting out the terminals, the
battery will begin to get hot. Why do you suppose this happens?
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Battery Testers
Battery testers, such as those in Figure 10.9, use small load resistors to intentionally draw current to
determine whether the terminal potential drops below an acceptable level. Although it is difficult to measure
the internal resistance of a battery, battery testers can provide a measurement of the internal resistance of the
battery. If internal resistance is high, the battery is weak, as evidenced by its low terminal voltage.

Figure 10.9 Battery testers measure terminal voltage under a load to determine the condition of a battery. (a) A US Navy electronics

technician uses a battery tester to test large batteries aboard the aircraft carrier USS Nimitz. The battery tester she uses has a small

resistance that can dissipate large amounts of power. (b) The small device shown is used on small batteries and has a digital display to

indicate the acceptability of the terminal voltage. (credit a: modification of work by Jason A. Johnston; credit b: modification of work by

Keith Williamson)

Some batteries can be recharged by passing a current through them in the direction opposite to the current
they supply to an appliance. This is done routinely in cars and in batteries for small electrical appliances and
electronic devices (Figure 10.10). The voltage output of the battery charger must be greater than the emf of the
battery to reverse the current through it. This causes the terminal voltage of the battery to be greater than the
emf, since and I is now negative.

Figure 10.10 A car battery charger reverses the normal direction of current through a battery, reversing its chemical reaction and

replenishing its chemical potential.

It is important to understand the consequences of the internal resistance of emf sources, such as batteries and
solar cells, but often, the analysis of circuits is done with the terminal voltage of the battery, as we have done in
the previous sections. The terminal voltage is referred to as simply as V, dropping the subscript “terminal.”
This is because the internal resistance of the battery is difficult to measure directly and can change over time.
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10.2 Resistors in Series and Parallel
Learning Objectives
By the end of this section, you will be able to:

• Define the term equivalent resistance
• Calculate the equivalent resistance of resistors connected in series
• Calculate the equivalent resistance of resistors connected in parallel

In Current and Resistance, we described the term ‘resistance’ and explained the basic design of a resistor.
Basically, a resistor limits the flow of charge in a circuit and is an ohmic device where Most circuits
have more than one resistor. If several resistors are connected together and connected to a battery, the current
supplied by the battery depends on the equivalent resistance of the circuit.

The equivalent resistance of a combination of resistors depends on both their individual values and how they
are connected. The simplest combinations of resistors are series and parallel connections (Figure 10.11). In a
series circuit, the output current of the first resistor flows into the input of the second resistor; therefore, the
current is the same in each resistor. In a parallel circuit, all of the resistor leads on one side of the resistors are
connected together and all the leads on the other side are connected together. In the case of a parallel
configuration, each resistor has the same potential drop across it, and the currents through each resistor may
be different, depending on the resistor. The sum of the individual currents equals the current that flows into
the parallel connections.

Figure 10.11 (a) For a series connection of resistors, the current is the same in each resistor. (b) For a parallel connection of resistors, the

voltage is the same across each resistor.

Resistors in Series
Resistors are said to be in series whenever the current flows through the resistors sequentially. Consider
Figure 10.12, which shows three resistors in series with an applied voltage equal to Since there is only one
path for the charges to flow through, the current is the same through each resistor. The equivalent resistance
of a set of resistors in a series connection is equal to the algebraic sum of the individual resistances.
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Figure 10.12 (a) Three resistors connected in series to a voltage source. (b) The original circuit is reduced to an equivalent resistance and

a voltage source.

In Figure 10.12, the current coming from the voltage source flows through each resistor, so the current through
each resistor is the same. The current through the circuit depends on the voltage supplied by the voltage
source and the resistance of the resistors. For each resistor, a potential drop occurs that is equal to the loss of
electric potential energy as a current travels through each resistor. According to Ohm’s law, the potential drop
V across a resistor when a current flows through it is calculated using the equation where I is the
current in amps (A) and R is the resistance in ohms Since energy is conserved, and the voltage is equal to
the potential energy per charge, the sum of the voltage applied to the circuit by the source and the potential
drops across the individual resistors around a loop should be equal to zero:

This equation is often referred to as Kirchhoff’s loop law, which we will look at in more detail later in this
chapter. For Figure 10.12, the sum of the potential drop of each resistor and the voltage supplied by the voltage
source should equal zero:

Since the current through each component is the same, the equality can be simplified to an equivalent
resistance, which is just the sum of the resistances of the individual resistors.

Any number of resistors can be connected in series. If N resistors are connected in series, the equivalent
resistance is

One result of components connected in a series circuit is that if something happens to one component, it
affects all the other components. For example, if several lamps are connected in series and one bulb burns out,
all the other lamps go dark.

10.2
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EXAMPLE 10.2

Equivalent Resistance, Current, and Power in a Series Circuit
A battery with a terminal voltage of 9 V is connected to a circuit consisting of four and one resistors
all in series (Figure 10.13). Assume the battery has negligible internal resistance. (a) Calculate the equivalent
resistance of the circuit. (b) Calculate the current through each resistor. (c) Calculate the potential drop across
each resistor. (d) Determine the total power dissipated by the resistors and the power supplied by the battery.

Figure 10.13 A simple series circuit with five resistors.

Strategy
In a series circuit, the equivalent resistance is the algebraic sum of the resistances. The current through the
circuit can be found from Ohm’s law and is equal to the voltage divided by the equivalent resistance. The
potential drop across each resistor can be found using Ohm’s law. The power dissipated by each resistor can be
found using , and the total power dissipated by the resistors is equal to the sum of the power
dissipated by each resistor. The power supplied by the battery can be found using .

Solution

a. The equivalent resistance is the algebraic sum of the resistances:

b. The current through the circuit is the same for each resistor in a series circuit and is equal to the applied
voltage divided by the equivalent resistance:

c. The potential drop across each resistor can be found using Ohm’s law:

Note that the sum of the potential drops across each resistor is equal to the voltage supplied by the battery.
d. The power dissipated by a resistor is equal to , and the power supplied by the battery is equal to

:

Significance
There are several reasons why we would use multiple resistors instead of just one resistor with a resistance
equal to the equivalent resistance of the circuit. Perhaps a resistor of the required size is not available, or we
need to dissipate the heat generated, or we want to minimize the cost of resistors. Each resistor may cost a few
cents to a few dollars, but when multiplied by thousands of units, the cost saving may be appreciable.
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CHECK YOUR UNDERSTANDING 10.2

Some strings of miniature holiday lights are made to short out when a bulb burns out. The device that causes
the short is called a shunt, which allows current to flow around the open circuit. A “short” is like putting a
piece of wire across the component. The bulbs are usually grouped in series of nine bulbs. If too many bulbs
burn out, the shunts eventually open. What causes this?

Let’s briefly summarize the major features of resistors in series:

1. Series resistances add together to get the equivalent resistance:

2. The same current flows through each resistor in series.
3. Individual resistors in series do not get the total source voltage, but divide it. The total potential drop across a

series configuration of resistors is equal to the sum of the potential drops across each resistor.

Resistors in Parallel
Figure 10.14 shows resistors in parallel, wired to a voltage source. Resistors are in parallel when one end of all
the resistors are connected by a continuous wire of negligible resistance and the other end of all the resistors
are also connected to one another through a continuous wire of negligible resistance. The potential drop
across each resistor is the same. Current through each resistor can be found using Ohm’s law where
the voltage is constant across each resistor. For example, an automobile’s headlights, radio, and other systems
are wired in parallel, so that each subsystem utilizes the full voltage of the source and can operate completely
independently. The same is true of the wiring in your house or any building.

Figure 10.14 (a) Two resistors connected in parallel to a voltage source. (b) The original circuit is reduced to an equivalent resistance and

a voltage source.

The current flowing from the voltage source in Figure 10.14 depends on the voltage supplied by the voltage
source and the equivalent resistance of the circuit. In this case, the current flows from the voltage source and
enters a junction, or node, where the circuit splits flowing through resistors and . As the charges flow
from the battery, some go through resistor and some flow through resistor The sum of the currents
flowing into a junction must be equal to the sum of the currents flowing out of the junction:

This equation is referred to as Kirchhoff’s junction rule and will be discussed in detail in the next section. In
Figure 10.14, the junction rule gives . There are two loops in this circuit, which leads to the
equations and . Note the voltage across the resistors in parallel are the same

and the current is additive:
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Generalizing to any number of N resistors, the equivalent resistance of a parallel connection is related to
the individual resistances by

This relationship results in an equivalent resistance that is less than the smallest of the individual
resistances. When resistors are connected in parallel, more current flows from the source than would flow for
any of them individually, so the total resistance is lower.

EXAMPLE 10.3

Analysis of a Parallel Circuit
Three resistors and are connected in parallel. The parallel
connection is attached to a voltage source. (a) What is the equivalent resistance? (b) Find the
current supplied by the source to the parallel circuit. (c) Calculate the currents in each resistor and show that
these add together to equal the current output of the source. (d) Calculate the power dissipated by each
resistor. (e) Find the power output of the source and show that it equals the total power dissipated by the
resistors.

Strategy

(a) The total resistance for a parallel combination of resistors is found using .

(Note that in these calculations, each intermediate answer is shown with an extra digit.)

(b) The current supplied by the source can be found from Ohm’s law, substituting for the total resistance

(c) The individual currents are easily calculated from Ohm’s law , since each resistor gets the full

voltage. The total current is the sum of the individual currents:

(d) The power dissipated by each resistor can be found using any of the equations relating power to current,
voltage, and resistance, since all three are known. Let us use since each resistor gets full voltage.

(e) The total power can also be calculated in several ways, use .

Solution

a. The total resistance for a parallel combination of resistors is found using Equation 10.3. Entering known
values gives

10.3
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The total resistance with the correct number of significant digits is As predicted, is less
than the smallest individual resistance.

b. The total current can be found from Ohm’s law, substituting for the total resistance. This gives

Current I for each device is much larger than for the same devices connected in series (see the previous
example). A circuit with parallel connections has a smaller total resistance than the resistors connected in
series.

c. The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage.
Thus,

Similarly,

and

The total current is the sum of the individual currents:

d. The power dissipated by each resistor can be found using any of the equations relating power to current,
voltage, and resistance, since all three are known. Let us use since each resistor gets full
voltage. Thus,

Similarly,

and

e. The total power can also be calculated in several ways. Choosing and entering the total current
yields

Significance
Total power dissipated by the resistors is also 18.00 W:

Notice that the total power dissipated by the resistors equals the power supplied by the source.

CHECK YOUR UNDERSTANDING 10.3

Consider the same potential difference applied to the same three resistors connected in series.
Would the equivalent resistance of the series circuit be higher, lower, or equal to the three resistor in parallel?
Would the current through the series circuit be higher, lower, or equal to the current provided by the same
voltage applied to the parallel circuit? How would the power dissipated by the resistor in series compare to the
power dissipated by the resistors in parallel?

432 10 • Direct-Current Circuits

Access for free at openstax.org.



CHECK YOUR UNDERSTANDING 10.4

How would you use a river and two waterfalls to model a parallel configuration of two resistors? How does this
analogy break down?

Let us summarize the major features of resistors in parallel:

1. Equivalent resistance is found from

and is smaller than any individual resistance in the combination.
2. The potential drop across each resistor in parallel is the same.
3. Parallel resistors do not each get the total current; they divide it. The current entering a parallel combination

of resistors is equal to the sum of the current through each resistor in parallel.

In this chapter, we introduced the equivalent resistance of resistors connect in series and resistors connected
in parallel. You may recall that in Capacitance, we introduced the equivalent capacitance of capacitors
connected in series and parallel. Circuits often contain both capacitors and resistors. Table 10.1 summarizes
the equations used for the equivalent resistance and equivalent capacitance for series and parallel
connections.

Series combination Parallel combination

Equivalent capacitance

Equivalent resistance

Table 10.1 Summary for Equivalent Resistance and Capacitance in Series and Parallel Combinations

Combinations of Series and Parallel
More complex connections of resistors are often just combinations of series and parallel connections. Such
combinations are common, especially when wire resistance is considered. In that case, wire resistance is in
series with other resistances that are in parallel.

Combinations of series and parallel can be reduced to a single equivalent resistance using the technique
illustrated in Figure 10.15. Various parts can be identified as either series or parallel connections, reduced to
their equivalent resistances, and then further reduced until a single equivalent resistance is left. The process
is more time consuming than difficult. Here, we note the equivalent resistance as
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Figure 10.15 (a) The original circuit of four resistors. (b) Step 1: The resistors and are in series and the equivalent resistance is

(c) Step 2: The reduced circuit shows resistors and are in parallel, with an equivalent resistance of (d)

Step 3: The reduced circuit shows that and are in series with an equivalent resistance of which is the equivalent

resistance (e) The reduced circuit with a voltage source of with an equivalent resistance of This results in a

current of from the voltage source.

Notice that resistors and are in series. They can be combined into a single equivalent resistance. One
method of keeping track of the process is to include the resistors as subscripts. Here the equivalent resistance
of and is

The circuit now reduces to three resistors, shown in Figure 10.15(c). Redrawing, we now see that resistors
and constitute a parallel circuit. Those two resistors can be reduced to an equivalent resistance:

This step of the process reduces the circuit to two resistors, shown in in Figure 10.15(d). Here, the circuit
reduces to two resistors, which in this case are in series. These two resistors can be reduced to an equivalent
resistance, which is the equivalent resistance of the circuit:

The main goal of this circuit analysis is reached, and the circuit is now reduced to a single resistor and single
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voltage source.

Now we can analyze the circuit. The current provided by the voltage source is This

current runs through resistor and is designated as The potential drop across can be found using
Ohm’s law:

Looking at Figure 10.15(c), this leaves to be dropped across the parallel combination of
and The current through can be found using Ohm’s law:

The resistors and are in series so the currents and are equal to

Using Ohm’s law, we can find the potential drop across the last two resistors. The potential drops are
and The final analysis is to look at the power supplied by the voltage

source and the power dissipated by the resistors. The power dissipated by the resistors is

The total energy is constant in any process. Therefore, the power supplied by the voltage source is
Analyzing the power supplied to the circuit and the power dissipated by the

resistors is a good check for the validity of the analysis; they should be equal.

EXAMPLE 10.4

Combining Series and Parallel Circuits
Figure 10.16 shows resistors wired in a combination of series and parallel. We can consider to be the
resistance of wires leading to and (a) Find the equivalent resistance of the circuit. (b) What is the
potential drop across resistor ? (c) Find the current through resistor . (d) What power is dissipated
by ?

Figure 10.16 These three resistors are connected to a voltage source so that and are in parallel with one another and that

combination is in series with
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Strategy
(a) To find the equivalent resistance, first find the equivalent resistance of the parallel connection of and

Then use this result to find the equivalent resistance of the series connection with

(b) The current through can be found using Ohm’s law and the voltage applied. The current through is
equal to the current from the battery. The potential drop across the resistor (which represents the
resistance in the connecting wires) can be found using Ohm’s law.

(c) The current through can be found using Ohm’s law The voltage across can be found using

(d) Using Ohm’s law , the power dissipated by the resistor can also be found

using .

Solution

a. To find the equivalent resistance of the circuit, notice that the parallel connection of and is in series
with , so the equivalent resistance is

The total resistance of this combination is intermediate between the pure series and pure parallel values (
and , respectively).

b. The current through is equal to the current supplied by the battery:

The voltage across is

The voltage applied to and is less than the voltage supplied by the battery by an amount When
wire resistance is large, it can significantly affect the operation of the devices represented by and .

c. To find the current through , we must first find the voltage applied to it. The voltage across the two
resistors in parallel is the same:

Now we can find the current through resistance using Ohm’s law:

The current is less than the 2.00 A that flowed through when it was connected in parallel to the battery
in the previous parallel circuit example.

d. The power dissipated by is given by

Significance
The analysis of complex circuits can often be simplified by reducing the circuit to a voltage source and an
equivalent resistance. Even if the entire circuit cannot be reduced to a single voltage source and a single
equivalent resistance, portions of the circuit may be reduced, greatly simplifying the analysis.

CHECK YOUR UNDERSTANDING 10.5

Consider the electrical circuits in your home. Give at least two examples of circuits that must use a
combination of series and parallel circuits to operate efficiently.
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Practical Implications
One implication of this last example is that resistance in wires reduces the current and power delivered to a
resistor. If wire resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be
significant. If a large current is drawn, the IR drop in the wires can also be significant and may become
apparent from the heat generated in the cord.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims
momentarily. Similarly, you can see the passenger compartment light dim when you start the engine of your
car (although this may be due to resistance inside the battery itself).

What is happening in these high-current situations is illustrated in Figure 10.17. The device represented by
has a very low resistance, so when it is switched on, a large current flows. This increased current causes a

larger IR drop in the wires represented by , reducing the voltage across the light bulb (which is ), which
then dims noticeably.

Figure 10.17 Why do lights dim when a large appliance is switched on? The answer is that the large current the appliance motor draws

causes a significant IR drop in the wires and reduces the voltage across the light.

PROBLEM-SOLVING STRATEGY

Series and Parallel Resistors
1. Draw a clear circuit diagram, labeling all resistors and voltage sources. This step includes a list of the

known values for the problem, since they are labeled in your circuit diagram.
2. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is

useful.
3. Determine whether resistors are in series, parallel, or a combination of both series and parallel. Examine

the circuit diagram to make this assessment. Resistors are in series if the same current must pass
sequentially through them.

4. Use the appropriate list of major features for series or parallel connections to solve for the unknowns.
There is one list for series and another for parallel.
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5. Check to see whether the answers are reasonable and consistent.

EXAMPLE 10.5

Combining Series and Parallel Circuits
Two resistors connected in series are connected to two resistors that are connected in parallel

. The series-parallel combination is connected to a battery. Each resistor has a resistance of 10.00
Ohms. The wires connecting the resistors and battery have negligible resistance. A current of 2.00 Amps runs
through resistor What is the voltage supplied by the voltage source?

Strategy
Use the steps in the preceding problem-solving strategy to find the solution for this example.

Solution

1. Draw a clear circuit diagram (Figure 10.18).

Figure 10.18 To find the unknown voltage, we must first find the equivalent resistance of the circuit.

2. The unknown is the voltage of the battery. In order to find the voltage supplied by the battery, the
equivalent resistance must be found.

3. In this circuit, we already know that the resistors and are in series and the resistors and are
in parallel. The equivalent resistance of the parallel configuration of the resistors and is in series
with the series configuration of resistors and .

4. The voltage supplied by the battery can be found by multiplying the current from the battery and the
equivalent resistance of the circuit. The current from the battery is equal to the current through and is
equal to 2.00 A. We need to find the equivalent resistance by reducing the circuit. To reduce the circuit,
first consider the two resistors in parallel. The equivalent resistance is

This parallel combination is in series with the other two resistors,
so the equivalent resistance of the circuit is The voltage supplied by the
battery is therefore

5. One way to check the consistency of your results is to calculate the power supplied by the battery and the
power dissipated by the resistors. The power supplied by the battery is
Since they are in series, the current through equals the current through Since , the
current through each will be 1.00 Amps. The power dissipated by the resistors is equal to the sum of the
power dissipated by each resistor:

Since the power dissipated by the resistors equals the power supplied by the battery, our solution seems
consistent.
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Significance
If a problem has a combination of series and parallel, as in this example, it can be reduced in steps by using
the preceding problem-solving strategy and by considering individual groups of series or parallel connections.
When finding for a parallel connection, the reciprocal must be taken with care. In addition, units and
numerical results must be reasonable. Equivalent series resistance should be greater, whereas equivalent
parallel resistance should be smaller, for example. Power should be greater for the same devices in parallel
compared with series, and so on.

10.3 Kirchhoff's Rules
Learning Objectives
By the end of this section, you will be able to:

• State Kirchhoff’s junction rule
• State Kirchhoff’s loop rule
• Analyze complex circuits using Kirchhoff’s rules

We have just seen that some circuits may be analyzed by reducing a circuit to a single voltage source and an
equivalent resistance. Many complex circuits cannot be analyzed with the series-parallel techniques
developed in the preceding sections. In this section, we elaborate on the use of Kirchhoff’s rules to analyze
more complex circuits. For example, the circuit in Figure 10.19 is known as a multi-loop circuit, which
consists of junctions. A junction, also known as a node, is a connection of three or more wires. In this circuit,
the previous methods cannot be used, because not all the resistors are in clear series or parallel configurations
that can be reduced. Give it a try. The resistors and are in series and can be reduced to an equivalent
resistance. The same is true of resistors and . But what do you do then?

Even though this circuit cannot be analyzed using the methods already learned, two circuit analysis rules can
be used to analyze any circuit, simple or complex. The rules are known as Kirchhoff’s rules, after their
inventor Gustav Kirchhoff (1824–1887).

Figure 10.19 This circuit cannot be reduced to a combination of series and parallel connections. However, we can use Kirchhoff’s rules to

analyze it.

Kirchhoff’s Rules

• Kirchhoff’s first rule—the junction rule. The sum of all currents entering a junction must equal the sum
of all currents leaving the junction:

• Kirchhoff’s second rule—the loop rule. The algebraic sum of changes in potential around any closed
circuit path (loop) must be zero:

10.4

10.5
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We now provide explanations of these two rules, followed by problem-solving hints for applying them and a
worked example that uses them.

Kirchhoff’s First Rule
Kirchhoff’s first rule (the junction rule) applies to the charge entering and leaving a junction (Figure 10.20). As
stated earlier, a junction, or node, is a connection of three or more wires. Current is the flow of charge, and
charge is conserved; thus, whatever charge flows into the junction must flow out.

Figure 10.20 Charge must be conserved, so the sum of currents into a junction must be equal to the sum of currents out of the junction.

Although it is an over-simplification, an analogy can be made with water pipes connected in a plumbing
junction. If the wires in Figure 10.20 were replaced by water pipes, and the water was assumed to be
incompressible, the volume of water flowing into the junction must equal the volume of water flowing out of
the junction.

Kirchhoff’s Second Rule
Kirchhoff’s second rule (the loop rule) applies to potential differences. The loop rule is stated in terms of
potential V rather than potential energy, but the two are related since In a closed loop, whatever
energy is supplied by a voltage source, the energy must be transferred into other forms by the devices in the
loop, since there are no other ways in which energy can be transferred into or out of the circuit. Kirchhoff’s
loop rule states that the algebraic sum of potential differences, including voltage supplied by the voltage
sources and resistive elements, in any loop must be equal to zero. For example, consider a simple loop with no
junctions, as in Figure 10.21.

Figure 10.21 A simple loop with no junctions. Kirchhoff’s loop rule states that the algebraic sum of the voltage differences is equal to

zero.

The circuit consists of a voltage source and three external load resistors. The labels a, b, c, and d serve as
references, and have no other significance. The usefulness of these labels will become apparent soon. The loop
is designated as Loop abcda, and the labels help keep track of the voltage differences as we travel around the
circuit. Start at point a and travel to point b. The voltage of the voltage source is added to the equation and the
potential drop of the resistor is subtracted. From point b to c, the potential drop across is subtracted.
From c to d, the potential drop across is subtracted. From points d to a, nothing is done because there are
no components.

Figure 10.22 shows a graph of the voltage as we travel around the loop. Voltage increases as we cross the
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battery, whereas voltage decreases as we travel across a resistor. The potential drop, or change in the electric
potential, is equal to the current through the resistor times the resistance of the resistor. Since the wires have
negligible resistance, the voltage remains constant as we cross the wires connecting the components.

Figure 10.22 A voltage graph as we travel around the circuit. The voltage increases as we cross the battery and decreases as we cross

each resistor. Since the resistance of the wire is quite small, we assume that the voltage remains constant as we cross the wires connecting

the components.

Then Kirchhoff’s loop rule states

The loop equation can be used to find the current through the loop:

This loop could have been analyzed using the previous methods, but we will demonstrate the power of
Kirchhoff’s method in the next section.

Applying Kirchhoff’s Rules
By applying Kirchhoff’s rules, we generate a set of linear equations that allow us to find the unknown values in
circuits. These may be currents, voltages, or resistances. Each time a rule is applied, it produces an equation. If
there are as many independent equations as unknowns, then the problem can be solved.

Using Kirchhoff’s method of analysis requires several steps, as listed in the following procedure.

PROBLEM-SOLVING STRATEGY

Kirchhoff’s Rules
1. Label points in the circuit diagram using lowercase letters a, b, c, …. These labels simply help with

orientation.
2. Locate the junctions in the circuit. The junctions are points where three or more wires connect. Label each

junction with the currents and directions into and out of it. Make sure at least one current points into the
junction and at least one current points out of the junction.

3. Choose the loops in the circuit. Every component must be contained in at least one loop, but a component
may be contained in more than one loop.

4. Apply the junction rule. Again, some junctions should not be included in the analysis. You need only use
enough nodes to include every current.

5. Apply the loop rule. Use the map in Figure 10.23.
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Figure 10.23 Each of these resistors and voltage sources is traversed from a to b. (a) When moving across a resistor in the same direction

as the current flow, subtract the potential drop. (b) When moving across a resistor in the opposite direction as the current flow, add the

potential drop. (c) When moving across a voltage source from the negative terminal to the positive terminal, add the potential drop. (d)

When moving across a voltage source from the positive terminal to the negative terminal, subtract the potential drop.

Let’s examine some steps in this procedure more closely. When locating the junctions in the circuit, do not be
concerned about the direction of the currents. If the direction of current flow is not obvious, choosing any
direction is sufficient as long as at least one current points into the junction and at least one current points out
of the junction. If the arrow is in the opposite direction of the conventional current flow, the result for the
current in question will be negative but the answer will still be correct.

The number of nodes depends on the circuit. Each current should be included in a node and thus included in
at least one junction equation. Do not include nodes that are not linearly independent, meaning nodes that
contain the same information.

Consider Figure 10.24. There are two junctions in this circuit: Junction b and Junction e. Points a, c, d, and f
are not junctions, because a junction must have three or more connections. The equation for Junction b is

, and the equation for Junction e is . These are equivalent equations, so it is
necessary to keep only one of them.

Figure 10.24 At first glance, this circuit contains two junctions, Junction b and Junction e, but only one should be considered because

their junction equations are equivalent.

When choosing the loops in the circuit, you need enough loops so that each component is covered once,
without repeating loops. Figure 10.25 shows four choices for loops to solve a sample circuit; choices (a), (b),
and (c) have a sufficient amount of loops to solve the circuit completely. Option (d) reflects more loops than
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necessary to solve the circuit.

Figure 10.25 Panels (a)–(c) are sufficient for the analysis of the circuit. In each case, the two loops shown contain all the circuit elements

necessary to solve the circuit completely. Panel (d) shows three loops used, which is more than necessary. Any two loops in the system will

contain all information needed to solve the circuit. Adding the third loop provides redundant information.

Consider the circuit in Figure 10.26(a). Let us analyze this circuit to find the current through each resistor.
First, label the circuit as shown in part (b).

Figure 10.26 (a) A multi-loop circuit. (b) Label the circuit to help with orientation.

Next, determine the junctions. In this circuit, points b and e each have three wires connected, making them
junctions. Start to apply Kirchhoff’s junction rule by drawing arrows representing the
currents and labeling each arrow, as shown in Figure 10.27(b). Junction b shows that and
Junction e shows that . Since Junction e gives the same information of Junction b, it can be
disregarded. This circuit has three unknowns, so we need three linearly independent equations to analyze it.
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Figure 10.27 (a) This circuit has two junctions, labeled b and e, but only node b is used in the analysis. (b) Labeled arrows represent the

currents into and out of the junctions.

Next we need to choose the loops. In Figure 10.28, Loop abefa includes the voltage source and resistors
and . The loop starts at point a, then travels through points b, e, and f, and then back to point a. The second
loop, Loop ebcde, starts at point e and includes resistors and , and the voltage source .

Figure 10.28 Choose the loops in the circuit.

Now we can apply Kirchhoff’s loop rule, using the map in Figure 10.23. Starting at point a and moving to point
b, the resistor is crossed in the same direction as the current flow , so the potential drop is
subtracted. Moving from point b to point e, the resistor is crossed in the same direction as the current flow

so the potential drop is subtracted. Moving from point e to point f, the voltage source is crossed
from the negative terminal to the positive terminal, so is added. There are no components between points f
and a. The sum of the voltage differences must equal zero:

Finally, we check loop ebcde. We start at point e and move to point b, crossing in the opposite direction as
the current flow . The potential drop is added. Next, we cross and in the same direction as the
current flow and subtract the potential drops and Note that the current is the same through
resistors and , because they are connected in series. Finally, the voltage source is crossed from the
positive terminal to the negative terminal, and the voltage source is subtracted. The sum of these voltage
differences equals zero and yields the loop equation

We now have three equations, which we can solve for the three unknowns.
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To solve the three equations for the three unknown currents, start by eliminating current . First add Eq. (1)
times to Eq. (2). The result is labeled as Eq. (4):

Next, subtract Eq. (3) from Eq. (2). The result is labeled as Eq. (5):

We can solve Eqs. (4) and (5) for current . Adding seven times Eq. (4) and three times Eq. (5) results in
or Using Eq. (4) results in Finally, Eq. (1) yields

One way to check that the solutions are consistent is to check the power supplied by
the voltage sources and the power dissipated by the resistors:

Note that the solution for the current is negative. This is the correct answer, but suggests that the arrow
originally drawn in the junction analysis is the direction opposite of conventional current flow. The power
supplied by the second voltage source is 58 W and not −58 W.

EXAMPLE 10.6

Calculating Current by Using Kirchhoff’s Rules
Find the currents flowing in the circuit in Figure 10.29.
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Figure 10.29 This circuit is combination of series and parallel configurations of resistors and voltage sources. This circuit cannot be

analyzed using the techniques discussed in Electromotive Force but can be analyzed using Kirchhoff’s rules.

Strategy
This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel
techniques—it is necessary to use Kirchhoff’s rules. Currents have been labeled and in the figure, and
assumptions have been made about their directions. Locations on the diagram have been labeled with letters a
through h. In the solution, we apply the junction and loop rules, seeking three independent equations to allow
us to solve for the three unknown currents.

Solution
Applying the junction and loop rules yields the following three equations. We have three unknowns, so three
equations are required.

Simplify the equations by placing the unknowns on one side of the equations.

Simplify the equations. The first loop equation can be simplified by dividing both sides by 3.00. The second
loop equation can be simplified by dividing both sides by 6.00.

The results are

Significance
A method to check the calculations is to compute the power dissipated by the resistors and the power supplied
by the voltage sources:
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The power supplied equals the power dissipated by the resistors.

CHECK YOUR UNDERSTANDING 10.6

In considering the following schematic and the power supplied and consumed by a circuit, will a voltage
source always provide power to the circuit, or can a voltage source consume power?

EXAMPLE 10.7

Calculating Current by Using Kirchhoff’s Rules
Find the current flowing in the circuit in Figure 10.30.

Figure 10.30 This circuit consists of three resistors and two batteries connected in series. Note that the batteries are connected with

opposite polarities.

Strategy
This circuit can be analyzed using Kirchhoff’s rules. There is only one loop and no nodes. Choose the direction
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of current flow. For this example, we will use the clockwise direction from point a to point b. Consider Loop
abcda and use Figure 10.23 to write the loop equation. Note that according to Figure 10.23, battery will be
added and battery will be subtracted.

Solution
Applying the junction rule yields the following three equations. We have one unknown, so one equation is
required:

Simplify the equations by placing the unknowns on one side of the equations. Use the values given in the
figure.

Significance
The power dissipated or consumed by the circuit equals the power supplied to the circuit, but notice that the
current in the battery is flowing through the battery from the positive terminal to the negative terminal and
consumes power.

The power supplied equals the power dissipated by the resistors and consumed by the battery

CHECK YOUR UNDERSTANDING 10.7

When using Kirchhoff’s laws, you need to decide which loops to use and the direction of current flow through
each loop. In analyzing the circuit in Example 10.7, the direction of current flow was chosen to be clockwise,
from point a to point b. How would the results change if the direction of the current was chosen to be
counterclockwise, from point b to point a?

Multiple Voltage Sources
Many devices require more than one battery. Multiple voltage sources, such as batteries, can be connected in
series configurations, parallel configurations, or a combination of the two.

In series, the positive terminal of one battery is connected to the negative terminal of another battery. Any
number of voltage sources, including batteries, can be connected in series. Two batteries connected in series
are shown in Figure 10.31. Using Kirchhoff’s loop rule for the circuit in part (b) gives the result
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Figure 10.31 (a) Two batteries connected in series with a load resistor. (b) The circuit diagram of the two batteries and the load resistor,

with each battery modeled as an idealized emf source and an internal resistance.

When voltage sources are in series, their internal resistances can be added together and their emfs can be
added together to get the total values. Series connections of voltage sources are common—for example, in
flashlights, toys, and other appliances. Usually, the cells are in series in order to produce a larger total emf. In
Figure 10.31, the terminal voltage is

Note that the same current I is found in each battery because they are connected in series. The disadvantage of
series connections of cells is that their internal resistances are additive.

Batteries are connected in series to increase the voltage supplied to the circuit. For instance, an LED flashlight
may have two AAA cell batteries, each with a terminal voltage of 1.5 V, to provide 3.0 V to the flashlight.

Any number of batteries can be connected in series. For N batteries in series, the terminal voltage is equal to

where the equivalent resistance is .

When a load is placed across voltage sources in series, as in Figure 10.32, we can find the current:

As expected, the internal resistances increase the equivalent resistance.

10.6
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Figure 10.32 Two batteries connect in series to an LED bulb, as found in a flashlight.

Voltage sources, such as batteries, can also be connected in parallel. Figure 10.33 shows two batteries with
identical emfs in parallel and connected to a load resistance. When the batteries are connect in parallel, the
positive terminals are connected together and the negative terminals are connected together, and the load
resistance is connected to the positive and negative terminals. Normally, voltage sources in parallel have
identical emfs. In this simple case, since the voltage sources are in parallel, the total emf is the same as the
individual emfs of each battery.

Figure 10.33 (a) Two batteries connect in parallel to a load resistor. (b) The circuit diagram shows the shows battery as an emf source and

an internal resistor. The two emf sources have identical emfs (each labeled by ) connected in parallel that produce the same emf.

Consider the Kirchhoff analysis of the circuit in Figure 10.33(b). There are two loops and a node at point b and
.

Node b: .

Loop abcfa:

Loop fcdef:

Solving for the current through the load resistor results in , where . The

terminal voltage is equal to the potential drop across the load resistor . The parallel connection

reduces the internal resistance and thus can produce a larger current.

Any number of batteries can be connected in parallel. For N batteries in parallel, the terminal voltage is equal
to
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where the equivalent resistance is .

As an example, some diesel trucks use two 12-V batteries in parallel; they produce a total emf of 12 V but can
deliver the larger current needed to start a diesel engine.

In summary, the terminal voltage of batteries in series is equal to the sum of the individual emfs minus the
sum of the internal resistances times the current. When batteries are connected in parallel, they usually have
equal emfs and the terminal voltage is equal to the emf minus the equivalent internal resistance times the
current, where the equivalent internal resistance is smaller than the individual internal resistances. Batteries
are connected in series to increase the terminal voltage to the load. Batteries are connected in parallel to
increase the current to the load.

Solar Cell Arrays
Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both
series and parallel combinations to yield a desired voltage and current. Photovoltaic generation, which is the
conversion of sunlight directly into electricity, is based upon the photoelectric effect. The photoelectric effect
is beyond the scope of this chapter and is covered in Photons and Matter Waves, but in general, photons hitting
the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon. Most single cells have a voltage output of about 0.5 V, while the
current output is a function of the amount of sunlight falling on the cell (the incident solar radiation known as
the insolation). Under bright noon sunlight, a current per unit area of about of cell surface area is
produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical energy needs. They can be wired
together in series or in parallel—connected like the batteries discussed earlier. A solar-cell array or module
usually consists of between 36 and 72 cells, with a power output of 50 W to 140 W.

Solar cells, like batteries, provide a direct current (dc) voltage. Current from a dc voltage source is
unidirectional. Most household appliances need an alternating current (ac) voltage.

10.4 Electrical Measuring Instruments
Learning Objectives
By the end of this section, you will be able to:

• Describe how to connect a voltmeter in a circuit to measure voltage
• Describe how to connect an ammeter in a circuit to measure current
• Describe the use of an ohmmeter

Ohm’s law and Kirchhoff’s method are useful to analyze and design electrical circuits, providing you with the
voltages across, the current through, and the resistance of the components that compose the circuit. To
measure these parameters require instruments, and these instruments are described in this section.

DC Voltmeters and Ammeters
Whereas voltmeters measure voltage, ammeters measure current. Some of the meters in automobile
dashboards, digital cameras, cell phones, and tuner-amplifiers are actually voltmeters or ammeters (Figure
10.34). The internal construction of the simplest of these meters and how they are connected to the system
they monitor give further insight into applications of series and parallel connections.

10.7
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Figure 10.34 The fuel and temperature gauges (far right and far left, respectively) in this 1996 Volkswagen are voltmeters that register

the voltage output of “sender” units. These units are proportional to the amount of gasoline in the tank and to the engine temperature.

(credit: Christian Giersing)

Measuring Current with an Ammeter
To measure the current through a device or component, the ammeter is placed in series with the device or
component. A series connection is used because objects in series have the same current passing through
them. (See Figure 10.35, where the ammeter is represented by the symbol A.)

Figure 10.35 (a) When an ammeter is used to measure the current through two resistors connected in series to a battery, a single

ammeter is placed in series with the two resistors because the current is the same through the two resistors in series. (b) When two

resistors are connected in parallel with a battery, three meters, or three separate ammeter readings, are necessary to measure the current

from the battery and through each resistor. The ammeter is connected in series with the component in question.

Ammeters need to have a very low resistance, a fraction of a milliohm. If the resistance is not negligible,
placing the ammeter in the circuit would change the equivalent resistance of the circuit and modify the
current that is being measured. Since the current in the circuit travels through the meter, ammeters normally
contain a fuse to protect the meter from damage from currents which are too high.

Measuring Voltage with a Voltmeter
A voltmeter is connected in parallel with whatever device it is measuring. A parallel connection is used
because objects in parallel experience the same potential difference. (See Figure 10.36, where the voltmeter is
represented by the symbol V.)
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Figure 10.36 To measure potential differences in this series circuit, the voltmeter (V) is placed in parallel with the voltage source or either

of the resistors. Note that terminal voltage is measured between the positive terminal and the negative terminal of the battery or voltage

source. It is not possible to connect a voltmeter directly across the emf without including the internal resistance r of the battery.

Since voltmeters are connected in parallel, the voltmeter must have a very large resistance. Digital voltmeters
convert the analog voltage into a digital value to display on a digital readout (Figure 10.37). Inexpensive
voltmeters have resistances on the order of whereas high-precision voltmeters have
resistances on the order of . The value of the resistance may vary, depending on which scale is
used on the meter.

Figure 10.37 (a) An analog voltmeter uses a galvanometer to measure the voltage. (b) Digital meters use an analog-to-digital converter to

measure the voltage. (credit: modification of works by Joseph J. Trout)

Analog and Digital Meters
You may encounter two types of meters in the physics lab: analog and digital. The term ‘analog’ refers to
signals or information represented by a continuously variable physical quantity, such as voltage or current. An
analog meter uses a galvanometer, which is essentially a coil of wire with a small resistance, in a magnetic
field, with a pointer attached that points to a scale. Current flows through the coil, causing the coil to rotate. To
use the galvanometer as an ammeter, a small resistance is placed in parallel with the coil. For a voltmeter, a
large resistance is placed in series with the coil. A digital meter uses a component called an analog-to-digital
(A to D) converter and expresses the current or voltage as a series of the digits 0 and 1, which are used to run a
digital display. Most analog meters have been replaced by digital meters.

CHECK YOUR UNDERSTANDING 10.8

Digital meters are able to detect smaller currents than analog meters employing galvanometers. How does this
explain their ability to measure voltage and current more accurately than analog meters?
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INTERACTIVE

In this virtual lab (https://openstax.org/l/21cirreslabsim) simulation, you may construct circuits with resistors,
voltage sources, ammeters and voltmeters to test your knowledge of circuit design.

Ohmmeters
An ohmmeter is an instrument used to measure the resistance of a component or device. The operation of the
ohmmeter is based on Ohm’s law. Traditional ohmmeters contained an internal voltage source (such as a
battery) that would be connected across the component to be tested, producing a current through the
component. A galvanometer was then used to measure the current and the resistance was deduced using
Ohm’s law. Modern digital meters use a constant current source to pass current through the component, and
the voltage difference across the component is measured. In either case, the resistance is measured using
Ohm’s law where the voltage is known and the current is measured, or the current is known and
the voltage is measured.

The component of interest should be isolated from the circuit; otherwise, you will be measuring the equivalent
resistance of the circuit. An ohmmeter should never be connected to a “live” circuit, one with a voltage source
connected to it and current running through it. Doing so can damage the meter.

10.5 RC Circuits
Learning Objectives
By the end of this section, you will be able to:

• Describe the charging process of a capacitor
• Describe the discharging process of a capacitor
• List some applications of RC circuits

When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light
flash discharges the capacitor in a tiny fraction of a second. Why does charging take longer than discharging?
This question and several other phenomena that involve charging and discharging capacitors are discussed in
this module.

Circuits with Resistance and Capacitance
An RC circuit is a circuit containing resistance and capacitance. As presented in Capacitance, the capacitor is
an electrical component that stores electric charge, storing energy in an electric field.

Figure 10.38(a) shows a simple RC circuit that employs a dc (direct current) voltage source , a resistor R, a
capacitor C, and a two-position switch. The circuit allows the capacitor to be charged or discharged, depending
on the position of the switch. When the switch is moved to position A, the capacitor charges, resulting in the
circuit in part (b). When the switch is moved to position B, the capacitor discharges through the resistor.

Figure 10.38 (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved

to position A, the circuit reduces to a simple series connection of the voltage source, the resistor, the capacitor, and the switch. (c) When the

switch is moved to position B, the circuit reduces to a simple series connection of the resistor, the capacitor, and the switch. The voltage

source is removed from the circuit.
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Charging a Capacitor
We can use Kirchhoff’s loop rule to understand the charging of the capacitor. This results in the equation

This equation can be used to model the charge as a function of time as the capacitor charges.
Capacitance is defined as so the voltage across the capacitor is . Using Ohm’s law, the
potential drop across the resistor is , and the current is defined as

This differential equation can be integrated to find an equation for the charge on the capacitor as a function of
time.

Let , then The result is

Simplifying results in an equation for the charge on the charging capacitor as a function of time:

A graph of the charge on the capacitor versus time is shown in Figure 10.39(a). First note that as time
approaches infinity, the exponential goes to zero, so the charge approaches the maximum charge and
has units of coulombs. The units of RC are seconds, units of time. This quantity is known as the time constant:

At time , the charge is equal to of the maximum charge .
Notice that the time rate change of the charge is the slope at a point of the charge versus time plot. The slope of
the graph is large at time and approaches zero as time increases.

As the charge on the capacitor increases, the current through the resistor decreases, as shown in Figure

10.8

10.9
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10.39(b). The current through the resistor can be found by taking the time derivative of the charge.

At time the current through the resistor is . As time approaches infinity, the current
approaches zero. At time , the current through the resistor is

Figure 10.39 (a) Charge on the capacitor versus time as the capacitor charges. (b) Current through the resistor versus time. (c) Voltage

difference across the capacitor. (d) Voltage difference across the resistor.

Figure 10.39(c) and Figure 10.39(d) show the voltage differences across the capacitor and the resistor,
respectively. As the charge on the capacitor increases, the current decreases, as does the voltage difference
across the resistor The voltage difference across the capacitor increases
as

Discharging a Capacitor
When the switch in Figure 10.38(a) is moved to position B, the circuit reduces to the circuit in part (c), and the
charged capacitor is allowed to discharge through the resistor. A graph of the charge on the capacitor as a
function of time is shown in Figure 10.40(a). Using Kirchhoff’s loop rule to analyze the circuit as the capacitor
discharges results in the equation , which simplifies to . Using the definition of

current and integrating the loop equation yields an equation for the charge on the capacitor as a
function of time:

10.10
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Here, Q is the initial charge on the capacitor and is the time constant of the circuit. As shown in the
graph, the charge decreases exponentially from the initial charge, approaching zero as time approaches
infinity.

The current as a function of time can be found by taking the time derivative of the charge:

The negative sign shows that the current flows in the opposite direction of the current found when the
capacitor is charging. Figure 10.40(b) shows an example of a plot of charge versus time and current versus
time. A plot of the voltage difference across the capacitor and the voltage difference across the resistor as a
function of time are shown in parts (c) and (d) of the figure. Note that the magnitudes of the charge, current,
and voltage all decrease exponentially, approaching zero as time increases.

Figure 10.40 (a) Charge on the capacitor versus time as the capacitor discharges. (b) Current through the resistor versus time. (c) Voltage

difference across the capacitor. (d) Voltage difference across the resistor.

Now we can explain why the flash camera mentioned at the beginning of this section takes so much longer to
charge than discharge: The resistance while charging is significantly greater than while discharging. The
internal resistance of the battery accounts for most of the resistance while charging. As the battery ages, the
increasing internal resistance makes the charging process even slower.

EXAMPLE 10.8

The Relaxation Oscillator
One application of an RC circuit is the relaxation oscillator, as shown below. The relaxation oscillator consists

10.11

10.12
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of a voltage source, a resistor, a capacitor, and a neon lamp. The neon lamp acts like an open circuit (infinite
resistance) until the potential difference across the neon lamp reaches a specific voltage. At that voltage, the
lamp acts like a short circuit (zero resistance), and the capacitor discharges through the neon lamp and
produces light. In the relaxation oscillator shown, the voltage source charges the capacitor until the voltage
across the capacitor is 80 V. When this happens, the neon in the lamp breaks down and allows the capacitor to
discharge through the lamp, producing a bright flash. After the capacitor fully discharges through the neon
lamp, it begins to charge again, and the process repeats. Assuming that the time it takes the capacitor to
discharge is negligible, what is the time interval between flashes?

Strategy
The time period can be found from considering the equation where

Solution
The neon lamp flashes when the voltage across the capacitor reaches 80 V. The RC time constant is equal to

We can solve the voltage equation for the time it takes the
capacitor to reach 80 V:

Significance
One application of the relaxation oscillator is for controlling indicator lights that flash at a frequency
determined by the values for R and C. In this example, the neon lamp will flash every 8.13 seconds, a frequency
of The relaxation oscillator has many other practical uses. It is often used in
electronic circuits, where the neon lamp is replaced by a transistor or a device known as a tunnel diode. The
description of the transistor and tunnel diode is beyond the scope of this chapter, but you can think of them as
voltage controlled switches. They are normally open switches, but when the right voltage is applied, the switch
closes and conducts. The “switch” can be used to turn on another circuit, turn on a light, or run a small motor.
A relaxation oscillator can be used to make the turn signals of your car blink or your cell phone to vibrate.

RC circuits have many applications. They can be used effectively as timers for applications such as
intermittent windshield wipers, pace makers, and strobe lights. Some models of intermittent windshield
wipers use a variable resistor to adjust the interval between sweeps of the wiper. Increasing the resistance
increases the RC time constant, which increases the time between the operation of the wipers.

Another application is the pacemaker. The heart rate is normally controlled by electrical signals, which cause
the muscles of the heart to contract and pump blood. When the heart rhythm is abnormal (the heartbeat is too

458 10 • Direct-Current Circuits

Access for free at openstax.org.



high or too low), pace makers can be used to correct this abnormality. Pacemakers have sensors that detect
body motion and breathing to increase the heart rate during physical activities, thus meeting the increased
need for blood and oxygen, and an RC timing circuit can be used to control the time between voltage signals to
the heart.

Looking ahead to the study of ac circuits (Alternating-Current Circuits), ac voltages vary as sine functions with
specific frequencies. Periodic variations in voltage, or electric signals, are often recorded by scientists. These
voltage signals could come from music recorded by a microphone or atmospheric data collected by radar.
Occasionally, these signals can contain unwanted frequencies known as “noise.” RC filters can be used to filter
out the unwanted frequencies.

In the study of electronics, a popular device known as a 555 timer provides timed voltage pulses. The time
between pulses is controlled by an RC circuit. These are just a few of the countless applications of RC circuits.

EXAMPLE 10.9

Intermittent Windshield Wipers
A relaxation oscillator is used to control a pair of windshield wipers. The relaxation oscillator consists of a
10.00-mF capacitor and a variable resistor known as a rheostat. A knob connected to the variable
resistor allows the resistance to be adjusted from to The output of the capacitor is used to
control a voltage-controlled switch. The switch is normally open, but when the output voltage reaches 10.00 V,
the switch closes, energizing an electric motor and discharging the capacitor. The motor causes the windshield
wipers to sweep once across the windshield and the capacitor begins to charge again. To what resistance
should the rheostat be adjusted for the period of the wiper blades be 10.00 seconds?

Strategy
The resistance considers the equation where The capacitance, output
voltage, and voltage of the battery are given. We need to solve this equation for the resistance.

Solution
The output voltage will be 10.00 V and the voltage of the battery is 12.00 V. The capacitance is given as 10.00
mF. Solving for the resistance yields

10.5 • RC Circuits 459



Significance
Increasing the resistance increases the time delay between operations of the windshield wipers. When the
resistance is zero, the windshield wipers run continuously. At the maximum resistance, the period of the
operation of the wipers is:

The RC circuit has thousands of uses and is a very important circuit to study. Not only can it be used to time
circuits, it can also be used to filter out unwanted frequencies in a circuit and used in power supplies, like the
one for your computer, to help turn ac voltage to dc voltage.

10.6 Household Wiring and Electrical Safety
Learning Objectives
By the end of this section, you will be able to:

• List the basic concepts involved in house wiring
• Define the terms thermal hazard and shock hazard
• Describe the effects of electrical shock on human physiology and their relationship to the amount of current

through the body
• Explain the function of fuses and circuit breakers

Electricity presents two known hazards: thermal and shock. A thermal hazard is one in which an excessive
electric current causes undesired thermal effects, such as starting a fire in the wall of a house. A shock hazard
occurs when an electric current passes through a person. Shocks range in severity from painful, but otherwise
harmless, to heart-stopping lethality. In this section, we consider these hazards and the various factors
affecting them in a quantitative manner. We also examine systems and devices for preventing electrical
hazards.

Thermal Hazards
Electric power causes undesired heating effects whenever electric energy is converted into thermal energy at a
rate faster than it can be safely dissipated. A classic example of this is the short circuit, a low-resistance path
between terminals of a voltage source. An example of a short circuit is shown in Figure 10.41. A toaster is
plugged into a common household electrical outlet. Insulation on wires leading to an appliance has worn
through, allowing the two wires to come into contact, or “short.” As a result, thermal energy can quickly raise
the temperature of surrounding materials, melting the insulation and perhaps causing a fire.

The circuit diagram shows a symbol that consists of a sine wave enclosed in a circle. This symbol represents
an alternating current (ac) voltage source. In an ac voltage source, the voltage oscillates between a positive and
negative maximum amplitude. Up to now, we have been considering direct current (dc) voltage sources, but
many of the same concepts are applicable to ac circuits.
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Figure 10.41 A short circuit is an undesired low-resistance path across a voltage source. (a) Worn insulation on the wires of a toaster

allow them to come into contact with a low resistance r. Since , thermal power is created so rapidly that the cord melts or burns.

(b) A schematic of the short circuit.

Another serious thermal hazard occurs when wires supplying power to an appliance are overloaded. Electrical
wires and appliances are often rated for the maximum current they can safely handle. The term “overloaded”
refers to a condition where the current exceeds the rated maximum current. As current flows through a wire,
the power dissipated in the supply wires is where is the resistance of the wires and I is the
current flowing through the wires. If either I or is too large, the wires overheat. Fuses and circuit breakers
are used to limit excessive currents.

Shock Hazards
Electric shock is the physiological reaction or injury caused by an external electric current passing through the
body. The effect of an electric shock can be negative or positive. When a current with a magnitude above 300
mA passes through the heart, death may occur. Most electrical shock fatalities occur because a current causes
ventricular fibrillation, a massively irregular and often fatal, beating of the heart. On the other hand, a heart
attack victim, whose heart is in fibrillation, can be saved by an electric shock from a defibrillator.

The effects of an undesirable electric shock can vary in severity: a slight sensation at the point of contact, pain,
loss of voluntary muscle control, difficulty breathing, heart fibrillation, and possibly death. The loss of
voluntary muscle control can cause the victim to not be able to let go of the source of the current.

The major factors upon which the severity of the effects of electrical shock depend are

1. The amount of current I
2. The path taken by the current
3. The duration of the shock
4. The frequency f of the current ( for dc)

Our bodies are relatively good electric conductors due to the body’s water content. A dangerous condition
occurs when the body is in contact with a voltage source and “ground.” The term “ground” refers to a large sink
or source of electrons, for example, the earth (thus, the name). When there is a direct path to ground, large
currents will pass through the parts of the body with the lowest resistance and a direct path to ground. A safety
precaution used by many professions is the wearing of insulated shoes. Insulated shoes prohibit a pathway to
ground for electrons through the feet by providing a large resistance. Whenever working with high-power
tools, or any electric circuit, ensure that you do not provide a pathway for current flow (especially across the
heart). A common safety precaution is to work with one hand, reducing the possibility of providing a current
path through the heart.

Very small currents pass harmlessly and unfelt through the body. This happens to you regularly without your
knowledge. The threshold of sensation is only 1 mA and, although unpleasant, shocks are apparently harmless
for currents less than 5 mA. A great number of safety rules take the 5-mA value for the maximum allowed
shock. At 5–30 mA and above, the current can stimulate sustained muscular contractions, much as regular
nerve impulses do (Figure 10.42). Very large currents (above 300 mA) cause the heart and diaphragm of the
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lung to contract for the duration of the shock. Both the heart and respiration stop. Both often return to normal
following the shock.

Figure 10.42 An electric current can cause muscular contractions with varying effects. (a) The victim is “thrown” backward by involuntary

muscle contractions that extend the legs and torso. (b) The victim can’t let go of the wire that is stimulating all the muscles in the hand.

Those that close the fingers are stronger than those that open them.

Current is the major factor determining shock severity. A larger voltage is more hazardous, but since
the severity of the shock depends on the combination of voltage and resistance. For example, a person with dry
skin has a resistance of about . If he comes into contact with 120-V ac, a current

passes harmlessly through him. The same person soaking wet may have a resistance of and the same
120 V will produce a current of 12 mA—above the “can’t let go” threshold and potentially dangerous.

Electrical Safety: Systems and Devices
Figure 10.43(a) shows the schematic for a simple ac circuit with no safety features. This is not how power is
distributed in practice. Modern household and industrial wiring requires the three-wire system, shown
schematically in part (b), which has several safety features, with live, neutral, and ground wires. First is the
familiar circuit breaker (or fuse) to prevent thermal overload. Second is a protective case around the appliance,
such as a toaster or refrigerator. The case’s safety feature is that it prevents a person from touching exposed
wires and coming into electrical contact with the circuit, helping prevent shocks.
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Figure 10.43 (a) Schematic of a simple ac circuit with a voltage source and a single appliance represented by the resistance R. There are

no safety features in this circuit. (b) The three-wire system connects the neutral wire to ground at the voltage source and user location,

forcing it to be at zero volts and supplying an alternative return path for the current through ground. Also grounded to zero volts is the case

of the appliance. A circuit breaker or fuse protects against thermal overload and is in series on the active (live/hot) wire.

There are three connections to ground shown in Figure 10.43(b). Recall that a ground connection is a low-
resistance path directly to ground. The two ground connections on the neutral wire force it to be at zero volts
relative to ground, giving the wire its name. This wire is therefore safe to touch even if its insulation, usually
white, is missing. The neutral wire is the return path for the current to follow to complete the circuit.
Furthermore, the two ground connections supply an alternative path through ground (a good conductor) to
complete the circuit. The ground connection closest to the power source could be at the generating plant,
whereas the other is at the user’s location. The third ground is to the case of the appliance, through the green
ground wire, forcing the case, too, to be at zero volts. The live or hot wire (hereafter referred to as “live/hot”)
supplies voltage and current to operate the appliance. Figure 10.44 shows a more pictorial version of how the
three-wire system is connected through a three-prong plug to an appliance.

Figure 10.44 The standard three-prong plug can only be inserted in one way, to ensure proper function of the three-wire system.

Insulating plastic is color-coded to identify live/hot, neutral, and ground wires, but these codes vary around the
world. It is essential to determine the color code in your region. Striped coatings are sometimes used for the
benefit of those who are colorblind.

Grounding the case solves more than one problem. The simplest problem is worn insulation on the live/hot
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wire that allows it to contact the case, as shown in Figure 10.45. Lacking a ground connection, a severe shock is
possible. This is particularly dangerous in the kitchen, where a good connection to ground is available through
water on the floor or a water faucet. With the ground connection intact, the circuit breaker will trip, forcing
repair of the appliance.

Figure 10.45 Worn insulation allows the live/hot wire to come into direct contact with the metal case of this appliance. (a) The ground

connection being broken, the person is severely shocked. The appliance may operate normally in this situation. (b) With a proper ground,

the circuit breaker trips, forcing repair of the appliance.

A ground fault circuit interrupter (GFCI) is a safety device found in updated kitchen and bathroom wiring that
works based on electromagnetic induction. GFCIs compare the currents in the live/hot and neutral wires.
When live/hot and neutral currents are not equal, it is almost always because current in the neutral is less than
in the live/hot wire. Then some of the current, called a leakage current, is returning to the voltage source by a
path other than through the neutral wire. It is assumed that this path presents a hazard. GFCIs are usually set
to interrupt the circuit if the leakage current is greater than 5 mA, the accepted maximum harmless shock.
Even if the leakage current goes safely to ground through an intact ground wire, the GFCI will trip, forcing
repair of the leakage.
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CHAPTER REVIEW
Key Terms
ammeter instrument that measures current
electromotive force (emf) energy produced per

unit charge, drawn from a source that produces
an electrical current

equivalent resistance resistance of a combination
of resistors; it can be thought of as the resistance
of a single resistor that can replace a combination
of resistors in a series and/or parallel circuit

internal resistance amount of resistance to the
flow of current within the voltage source

junction rule sum of all currents entering a
junction must equal the sum of all currents
leaving the junction

Kirchhoff’s rules set of two rules governing
current and changes in potential in an electric
circuit

loop rule algebraic sum of changes in potential
around any closed circuit path (loop) must be
zero

potential difference difference in electric
potential between two points in an electric
circuit, measured in volts

potential drop loss of electric potential energy as a
current travels across a resistor, wire, or other
component

RC circuit circuit that contains both a resistor and
a capacitor

shock hazard hazard in which an electric current
passes through a person

terminal voltage potential difference measured
across the terminals of a source when there is no
load attached

thermal hazard hazard in which an excessive
electric current causes undesired thermal effects

three-wire system wiring system used at present
for safety reasons, with live, neutral, and ground
wires

voltmeter instrument that measures voltage

Key Equations

Terminal voltage of a single voltage source

Equivalent resistance of a series circuit

Equivalent resistance of a parallel circuit

Junction rule

Loop rule

Terminal voltage of N voltage sources in series

Terminal voltage of N voltage sources in parallel

Charge on a charging capacitor

Time constant
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Current during charging of a capacitor

Charge on a discharging capacitor

Current during discharging of a capacitor

Summary
10.1 Electromotive Force

• All voltage sources have two fundamental parts:
a source of electrical energy that has a
characteristic electromotive force (emf), and an
internal resistance r. The emf is the work done
per charge to keep the potential difference of a
source constant. The emf is equal to the
potential difference across the terminals when
no current is flowing. The internal resistance r
of a voltage source affects the output voltage
when a current flows.

• The voltage output of a device is called its
terminal voltage and is given by

, where I is the electric current
and is positive when flowing away from the
positive terminal of the voltage source and r is
the internal resistance.

10.2 Resistors in Series and Parallel

• The equivalent resistance of an electrical circuit
with resistors wired in a series is the sum of the
individual resistances:

.

• Each resistor in a series circuit has the same
amount of current flowing through it.

• The potential drop, or power dissipation, across
each individual resistor in a series is different,
and their combined total is the power source
input.

• The equivalent resistance of an electrical circuit
with resistors wired in parallel is less than the
lowest resistance of any of the components and
can be determined using the formula

• Each resistor in a parallel circuit has the same
full voltage of the source applied to it.

• The current flowing through each resistor in a
parallel circuit is different, depending on the

resistance.
• If a more complex connection of resistors is a

combination of series and parallel, it can be
reduced to a single equivalent resistance by
identifying its various parts as series or parallel,
reducing each to its equivalent, and continuing
until a single resistance is eventually reached.

10.3 Kirchhoff's Rules

• Kirchhoff’s rules can be used to analyze any
circuit, simple or complex. The simpler series
and parallel connection rules are special cases
of Kirchhoff’s rules.

• Kirchhoff’s first rule, also known as the junction
rule, applies to the charge to a junction. Current
is the flow of charge; thus, whatever charge
flows into the junction must flow out.

• Kirchhoff’s second rule, also known as the loop
rule, states that the voltage drop around a loop is
zero.

• When calculating potential and current using
Kirchhoff’s rules, a set of conventions must be
followed for determining the correct signs of
various terms.

• When multiple voltage sources are in series,
their internal resistances add together and their
emfs add together to get the total values.

• When multiple voltage sources are in parallel,
their internal resistances combine to an
equivalent resistance that is less than the
individual resistance and provides a higher
current than a single cell.

• Solar cells can be wired in series or parallel to
provide increased voltage or current,
respectively.

10.4 Electrical Measuring Instruments

• Voltmeters measure voltage, and ammeters
measure current. Analog meters are based on
the combination of a resistor and a
galvanometer, a device that gives an analog
reading of current or voltage. Digital meters are
based on analog-to-digital converters and
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provide a discrete or digital measurement of the
current or voltage.

• A voltmeter is placed in parallel with the voltage
source to receive full voltage and must have a
large resistance to limit its effect on the circuit.

• An ammeter is placed in series to get the full
current flowing through a branch and must have
a small resistance to limit its effect on the
circuit.

• Standard voltmeters and ammeters alter the
circuit they are connected to and are thus
limited in accuracy.

• Ohmmeters are used to measure resistance. The
component in which the resistance is to be
measured should be isolated (removed) from
the circuit.

10.5 RC Circuits

• An RC circuit is one that has both a resistor and
a capacitor.

• The time constant for an RC circuit is
• When an initially uncharged

capacitor in series with a resistor is charged by
a dc voltage source, the capacitor asymptotically
approaches the maximum charge.

• As the charge on the capacitor increases, the
current exponentially decreases from the initial

current:
• If a capacitor with an initial charge Q is

discharged through a resistor starting at ,
then its charge decreases exponentially. The
current flows in the opposite direction,
compared to when it charges, and the
magnitude of the charge decreases with time.

10.6 Household Wiring and Electrical
Safety

• The two types of electric hazards are thermal
(excessive power) and shock (current through a
person). Electrical safety systems and devices
are employed to prevent thermal and shock
hazards.

• Shock severity is determined by current, path,
duration, and ac frequency.

• Circuit breakers and fuses interrupt excessive
currents to prevent thermal hazards.

• The three-wire system guards against thermal
and shock hazards, utilizing live/hot, neutral,
and ground wires, and grounding the neutral
wire and case of the appliance.

• A ground fault circuit interrupter (GFCI)
prevents shock by detecting the loss of current
to unintentional paths.

Conceptual Questions
10.1 Electromotive Force

1. What effect will the internal resistance of a
rechargeable battery have on the energy being
used to recharge the battery?

2. A battery with an internal resistance of r and an
emf of 10.00 V is connected to a load resistor

. As the battery ages, the internal resistance
triples. How much is the current through the load
resistor reduced?

3. Show that the power dissipated by the load
resistor is maximum when the resistance of the
load resistor is equal to the internal resistance of
the battery.

10.2 Resistors in Series and Parallel

4. A voltage occurs across an open switch. What is
the power dissipated by the open switch?

5. The severity of a shock depends on the
magnitude of the current through your body.
Would you prefer to be in series or in parallel
with a resistance, such as the heating element of
a toaster, if you were shocked by it? Explain.

6. Suppose you are doing a physics lab that asks you
to put a resistor into a circuit, but all the resistors
supplied have a larger resistance than the
requested value. How would you connect the
available resistances to attempt to get the smaller
value asked for?

7. Some light bulbs have three power settings (not
including zero), obtained from multiple filaments
that are individually switched and wired in
parallel. What is the minimum number of
filaments needed for three power settings?

10.3 Kirchhoff's Rules

8. Can all of the currents going into the junction
shown below be positive? Explain.

9. Consider the circuit shown below. Does the

10 • Chapter Review 467



analysis of the circuit require Kirchhoff’s
method, or can it be redrawn to simplify the
circuit? If it is a circuit of series and parallel
connections, what is the equivalent resistance?

10. Do batteries in a circuit always supply power to
a circuit, or can they absorb power in a circuit?
Give an example.

11. What are the advantages and disadvantages of
connecting batteries in series? In parallel?

12. Semi-tractor trucks use four large 12-V
batteries. The starter system requires 24 V,
while normal operation of the truck’s other
electrical components utilizes 12 V. How could
the four batteries be connected to produce 24
V? To produce 12 V? Why is 24 V better than 12
V for starting the truck’s engine (a very heavy
load)?

10.4 Electrical Measuring Instruments

13. What would happen if you placed a voltmeter in
series with a component to be tested?

14. What is the basic operation of an ohmmeter as
it measures a resistor?

15. Why should you not connect an ammeter
directly across a voltage source as shown

below?

10.5 RC Circuits

16. A battery, switch, capacitor, and lamp are
connected in series. Describe what happens to
the lamp when the switch is closed.

17. When making an ECG measurement, it is
important to measure voltage variations over
small time intervals. The time is limited by the
RC constant of the circuit—it is not possible to
measure time variations shorter than RC. How
would you manipulate R and C in the circuit to
allow the necessary measurements?

10.6 Household Wiring and Electrical
Safety

18. Why isn’t a short circuit necessarily a shock
hazard?

19. We are often advised to not flick electric
switches with wet hands, dry your hand first. We
are also advised to never throw water on an
electric fire. Why?

Problems
10.1 Electromotive Force

20. A car battery with a 12-V emf and an internal
resistance of is being charged with a
current of 60 A. Note that in this process, the
battery is being charged. (a) What is the
potential difference across its terminals? (b) At
what rate is thermal energy being dissipated in
the battery? (c) At what rate is electric energy
being converted into chemical energy?

21. The label on a battery-powered radio
recommends the use of a rechargeable nickel-
cadmium cell (nicads), although it has a 1.25-V
emf, whereas an alkaline cell has a 1.58-V emf.
The radio has a resistance. (a) Draw a

circuit diagram of the radio and its battery. Now,
calculate the power delivered to the radio (b)
when using a nicad cells, each having an
internal resistance of , and (c) when
using an alkaline cell, having an internal
resistance of . (d) Does this difference
seem significant, considering that the radio’s
effective resistance is lowered when its volume
is turned up?

22. An automobile starter motor has an equivalent
resistance of and is supplied by a
12.0-V battery with a internal
resistance. (a) What is the current to the motor?
(b) What voltage is applied to it? (c) What power
is supplied to the motor? (d) Repeat these
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calculations for when the battery connections
are corroded and add to the circuit.
(Significant problems are caused by even small
amounts of unwanted resistance in low-voltage,
high-current applications.)

23. (a) What is the internal resistance of a voltage
source if its terminal potential drops by 2.00 V
when the current supplied increases by 5.00 A?
(b) Can the emf of the voltage source be found
with the information supplied?

24. A person with body resistance between his
hands of accidentally grasps the
terminals of a 20.0-kV power supply. (Do NOT
do this!) (a) Draw a circuit diagram to represent
the situation. (b) If the internal resistance of the
power supply is , what is the current
through his body? (c) What is the power
dissipated in his body? (d) If the power supply is
to be made safe by increasing its internal
resistance, what should the internal resistance
be for the maximum current in this situation to
be 1.00 mA or less? (e) Will this modification
compromise the effectiveness of the power
supply for driving low-resistance devices?
Explain your reasoning.

25. A 12.0-V emf automobile battery has a terminal
voltage of 16.0 V when being charged by a
current of 10.0 A. (a) What is the battery’s
internal resistance? (b) What power is
dissipated inside the battery? (c) At what rate (in

) will its temperature increase if its mass
is 20.0 kg and it has a specific heat of

, assuming no heat escapes?

10.2 Resistors in Series and Parallel

26. (a) What is the resistance of a , a
, and a resistor connected in

series? (b) In parallel?
27. What are the largest and smallest resistances

you can obtain by connecting a , a
, and a resistor together?

28. An 1800-W toaster, a 1400-W speaker, and a
75-W lamp are plugged into the same outlet in a
15-A fuse and 120-V circuit. (The three devices
are in parallel when plugged into the same
socket.) (a) What current is drawn by each
device? (b) Will this combination blow the 15-A
fuse?

29. Your car’s 30.0-W headlight and 2.40-kW starter
are ordinarily connected in parallel in a 12.0-V
system. What power would one headlight and
the starter consume if connected in series to a
12.0-V battery? (Neglect any other resistance in

the circuit and any change in resistance in the
two devices.)

30. (a) Given a 48.0-V battery and and
resistors, find the current and power for

each when connected in series. (b) Repeat when
the resistances are in parallel.

31. Referring to the example combining series and
parallel circuits and Figure 10.16, calculate
in the following two different ways: (a) from the
known values of and ; (b) using Ohm’s law
for . In both parts, explicitly show how you
follow the steps in the Figure 10.17.

32. Referring to Figure 10.16, (a) Calculate and
note how it compares with found in the first
two example problems in this module. (b) Find
the total power supplied by the source and
compare it with the sum of the powers
dissipated by the resistors.

33. Refer to Figure 10.17 and the discussion of
lights dimming when a heavy appliance comes
on. (a) Given the voltage source is 120 V, the
wire resistance is and the bulb is
nominally 75.0 W, what power will the bulb
dissipate if a total of 15.0 A passes through the
wires when the motor comes on? Assume
negligible change in bulb resistance. (b) What
power is consumed by the motor?

34. Show that if two resistors and are
combined and one is much greater than the
other , (a) their series resistance is
very nearly equal to the greater resistance
and (b) their parallel resistance is very nearly
equal to the smaller resistance .

35. Consider the circuit shown below. The terminal
voltage of the battery is (a) Find
the equivalent resistance of the circuit. (b) Find
the current through each resistor. (c) Find the
potential drop across each resistor. (d) Find the
power dissipated by each resistor. (e) Find the
power supplied by the battery.

10.3 Kirchhoff's Rules

36. Consider the circuit shown below. (a) Find the
voltage across each resistor. (b)What is the
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power supplied to the circuit and the power
dissipated or consumed by the circuit?

37. Consider the circuits shown below. (a) What is
the current through each resistor in part (a)? (b)
What is the current through each resistor in
part (b)? (c) What is the power dissipated or
consumed by each circuit? (d) What is the
power supplied to each circuit?

38. Consider the circuit shown below. Find

39. Consider the circuit shown below. Find

40. Consider the circuit shown below. Find

41. Consider the circuit shown below. (a) Find
(b) Find the power supplied

by the voltage sources. (c) Find the power dissipated
by the resistors.

42. Consider the circuit shown below. Write the three
loop equations for the loops shown.

43. Consider the circuit shown below. Write equations
for the three currents in terms of R and V.
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44. Consider the circuit shown in the preceding
problem. Write equations for the power
supplied by the voltage sources and the power
dissipated by the resistors in terms of R and V.

45. A child’s electronic toy is supplied by three
1.58-V alkaline cells having internal resistances
of in series with a 1.53-V carbon-zinc
dry cell having a internal resistance.
The load resistance is . (a) Draw a circuit
diagram of the toy and its batteries. (b) What
current flows? (c) How much power is supplied
to the load? (d) What is the internal resistance of
the dry cell if it goes bad, resulting in only 0.500
W being supplied to the load?

46. Apply the junction rule to Junction b shown below.
Is any new information gained by applying the
junction rule at e?

47. Apply the loop rule to Loop afedcba in the
preceding problem.

10.4 Electrical Measuring Instruments

48. Suppose you measure the terminal voltage of a
1.585-V alkaline cell having an internal
resistance of by placing a
voltmeter across its terminals (see below). (a)

What current flows? (b) Find the terminal
voltage. (c) To see how close the measured
terminal voltage is to the emf, calculate their
ratio.

10.5 RC Circuits

49. The timing device in an automobile’s
intermittent wiper system is based on an RC
time constant and utilizes a capacitor
and a variable resistor. Over what range must R
be made to vary to achieve time constants from
2.00 to 15.0 s?

50. A heart pacemaker fires 72 times a minute,
each time a 25.0-nF capacitor is charged (by a
battery in series with a resistor) to 0.632 of its
full voltage. What is the value of the resistance?

51. The duration of a photographic flash is related
to an RC time constant, which is for a
certain camera. (a) If the resistance of the flash
lamp is during discharge, what is the
size of the capacitor supplying its energy? (b)
What is the time constant for charging the
capacitor, if the charging resistance is ?

52. A 2.00- and a capacitor can be
connected in series or parallel, as can a 25.0-
and a resistor. Calculate the four RC
time constants possible from connecting the
resulting capacitance and resistance in series.

53. A resistor, an uncharged
capacitor, and a 6.16-V emf are connected in
series. (a) What is the initial current? (b) What is
the RC time constant? (c) What is the current
after one time constant? (d) What is the voltage
on the capacitor after one time constant?

54. A heart defibrillator being used on a patient has
an RC time constant of 10.0 ms due to the
resistance of the patient and the capacitance of
the defibrillator. (a) If the defibrillator has a
capacitance of what is the resistance of
the path through the patient? (You may neglect
the capacitance of the patient and the
resistance of the defibrillator.) (b) If the initial
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voltage is 12.0 kV, how long does it take to
decline to ?

55. An ECG monitor must have an RC time constant
less than to be able to measure
variations in voltage over small time intervals.
(a) If the resistance of the circuit (due mostly to
that of the patient’s chest) is , what is the
maximum capacitance of the circuit? (b) Would
it be difficult in practice to limit the capacitance
to less than the value found in (a)?

56. Using the exact exponential treatment,
determine how much time is required to charge
an initially uncharged 100-pF capacitor through
a resistor to of its final voltage.

57. If you wish to take a picture of a bullet traveling
at 500 m/s, then a very brief flash of light
produced by an RC discharge through a flash
tube can limit blurring. Assuming 1.00 mm of
motion during one RC constant is acceptable,
and given that the flash is driven by a
capacitor, what is the resistance in the flash
tube?

10.6 Household Wiring and Electrical
Safety

58. (a) How much power is dissipated in a short
circuit of 240-V ac through a resistance of

? (b) What current flows?
59. What voltage is involved in a 1.44-kW short

circuit through a resistance?
60. Find the current through a person and identify

the likely effect on her if she touches a 120-V ac
source: (a) if she is standing on a rubber mat
and offers a total resistance of ; (b) if she
is standing barefoot on wet grass and has a
resistance of only .

61. While taking a bath, a person touches the metal

case of a radio. The path through the person to
the drainpipe and ground has a resistance of

. What is the smallest voltage on the case
of the radio that could cause ventricular
fibrillation?

62. A man foolishly tries to fish a burning piece of
bread from a toaster with a metal butter knife
and comes into contact with 120-V ac. He does
not even feel it since, luckily, he is wearing
rubber-soled shoes. What is the minimum
resistance of the path the current follows
through the person?

63. (a) During surgery, a current as small as
applied directly to the heart may cause

ventricular fibrillation. If the resistance of the
exposed heart is what is the smallest
voltage that poses this danger? (b) Does your
answer imply that special electrical safety
precautions are needed?

64. (a) What is the resistance of a 220-V ac short
circuit that generates a peak power of 96.8 kW?
(b) What would the average power be if the
voltage were 120 V ac?

65. A heart defibrillator passes 10.0 A through a
patient’s torso for 5.00 ms in an attempt to
restore normal beating. (a) How much charge
passed? (b) What voltage was applied if 500 J of
energy was dissipated? (c) What was the path’s
resistance? (d) Find the temperature increase
caused in the 8.00 kg of affected tissue.

66. A short circuit in a 120-V appliance cord has a
resistance. Calculate the temperature

rise of the 2.00 g of surrounding materials,
assuming their specific heat capacity is

and that it takes 0.0500 s for a
circuit breaker to interrupt the current. Is this
likely to be damaging?

Additional Problems
67. A circuit contains a D cell battery, a switch, a

resistor, and four 20-mF capacitors
connected in series. (a) What is the equivalent
capacitance of the circuit? (b) What is the RC
time constant? (c) How long before the current
decreases to of the initial value once the
switch is closed?

68. A circuit contains a D-cell battery, a switch, a
resistor, and three 20-mF capacitors. The

capacitors are connected in parallel, and the
parallel connection of capacitors are connected
in series with the switch, the resistor and the
battery. (a) What is the equivalent capacitance
of the circuit? (b) What is the RC time constant?
(c) How long before the current decreases to

of the initial value once the switch is
closed?
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69. Consider the circuit below. The battery has an emf
of and an internal resistance of

(a) Find the equivalent resistance of the
circuit and the current out of the battery. (b) Find
the current through each resistor. (c) Find the
potential drop across each resistor. (d) Find the
power dissipated by each resistor. (e) Find the total
power supplied by the batteries.

70. A homemade capacitor is constructed of 2
sheets of aluminum foil with an area of 2.00
square meters, separated by paper, 0.05 mm
thick, of the same area and a dielectric constant
of 3.7. The homemade capacitor is connected in
series with a resistor, a switch, and a
6.00-V voltage source. (a) What is the RC time
constant of the circuit? (b) What is the initial
current through the circuit, when the switch is
closed? (c) How long does it take the current to
reach one third of its initial value?

71. A student makes a homemade resistor from a
graphite pencil 5.00 cm long, where the
graphite is 0.05 mm in diameter. The resistivity
of the graphite is . The
homemade resistor is place in series with a
switch, a 10.00-mF uncharged capacitor and a
0.50-V power source. (a) What is the RC time
constant of the circuit? (b) What is the potential
drop across the pencil 1.00 s after the switch is
closed?

72. The rather simple circuit shown below is known as
a voltage divider. The symbol consisting of three
horizontal lines is represents “ground” and can be
defined as the point where the potential is zero. The
voltage divider is widely used in circuits and a
single voltage source can be used to provide
reduced voltage to a load resistor as shown in the
second part of the figure. (a) What is the output
voltage of circuit (a) in terms of

(b) What is the output voltage
of circuit (b) in terms of

73. Three resistors are connect in series with
an AAA battery with a rating of 3 AmpHours. (a)
How long can the battery supply the resistors
with power? (b) If the resistors are connected in
parallel, how long can the battery last?

74. Consider a circuit that consists of a real battery
with an emf and an internal resistance of r
connected to a variable resistor R. (a) In order
for the terminal voltage of the battery to be
equal to the emf of the battery, what should the
resistance of the variable resistor be adjusted
to? (b) In order to get the maximum current
from the battery, what should the resistance of
the variable resistor be adjusted to? (c) In order
for the maximum power output of the battery to
be reached, what should the resistance of the
variable resistor be set to?

75. Consider the circuit shown below. What is the energy
stored in each capacitor after the switch has been
closed for a very long time?
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76. Consider a circuit consisting of a battery with an
emf and an internal resistance of r connected
in series with a resistor R and a capacitor C.
Show that the total energy supplied by the
battery while charging the battery is equal to

.
77. Consider the circuit shown below. The terminal

voltages of the batteries are shown. (a) Find the
equivalent resistance of the circuit and the current
out of the battery. (b) Find the current through each
resistor. (c) Find the potential drop across each
resistor. (d) Find the power dissipated by each
resistor. (e) Find the total power supplied by the
batteries.

78. Consider the circuit shown below. (a) What is the
terminal voltage of the battery? (b) What is the
potential drop across resistor ?

79. Consider the circuit shown below. (a)Determine the
equivalent resistance and the current from the
battery with switch open. (b) Determine the
equivalent resistance and the current from the
battery with switch closed.

80. Two resistors, one having a resistance of ,
are connected in parallel to produce a total
resistance of . (a) What is the value of the
second resistance? (b) What is unreasonable
about this result? (c) Which assumptions are
unreasonable or inconsistent?

81. Two resistors, one having a resistance of
are connected in series to produce a

total resistance of . (a) What is the
value of the second resistance? (b) What is
unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

82. Apply the junction rule at point a shown below.

83. Apply the loop rule to Loop akledcba in the
preceding problem.

84. Find the currents flowing in the circuit in the
preceding problem. Explicitly show how you
follow the steps in the Problem-Solving
Strategy: Series and Parallel Resistors.

85. Consider the circuit shown below. (a) Find the
current through each resistor. (b) Check the
calculations by analyzing the power in the
circuit.
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86. A flashing lamp in a Christmas earring is based
on an RC discharge of a capacitor through its
resistance. The effective duration of the flash is
0.250 s, during which it produces an average
0.500 W from an average 3.00 V. (a) What
energy does it dissipate? (b) How much charge
moves through the lamp? (c) Find the
capacitance. (d) What is the resistance of the
lamp? (Since average values are given for some
quantities, the shape of the pulse profile is not
needed.)

87. A capacitor charged to 450 V is
discharged through a resistor. (a) Find
the time constant. (b) Calculate the temperature
increase of the resistor, given that its mass is
2.50 g and its specific heat is
noting that most of the thermal energy is
retained in the short time of the discharge. (c)
Calculate the new resistance, assuming it is
pure carbon. (d) Does this change in resistance
seem significant?

Challenge Problems
88. Some camera flashes use flash tubes that

require a high voltage. They obtain a high
voltage by charging capacitors in parallel and
then internally changing the connections of the
capacitors to place them in series. Consider a
circuit that uses four AAA batteries connected
in series to charge six 10-mF capacitors
through an equivalent resistance of . The
connections are then switched internally to
place the capacitors in series. The capacitors
discharge through a lamp with a resistance of

. (a) What is the RC time constant and the
initial current out of the batteries while they are
connected in parallel? (b) How long does it take
for the capacitors to charge to of the
terminal voltages of the batteries? (c) What is
the RC time constant and the initial current of
the capacitors connected in series assuming it
discharges at of full charge? (d) How long
does it take the current to decrease to of
the initial value?

89. Consider the circuit shown below. Each battery
has an emf of 1.50 V and an internal resistance
of (a) What is the current through the
external resistor, which has a resistance of
10.00 ohms? (b) What is the terminal voltage of
each battery?
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90. Analog meters use a galvanometer, which essentially
consists of a coil of wire with a small resistance and
a pointer with a scale attached. When current runs
through the coil, the pointer turns; the amount the
pointer turns is proportional to the amount of
current running through the coil. Galvanometers
can be used to make an ammeter if a resistor is
placed in parallel with the galvanometer. Consider a
galvanometer that has a resistance of and
gives a full scale reading when a current runs
through it. The galvanometer is to be used to make
an ammeter that has a full scale reading of 10.00 A,
as shown below. Recall that an ammeter is
connected in series with the circuit of interest, so all
10 A must run through the meter. (a) What is the
current through the parallel resistor in the meter?
(b) What is the voltage across the parallel resistor?
(c) What is the resistance of the series resistor?

91. Analog meters use a galvanometer, which essentially
consists of a coil of wire with a small resistance and
a pointer with a scale attached. When current runs
through the coil, the point turns; the amount the
pointer turns is proportional to the amount of
current running through the coil. Galvanometers
can be used to make a voltmeter if a resistor is
placed in series with the galvanometer. Consider a
galvanometer that has a resistance of and
gives a full scale reading when a current runs
through it. The galvanometer is to be used to make
an voltmeter that has a full scale reading of 10.00 V,
as shown below. Recall that a voltmeter is connected
in parallel with the component of interest, so the
meter must have a high resistance or it will change
the current running through the component. (a)
What is the potential drop across the series resistor
in the meter? (b) What is the resistance of the
parallel resistor?

92. Consider the circuit shown below. Find
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93. Consider the circuit below. (a) What is the RC time
constant of the circuit? (b) What is the initial current
in the circuit once the switch is closed? (c) How
much time passes between the instant the switch is
closed and the time the current has reached half of
the initial current?

94. Consider the circuit below. (a) What is the initial
current through resistor when the switch is
closed? (b) What is the current through resistor
when the capacitor is fully charged, long after the
switch is closed? (c) What happens if the switch is
opened after it has been closed for some time? (d) If
the switch has been closed for a time period long
enough for the capacitor to become fully charged,
and then the switch is opened, how long before the
current through resistor reaches half of its initial
value?

95. Consider the infinitely long chain of resistors shown
below. What is the resistance between terminals a
and b?

96. Consider the circuit below. The capacitor has a
capacitance of 10 mF. The switch is closed and
after a long time the capacitor is fully charged.
(a) What is the current through each resistor a
long time after the switch is closed? (b) What is
the voltage across each resistor a long time after
the switch is closed? (c) What is the voltage
across the capacitor a long time after the switch
is closed? (d) What is the charge on the
capacitor a long time after the switch is closed?
(e) The switch is then opened. The capacitor
discharges through the resistors. How long from
the time before the current drops to one fifth of
the initial value?

97. A 120-V immersion heater consists of a coil of
wire that is placed in a cup to boil the water. The
heater can boil one cup of water in
180.00 seconds. You buy one to use in your
dorm room, but you are worried that you will
overload the circuit and trip the 15.00-A, 120-V
circuit breaker, which supplies your dorm
room. In your dorm room, you have four
100.00-W incandescent lamps and a 1500.00-W
space heater. (a) What is the power rating of the
immersion heater? (b) Will it trip the breaker
when everything is turned on? (c) If it you
replace the incandescent bulbs with 18.00-W
LED, will the breaker trip when everything is
turned on?

98. Find the resistance that must be placed in
series with a galvanometer having a

sensitivity (the same as the one
discussed in the text) to allow it to be used as a
voltmeter with a 3000-V full-scale reading.
Include a circuit diagram with your solution.
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99. Find the resistance that must be placed in
parallel with a galvanometer having a
1.00-mA sensitivity (the same as the one
discussed in the text) to allow it to be used as an
ammeter with a 25.0-A full-scale reading.
Include a circuit diagram with your solution.
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INTRODUCTION

CHAPTER 11
Magnetic Forces and Fields

11.1 Magnetism and Its Historical Discoveries

11.2 Magnetic Fields and Lines

11.3 Motion of a Charged Particle in a Magnetic Field

11.4 Magnetic Force on a Current-Carrying Conductor

11.5 Force and Torque on a Current Loop

11.6 The Hall Effect

11.7 Applications of Magnetic Forces and Fields

For the past few chapters, we have been studying electrostatic forces and fields, which are
caused by electric charges at rest. These electric fields can move other free charges, such as producing a
current in a circuit; however, the electrostatic forces and fields themselves come from other static charges. In
this chapter, we see that when an electric charge moves, it generates other forces and fields. These additional
forces and fields are what we commonly call magnetism.

Before we examine the origins of magnetism, we first describe what it is and how magnetic fields behave. Once
we are more familiar with magnetic effects, we can explain how they arise from the behavior of atoms and

Figure 11.1 An industrial electromagnet is capable of lifting thousands of pounds of metallic waste. (credit:
modification of work by “BedfordAl”/Flickr)

Chapter Outline



molecules, and how magnetism is related to electricity. The connection between electricity and magnetism is
fascinating from a theoretical point of view, but it is also immensely practical, as shown by an industrial
electromagnet that can lift thousands of pounds of metal.

11.1 Magnetism and Its Historical Discoveries
Learning Objectives
By the end of this section, you will be able to:

• Explain attraction and repulsion by magnets
• Describe the historical and contemporary applications of magnetism

Magnetism has been known since the time of the ancient Greeks, but it has always been a bit mysterious. You
can see electricity in the flash of a lightning bolt, but when a compass needle points to magnetic north, you
can’t see any force causing it to rotate. People learned about magnetic properties gradually, over many years,
before several physicists of the nineteenth century connected magnetism with electricity. In this section, we
review the basic ideas of magnetism and describe how they fit into the picture of a magnetic field.

Brief History of Magnetism
Magnets are commonly found in everyday objects, such as toys, hangers, elevators, doorbells, and computer
devices. Experimentation on these magnets shows that all magnets have two poles: One is labeled north (N)
and the other is labeled south (S). Magnetic poles repel if they are alike (both N or both S), they attract if they
are opposite (one N and the other S), and both poles of a magnet attract unmagnetized pieces of iron. An
important point to note here is that you cannot isolate an individual magnetic pole. Every piece of a magnet, no
matter how small, which contains a north pole must also contain a south pole.

INTERACTIVE

Visit this website (https://openstax.org/l/21magnetcompass) for an interactive demonstration of magnetic
north and south poles.

An example of a magnet is a compass needle. It is simply a thin bar magnet suspended at its center, so it is free
to rotate in a horizontal plane. Earth itself also acts like a very large bar magnet, with its south-seeking pole
near the geographic North Pole (Figure 11.2). The north pole of a compass is attracted toward Earth’s
geographic North Pole because the magnetic pole that is near the geographic North Pole is actually a south
magnetic pole. Confusion arises because the geographic term “North Pole” has come to be used (incorrectly)
for the magnetic pole that is near the North Pole. Thus, “north magnetic pole” is actually a misnomer—it
should be called the south magnetic pole. [Note that the orientation of Earth’s magnetic field is not permanent
but changes (“flips”) after long time intervals. Eventually, Earth’s north magnetic pole may be located near its
geographic North Pole.]
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Figure 11.2 The north pole of a compass needle points toward the south pole of a magnet, which is how today’s magnetic field is oriented

from inside Earth. It also points toward Earth’s geographic North Pole because the geographic North Pole is near the magnetic south pole.

Back in 1819, the Danish physicist Hans Oersted was performing a lecture demonstration for some students
and noticed that a compass needle moved whenever current flowed in a nearby wire. Further investigation of
this phenomenon convinced Oersted that an electric current could somehow cause a magnetic force. He
reported this finding to an 1820 meeting of the French Academy of Science.

Soon after this report, Oersted’s investigations were repeated and expanded upon by other scientists. Among
those whose work was especially important were Jean-Baptiste Biot and Felix Savart, who investigated the
forces exerted on magnets by currents; André Marie Ampère, who studied the forces exerted by one current on
another; François Arago, who found that iron could be magnetized by a current; and Humphry Davy, who
discovered that a magnet exerts a force on a wire carrying an electric current. Within 10 years of Oersted’s
discovery, Michael Faraday found that the relative motion of a magnet and a metallic wire induced current in
the wire. This finding showed not only that a current has a magnetic effect, but that a magnet can generate
electric current. You will see later that the names of Biot, Savart, Ampère, and Faraday are linked to some of
the fundamental laws of electromagnetism.

The evidence from these various experiments led Ampère to propose that electric current is the source of all
magnetic phenomena. To explain permanent magnets, he suggested that matter contains microscopic current
loops that are somehow aligned when a material is magnetized. Today, we know that permanent magnets are
actually created by the alignment of spinning electrons, a situation quite similar to that proposed by Ampère.
This model of permanent magnets was developed by Ampère almost a century before the atomic nature of
matter was understood. (For a full quantum mechanical treatment of magnetic spins, see Quantum Mechanics
and Atomic Structure.)

Contemporary Applications of Magnetism
Today, magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has
enabled the development of technologies that affect both individuals and society. The electronic tablet in your
purse or backpack, for example, wouldn’t have been possible without the applications of magnetism and
electricity on a small scale (Figure 11.3). Weak changes in a magnetic field in a thin film of iron and chromium
were discovered to bring about much larger changes in resistance, called giant magnetoresistance.
Information can then be recorded magnetically based on the direction in which the iron layer is magnetized.
As a result of the discovery of giant magnetoresistance and its applications to digital storage, the 2007 Nobel
Prize in Physics was awarded to Albert Fert from France and Peter Grunberg from Germany.
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Figure 11.3 Engineering technology like computer storage would not be possible without a deep understanding of magnetism. (credit:

Klaus Eifert)

All electric motors—with uses as diverse as powering refrigerators, starting cars, and moving
elevators—contain magnets. Generators, whether producing hydroelectric power or running bicycle lights, use
magnetic fields. Recycling facilities employ magnets to separate iron from other refuse. Research into using
magnetic containment of fusion as a future energy source has been continuing for several years. Magnetic
resonance imaging (MRI) has become an important diagnostic tool in the field of medicine, and the use of
magnetism to explore brain activity is a subject of contemporary research and development. The list of
applications also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation
of high-speed trains. Magnetism is involved in the structure of atomic energy levels, as well as the motion of
cosmic rays and charged particles trapped in the Van Allen belts around Earth. Once again, we see that all
these disparate phenomena are linked by a small number of underlying physical principles.

11.2 Magnetic Fields and Lines
Learning Objectives
By the end of this section, you will be able to:

• Define the magnetic field based on a moving charge experiencing a force
• Apply the right-hand rule to determine the direction of a magnetic force based on the motion of a charge in a

magnetic field
• Sketch magnetic field lines to understand which way the magnetic field points and how strong it is in a

region of space

We have outlined the properties of magnets, described how they behave, and listed some of the applications of
magnetic properties. Even though there are no such things as isolated magnetic charges, we can still define the
attraction and repulsion of magnets as based on a field. In this section, we define the magnetic field, determine
its direction based on the right-hand rule, and discuss how to draw magnetic field lines.

Defining the Magnetic Field
A magnetic field is defined by the force that a charged particle experiences moving in this field, after we
account for the gravitational and any additional electric forces possible on the charge. The magnitude of this
force is proportional to the amount of charge q, the speed of the charged particle v, and the magnitude of the
applied magnetic field. The direction of this force is perpendicular to both the direction of the moving charged
particle and the direction of the applied magnetic field. Based on these observations, we define the magnetic
field strength B based on the magnetic force on a charge q moving at velocity as the cross product of the
velocity and magnetic field, that is,

In fact, this is how we define the magnetic field —in terms of the force on a charged particle moving in a

11.1
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magnetic field. The magnitude of the force is determined from the definition of the cross product as it relates
to the magnitudes of each of the vectors. In other words, the magnitude of the force satisfies

where θ is the angle between the velocity and the magnetic field.

The SI unit for magnetic field strength B is called the tesla (T) after the eccentric but brilliant inventor Nikola
Tesla (1856–1943), where

A smaller unit, called the gauss (G), where is sometimes used. The strongest permanent
magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. Earth’s magnetic field
on its surface is only about or 0.5 G.

PROBLEM-SOLVING STRATEGY

Direction of the Magnetic Field by the Right-Hand Rule
The direction of the magnetic force is perpendicular to the plane formed by and as determined by the
right-hand rule-1 (or RHR-1), which is illustrated in Figure 11.4.

1. Orient your right hand so that your fingers curl in the plane defined by the velocity and magnetic field
vectors.

2. Using your right hand, sweep from the velocity toward the magnetic field with your fingers through the
smallest angle possible.

3. The magnetic force is directed where your thumb is pointing.
4. If the charge was negative, reverse the direction found by these steps.

Figure 11.4 Magnetic fields exert forces on moving charges. The direction of the magnetic force on a moving charge is perpendicular to

the plane formed by and and follows the right-hand rule-1 (RHR-1) as shown. The magnitude of the force is proportional to and

the sine of the angle between and

INTERACTIVE

Visit this website (https://openstax.org/l/21magfields) for additional practice with the direction of magnetic
fields.

There is no magnetic force on static charges. However, there is a magnetic force on charges moving at an angle
to a magnetic field. When charges are stationary, their electric fields do not affect magnets. However, when
charges move, they produce magnetic fields that exert forces on other magnets. When there is relative motion,

11.2

11.3
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a connection between electric and magnetic forces emerges—each affects the other.

EXAMPLE 11.1

An Alpha-Particle Moving in a Magnetic Field
An alpha-particle moves through a uniform magnetic field whose magnitude is 1.5 T. The
field is directly parallel to the positive z-axis of the rectangular coordinate system of Figure 11.5. What is the
magnetic force on the alpha-particle when it is moving (a) in the positive x-direction with a speed of

(b) in the negative y-direction with a speed of (c) in the positive z-direction with
a speed of (d) with a velocity

Figure 11.5 The magnetic forces on an alpha-particle moving in a uniform magnetic field. The field is the same in each drawing, but the

velocity is different.

Strategy
We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the
equation or to calculate the force. The direction of the force is determined by
RHR-1.

Solution

a. First, to determine the direction, start with your fingers pointing in the positive x-direction. Sweep your
fingers upward in the direction of magnetic field. Your thumb should point in the negative y-direction.
This should match the mathematical answer. To calculate the force, we use the given charge, velocity, and
magnetic field and the definition of the magnetic force in cross-product form to calculate:
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b. First, to determine the directionality, start with your fingers pointing in the negative y-direction. Sweep
your fingers upward in the direction of magnetic field as in the previous problem. Your thumb should be
open in the negative x-direction. This should match the mathematical answer. To calculate the force, we
use the given charge, velocity, and magnetic field and the definition of the magnetic force in cross-product
form to calculate:

An alternative approach is to use Equation 11.2 to find the magnitude of the force. This applies for both
parts (a) and (b). Since the velocity is perpendicular to the magnetic field, the angle between them is 90
degrees. Therefore, the magnitude of the force is:

c. Since the velocity and magnetic field are parallel to each other, there is no orientation of your hand that
will result in a force direction. Therefore, the force on this moving charge is zero. This is confirmed by the
cross product. When you cross two vectors pointing in the same direction, the result is equal to zero.

d. First, to determine the direction, your fingers could point in any orientation; however, you must sweep
your fingers upward in the direction of the magnetic field. As you rotate your hand, notice that the thumb
can point in any x- or y-direction possible, but not in the z-direction. This should match the mathematical
answer. To calculate the force, we use the given charge, velocity, and magnetic field and the definition of
the magnetic force in cross-product form to calculate:

This solution can be rewritten in terms of a magnitude and angle in the xy-plane:

The magnitude of the force can also be calculated using Equation 11.2. The velocity in this question,
however, has three components. The z-component of the velocity can be neglected, because it is parallel to
the magnetic field and therefore generates no force. The magnitude of the velocity is calculated from the x-
and y-components. The angle between the velocity in the xy-plane and the magnetic field in the z-plane is
90 degrees. Therefore, the force is calculated to be:

This is the same magnitude of force calculated by unit vectors.

Significance
The cross product in this formula results in a third vector that must be perpendicular to the other two. Other
physical quantities, such as angular momentum, also have three vectors that are related by the cross product.
Note that typical force values in magnetic force problems are much larger than the gravitational force.
Therefore, for an isolated charge, the magnetic force is the dominant force governing the charge’s motion.

CHECK YOUR UNDERSTANDING 11.1

Repeat the previous problem with the magnetic field in the x-direction rather than in the z-direction. Check
your answers with RHR-1.
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Representing Magnetic Fields
The representation of magnetic fields by magnetic field lines is very useful in visualizing the strength and
direction of the magnetic field. As shown in Figure 11.6, each of these lines forms a closed loop, even if not
shown by the constraints of the space available for the figure. The field lines emerge from the north pole (N),
loop around to the south pole (S), and continue through the bar magnet back to the north pole.

Magnetic field lines have several hard-and-fast rules:

1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point
in the direction of the field line.

2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of
lines per unit area perpendicular to the lines (called the areal density).

3. Magnetic field lines can never cross, meaning that the field is unique at any point in space.
4. Magnetic field lines are continuous, forming closed loops without a beginning or end. They are directed from

the north pole to the south pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct
difference from electric field lines, which generally begin on positive charges and end on negative charges or at
infinity. If isolated magnetic charges (referred to as magnetic monopoles) existed, then magnetic field lines
would begin and end on them.

Figure 11.6 Magnetic field lines are defined to have the direction in which a small compass points when placed at a location in the field.

The strength of the field is proportional to the closeness (or density) of the lines. If the interior of the magnet could be probed, the field

lines would be found to form continuous, closed loops. To fit in a reasonable space, some of these drawings may not show the closing of the

loops; however, if enough space were provided, the loops would be closed.

11.3 Motion of a Charged Particle in a Magnetic Field
Learning Objectives
By the end of this section, you will be able to:

• Explain how a charged particle in an external magnetic field undergoes circular motion
• Describe how to determine the radius of the circular motion of a charged particle in a magnetic field

A charged particle experiences a force when moving through a magnetic field. What happens if this field is
uniform over the motion of the charged particle? What path does the particle follow? In this section, we discuss
the circular motion of the charged particle as well as other motion that results from a charged particle entering
a magnetic field.

The simplest case occurs when a charged particle moves perpendicular to a uniform B-field (Figure 11.7). If
the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic
force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field.
The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is
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that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The
particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.

Figure 11.7 A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the

paper (represented by the small ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in

direction but not magnitude. The result is uniform circular motion. (Note that because the charge is negative, the force is opposite in

direction to the prediction of the right-hand rule.)

In this situation, the magnetic force supplies the centripetal force Noting that the velocity is
perpendicular to the magnetic field, the magnitude of the magnetic force is reduced to Because the
magnetic force F supplies the centripetal force we have

Solving for r yields

Here, r is the radius of curvature of the path of a charged particle with mass m and charge q, moving at a speed
v that is perpendicular to a magnetic field of strength B. The time for the charged particle to go around the
circular path is defined as the period, which is the same as the distance traveled (the circumference) divided
by the speed. Based on this and Equation 11.4, we can derive the period of motion as

If the velocity is not perpendicular to the magnetic field, then we can compare each component of the velocity
separately with the magnetic field. The component of the velocity perpendicular to the magnetic field
produces a magnetic force perpendicular to both this velocity and the field:

where is the angle between v and B. The component parallel to the magnetic field creates constant motion
along the same direction as the magnetic field, also shown in Equation 11.7. The parallel motion determines
the pitch p of the helix, which is the distance between adjacent turns. This distance equals the parallel
component of the velocity times the period:

11.4

11.5

11.6

11.7
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The result is a helical motion, as shown in the following figure.

Figure 11.8 A charged particle moving with a velocity not in the same direction as the magnetic field. The velocity component

perpendicular to the magnetic field creates circular motion, whereas the component of the velocity parallel to the field moves the particle

along a straight line. The pitch is the horizontal distance between two consecutive circles. The resulting motion is helical.

While the charged particle travels in a helical path, it may enter a region where the magnetic field is not
uniform. In particular, suppose a particle travels from a region of strong magnetic field to a region of weaker
field, then back to a region of stronger field. The particle may reflect back before entering the stronger
magnetic field region. This is similar to a wave on a string traveling from a very light, thin string to a hard wall
and reflecting backward. If the reflection happens at both ends, the particle is trapped in a so-called magnetic
bottle.

Trapped particles in magnetic fields are found in the Van Allen radiation belts around Earth, which are part of
Earth’s magnetic field. These belts were discovered by James Van Allen while trying to measure the flux of
cosmic rays on Earth (high-energy particles that come from outside the solar system) to see whether this was
similar to the flux measured on Earth. Van Allen found that due to the contribution of particles trapped in
Earth’s magnetic field, the flux was much higher on Earth than in outer space. Aurorae, like the famous aurora
borealis (northern lights) in the Northern Hemisphere (Figure 11.9), are beautiful displays of light emitted as
ions recombine with electrons entering the atmosphere as they spiral along magnetic field lines. (The ions are
primarily oxygen and nitrogen atoms that are initially ionized by collisions with energetic particles in Earth’s
atmosphere.) Aurorae have also been observed on other planets, such as Jupiter and Saturn.

11.8
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Figure 11.9 (a) The Van Allen radiation belts around Earth trap ions produced by cosmic rays striking Earth’s atmosphere. (b) The

magnificent spectacle of the aurora borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air Force Base,

Alaska. Shaped by Earth’s magnetic field, this light is produced by glowing molecules and ions of oxygen and nitrogen. (credit b:

modification of work by USAF Senior Airman Joshua Strang)

EXAMPLE 11.2

Beam Deflector
A research group is investigating short-lived radioactive isotopes. They need to design a way to transport
alpha-particles (helium nuclei) from where they are made to a place where they will collide with another
material to form an isotope. The beam of alpha-particles bends
through a 90-degree region with a uniform magnetic field of 0.050 T (Figure 11.10). (a) In what direction
should the magnetic field be applied? (b) How much time does it take the alpha-particles to traverse the
uniform magnetic field region?

Figure 11.10 Top view of the beam deflector setup.

Strategy

a. The direction of the magnetic field is shown by the RHR-1. Your fingers point in the direction of v, and your
thumb needs to point in the direction of the force, to the left. Therefore, since the alpha-particles are
positively charged, the magnetic field must point down.
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b. The period of the alpha-particle going around the circle is

Because the particle is only going around a quarter of a circle, we can take 0.25 times the period to find the
time it takes to go around this path.

Solution

a. Let’s start by focusing on the alpha-particle entering the field near the bottom of the picture. First, point
your thumb up the page. In order for your palm to open to the left where the centripetal force (and hence
the magnetic force) points, your fingers need to change orientation until they point into the page. This is
the direction of the applied magnetic field.

b. The period of the charged particle going around a circle is calculated by using the given mass, charge, and
magnetic field in the problem. This works out to be

However, for the given problem, the alpha-particle goes around a quarter of the circle, so the time it takes
would be

Significance
This time may be quick enough to get to the material we would like to bombard, depending on how short-lived
the radioactive isotope is and continues to emit alpha-particles. If we could increase the magnetic field applied
in the region, this would shorten the time even more. The path the particles need to take could be shortened,
but this may not be economical given the experimental setup.

CHECK YOUR UNDERSTANDING 11.2

A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east. (a) What is the magnetic
force on a proton at the instant when it is moving vertically downward in the field with a speed of
(b) Compare this force with the weight w of a proton.

EXAMPLE 11.3

Helical Motion in a Magnetic Field
A proton enters a uniform magnetic field of with a speed of At what angle must the
magnetic field be from the velocity so that the pitch of the resulting helical motion is equal to the radius of the
helix?

Strategy
The pitch of the motion relates to the parallel velocity times the period of the circular motion, whereas the
radius relates to the perpendicular velocity component. After setting the radius and the pitch equal to each
other, solve for the angle between the magnetic field and velocity or

Solution
The pitch is given by Equation 11.8, the period is given by Equation 11.6, and the radius of circular motion is
given by Equation 11.5. Note that the velocity in the radius equation is related to only the perpendicular
velocity, which is where the circular motion occurs. Therefore, we substitute the sine component of the overall
velocity into the radius equation to equate the pitch and radius:

11.9
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Significance
If this angle were only parallel velocity would occur and the helix would not form, because there would be
no circular motion in the perpendicular plane. If this angle were only circular motion would occur and
there would be no movement of the circles perpendicular to the motion. That is what creates the helical
motion.

11.4 Magnetic Force on a Current-Carrying Conductor
Learning Objectives
By the end of this section, you will be able to:

• Determine the direction in which a current-carrying wire experiences a force in an external magnetic field
• Calculate the force on a current-carrying wire in an external magnetic field

Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire
is carrying a current—the wire should also experience a force. However, before we discuss the force exerted on
a current by a magnetic field, we first examine the magnetic field generated by an electric current. We are
studying two separate effects here that interact closely: A current-carrying wire generates a magnetic field and
the magnetic field exerts a force on the current-carrying wire.

Magnetic Fields Produced by Electrical Currents
When discussing historical discoveries in magnetism, we mentioned Oersted’s finding that a wire carrying an
electrical current caused a nearby compass to deflect. A connection was established that electrical currents
produce magnetic fields. (This connection between electricity and magnetism is discussed in more detail in
Sources of Magnetic Fields.)

The compass needle near the wire experiences a force that aligns the needle tangent to a circle around the
wire. Therefore, a current-carrying wire produces circular loops of magnetic field. To determine the direction
of the magnetic field generated from a wire, we use a second right-hand rule. In RHR-2, your thumb points in
the direction of the current while your fingers wrap around the wire, pointing in the direction of the magnetic
field produced (Figure 11.11). If the magnetic field were coming at you or out of the page, we represent this
with a dot. If the magnetic field were going into the page, we represent this with an These symbols come
from considering a vector arrow: An arrow pointed toward you, from your perspective, would look like a dot or
the tip of an arrow. An arrow pointed away from you, from your perspective, would look like a cross or an A
composite sketch of the magnetic circles is shown in Figure 11.11, where the field strength is shown to
decrease as you get farther from the wire by loops that are farther separated.
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Figure 11.11 (a) When the wire is in the plane of the paper, the field is perpendicular to the paper. Note the symbols used for the field

pointing inward (like the tail of an arrow) and the field pointing outward (like the tip of an arrow). (b) A long and straight wire creates a field

with magnetic field lines forming circular loops.

Calculating the Magnetic Force
Electric current is an ordered movement of charge. A current-carrying wire in a magnetic field must therefore
experience a force due to the field. To investigate this force, let’s consider the infinitesimal section of wire as
shown in Figure 11.12. The length and cross-sectional area of the section are dl and A, respectively, so its
volume is The wire is formed from material that contains n charge carriers per unit volume, so the
number of charge carriers in the section is If the charge carriers move with drift velocity the
current I in the wire is (from Current and Resistance)

The magnetic force on any single charge carrier is so the total magnetic force on the
charge carriers in the section of wire is

We can define dl to be a vector of length dl pointing along which allows us to rewrite this equation as

or

This is the magnetic force on the section of wire. Note that it is actually the net force exerted by the field on the
charge carriers themselves. The direction of this force is given by RHR-1, where you point your fingers in the
direction of the current and curl them toward the field. Your thumb then points in the direction of the force.

11.10
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Figure 11.12 An infinitesimal section of current-carrying wire in a magnetic field.

To determine the magnetic force on a wire of arbitrary length and shape, we must integrate Equation 11.12
over the entire wire. If the wire section happens to be straight and B is uniform, the equation differentials
become absolute quantities, giving us

This is the force on a straight, current-carrying wire in a uniform magnetic field.

EXAMPLE 11.4

Balancing the Gravitational and Magnetic Forces on a Current-Carrying Wire
A wire of length 50 cm and mass 10 g is suspended in a horizontal plane by a pair of flexible leads (Figure
11.13). The wire is then subjected to a constant magnetic field of magnitude 0.50 T, which is directed as shown.
What are the magnitude and direction of the current in the wire needed to remove the tension in the
supporting leads?

Figure 11.13 (a) A wire suspended in a magnetic field. (b) The free-body diagram for the wire.

Strategy
From the free-body diagram in the figure, the tensions in the supporting leads go to zero when the
gravitational and magnetic forces balance each other. Using the RHR-1, we find that the magnetic force points
up. We can then determine the current I by equating the two forces.

11.13
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Solution
Equate the two forces of weight and magnetic force on the wire:

Thus,

Significance
This large magnetic field creates a significant force on a length of wire to counteract the weight of the wire.

EXAMPLE 11.5

Calculating Magnetic Force on a Current-Carrying Wire
A long, rigid wire lying along the y-axis carries a 5.0-A current flowing in the positive y-direction. (a) If a
constant magnetic field of magnitude 0.30 T is directed along the positive x-axis, what is the magnetic force
per unit length on the wire? (b) If a constant magnetic field of 0.30 T is directed 30 degrees from the +x-axis
towards the +y-axis, what is the magnetic force per unit length on the wire?

Strategy

The magnetic force on a current-carrying wire in a magnetic field is given by For part a, since
the current and magnetic field are perpendicular in this problem, we can simplify the formula to give us the
magnitude and find the direction through the RHR-1. The angle θ is 90 degrees, which means Also,
the length can be divided over to the left-hand side to find the force per unit length. For part b, the current
times length is written in unit vector notation, as well as the magnetic field. After the cross product is taken,
the directionality is evident by the resulting unit vector.

Solution

a. We start with the general formula for the magnetic force on a wire. We are looking for the force per unit
length, so we divide by the length to bring it to the left-hand side. We also set The solution
therefore is

Directionality: Point your fingers in the positive y-direction and curl your fingers in the positive
x-direction. Your thumb will point in the direction. Therefore, with directionality, the solution is

b. The current times length and the magnetic field are written in unit vector notation. Then, we take the cross
product to find the force:

Significance
This large magnetic field creates a significant force on a small length of wire. As the angle of the magnetic field
becomes more closely aligned to the current in the wire, there is less of a force on it, as seen from comparing
parts a and b.
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CHECK YOUR UNDERSTANDING 11.3

A straight, flexible length of copper wire is immersed in a magnetic field that is directed into the page. (a) If the
wire’s current runs in the +x-direction, which way will the wire bend? (b) Which way will the wire bend if the
current runs in the –x-direction?

EXAMPLE 11.6

Force on a Circular Wire
A circular current loop of radius R carrying a current I is placed in the xy-plane. A constant uniform magnetic
field cuts through the loop parallel to the y-axis (Figure 11.14). Find the magnetic force on the upper half of the
loop, the lower half of the loop, and the total force on the loop.

Figure 11.14 A loop of wire carrying a current in a magnetic field.

Strategy
The magnetic force on the upper loop should be written in terms of the differential force acting on each
segment of the loop. If we integrate over each differential piece, we solve for the overall force on that section of
the loop. The force on the lower loop is found in a similar manner, and the total force is the addition of these
two forces.

Solution
A differential force on an arbitrary piece of wire located on the upper ring is:

where is the angle between the magnetic field direction (+y) and the segment of wire. A differential segment
is located at the same radius, so using an arc-length formula, we have:

In order to find the force on a segment, we integrate over the upper half of the circle, from 0 to This results
in:

The lower half of the loop is integrated from to zero, giving us:

The net force is the sum of these forces, which is zero.
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Significance
The total force on any closed loop in a uniform magnetic field is zero. Even though each piece of the loop has a
force acting on it, the net force on the system is zero. (Note that there is a net torque on the loop, which we
consider in the next section.)

11.5 Force and Torque on a Current Loop
Learning Objectives
By the end of this section, you will be able to:

• Evaluate the net force on a current loop in an external magnetic field
• Evaluate the net torque on a current loop in an external magnetic field
• Define the magnetic dipole moment of a current loop

Motors are the most common application of magnetic force on current-carrying wires. Motors contain loops of
wire in a magnetic field. When current is passed through the loops, the magnetic field exerts torque on the
loops, which rotates a shaft. Electrical energy is converted into mechanical work in the process. Once the loop’s
surface area is aligned with the magnetic field, the direction of current is reversed, so there is a continual
torque on the loop (Figure 11.15). This reversal of the current is done with commutators and brushes. The
commutator is set to reverse the current flow at set points to keep continual motion in the motor. A basic
commutator has three contact areas to avoid and dead spots where the loop would have zero instantaneous
torque at that point. The brushes press against the commutator, creating electrical contact between parts of
the commutator during the spinning motion.

Figure 11.15 A simplified version of a dc electric motor. (a) The rectangular wire loop is placed in a magnetic field. The forces on the wires

closest to the magnetic poles (N and S) are opposite in direction as determined by the right-hand rule-1. Therefore, the loop has a net

torque and rotates to the position shown in (b). (b) The brushes now touch the commutator segments so that no current flows through the

loop. No torque acts on the loop, but the loop continues to spin from the initial velocity given to it in part (a). By the time the loop flips over,

current flows through the wires again but now in the opposite direction, and the process repeats as in part (a). This causes continual

rotation of the loop.

In a uniform magnetic field, a current-carrying loop of wire, such as a loop in a motor, experiences both forces
and torques on the loop. Figure 11.16 shows a rectangular loop of wire that carries a current I and has sides of
lengths a and b. The loop is in a uniform magnetic field: The magnetic force on a straight current-
carrying wire of length l is given by To find the net force on the loop, we have to apply this equation to
each of the four sides. The force on side 1 is

11.14
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where the direction has been determined with the RHR-1. The current in side 3 flows in the opposite direction
to that of side 1, so

The currents in sides 2 and 4 are perpendicular to and the forces on these sides are

We can now find the net force on the loop:

Although this result has been obtained for a rectangular loop, it is far more general and holds for
current-carrying loops of arbitrary shapes; that is, there is no net force on a current loop in a uniform
magnetic field.

Figure 11.16 (a) A rectangular current loop in a uniform magnetic field is subjected to a net torque but not a net force. (b) A side view of

the coil.

To find the net torque on the current loop shown in Figure 11.16, we first consider and Since they have
the same line of action and are equal and opposite, the sum of their torques about any axis is zero (see Fixed-
Axis Rotation). Thus, if there is any torque on the loop, it must be furnished by and Let’s calculate the
torques around the axis that passes through point O of Figure 11.16 (a side view of the coil) and is
perpendicular to the plane of the page. The point O is a distance x from side 2 and a distance from side
4 of the loop. The moment arms of and are and respectively, so the net torque on the
loop is

This simplifies to

where is the area of the loop.

Notice that this torque is independent of x; it is therefore independent of where point O is located in the plane
of the current loop. Consequently, the loop experiences the same torque from the magnetic field about any axis
in the plane of the loop and parallel to the x-axis.

A closed-current loop is commonly referred to as a magnetic dipole and the term IA is known as its magnetic
dipole moment Actually, the magnetic dipole moment is a vector that is defined as
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where is a unit vector directed perpendicular to the plane of the loop (see Figure 11.16). The direction of is
obtained with the RHR-2—if you curl the fingers of your right hand in the direction of current flow in the loop,
then your thumb points along If the loop contains N turns of wire, then its magnetic dipole moment is given
by

In terms of the magnetic dipole moment, the torque on a current loop due to a uniform magnetic field can be
written simply as

This equation holds for a current loop in a two-dimensional plane of arbitrary shape.

Using a calculation analogous to that found in Capacitance for an electric dipole, the potential energy of a
magnetic dipole is

EXAMPLE 11.7

Forces and Torques on Current-Carrying Loops
A circular current loop of radius 2.0 cm carries a current of 2.0 mA. (a) What is the magnitude of its magnetic
dipole moment? (b) If the dipole is oriented at 30 degrees to a uniform magnetic field of magnitude 0.50 T,
what is the magnitude of the torque it experiences and what is its potential energy?

Strategy
The dipole moment is defined by the current times the area of the loop. The area of the loop can be calculated
from the area of the circle. The torque on the loop and potential energy are calculated from identifying the
magnetic moment, magnetic field, and angle oriented in the field.

Solution

a. The magnetic moment μ is calculated by the current times the area of the loop or

b. The torque and potential energy are calculated by identifying the magnetic moment, magnetic field, and
the angle between these two vectors. The calculations of these quantities are:

Significance
The concept of magnetic moment at the atomic level is discussed in the next chapter. The concept of aligning
the magnetic moment with the magnetic field is the functionality of devices like magnetic motors, whereby
switching the external magnetic field results in a constant spinning of the loop as it tries to align with the field
to minimize its potential energy.

CHECK YOUR UNDERSTANDING 11.4

In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field?
(b) A maximum energy of the dipole?
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11.6 The Hall Effect
Learning Objectives
By the end of this section, you will be able to:

• Explain a scenario where the magnetic and electric fields are crossed and their forces balance each other as
a charged particle moves through a velocity selector

• Compare how charge carriers move in a conductive material and explain how this relates to the Hall effect

In 1879, E.H. Hall devised an experiment that can be used to identify the sign of the predominant charge
carriers in a conducting material. From a historical perspective, this experiment was the first to demonstrate
that the charge carriers in most metals are negative.

INTERACTIVE

Visit this website (https://openstax.org/l/21halleffect) to find more information about the Hall effect.

We investigate the Hall effect by studying the motion of the free electrons along a metallic strip of width l in a
constant magnetic field (Figure 11.17). The electrons are moving from left to right, so the magnetic force they
experience pushes them to the bottom edge of the strip. This leaves an excess of positive charge at the top edge
of the strip, resulting in an electric field E directed from top to bottom. The charge concentration at both edges
builds up until the electric force on the electrons in one direction is balanced by the magnetic force on them in
the opposite direction. Equilibrium is reached when:

where e is the magnitude of the electron charge, is the drift speed of the electrons, and E is the magnitude of
the electric field created by the separated charge. Solving this for the drift speed results in

Figure 11.17 In the Hall effect, a potential difference between the top and bottom edges of the metal strip is produced when moving

charge carriers are deflected by the magnetic field. (a) Hall effect for negative charge carriers; (b) Hall effect for positive charge carriers.

A scenario where the electric and magnetic fields are perpendicular to one another is called a crossed-field
situation. If these fields produce equal and opposite forces on a charged particle with the velocity that equates
the forces, these particles are able to pass through an apparatus, called a velocity selector, undeflected. This
velocity is represented in Equation 11.26. Any other velocity of a charged particle sent into the same fields
would be deflected by the magnetic force or electric force.

Going back to the Hall effect, if the current in the strip is I, then from Current and Resistance, we know that

where n is the number of charge carriers per volume and A is the cross-sectional area of the strip. Combining
the equations for and I results in

11.24
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The field E is related to the potential difference V between the edges of the strip by

The quantity V is called the Hall potential and can be measured with a voltmeter. Finally, combining the
equations for I and E gives us

where the upper edge of the strip in Figure 11.17 is positive with respect to the lower edge.

We can also combine Equation 11.24 and Equation 11.28 to get an expression for the Hall voltage in terms of
the magnetic field:

What if the charge carriers are positive, as in Figure 11.17? For the same current I, the magnitude of V is still
given by Equation 11.29. However, the upper edge is now negative with respect to the lower edge. Therefore, by
simply measuring the sign of V, we can determine the sign of the majority charge carriers in a metal.

Hall potential measurements show that electrons are the dominant charge carriers in most metals. However,
Hall potentials indicate that for a few metals, such as tungsten, beryllium, and many semiconductors, the
majority of charge carriers are positive. It turns out that conduction by positive charge is caused by the
migration of missing electron sites (called holes) on ions. Conduction by holes is studied later in Condensed
Matter Physics.

The Hall effect can be used to measure magnetic fields. If a material with a known density of charge carriers n
is placed in a magnetic field and V is measured, then the field can be determined from Equation 11.29. In
research laboratories where the fields of electromagnets used for precise measurements have to be extremely
steady, a “Hall probe” is commonly used as part of an electronic circuit that regulates the field.

EXAMPLE 11.8

Velocity Selector
An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and

respectively. (a) What must the velocity of the electron beam be to traverse the crossed fields
undeflected? If the electric field is turned off, (b) what is the acceleration of the electron beam and (c) what is
the radius of the circular motion that results?

Strategy
The electron beam is not deflected by either of the magnetic or electric fields if these forces are balanced.
Based on these balanced forces, we calculate the velocity of the beam. Without the electric field, only the
magnetic force is used in Newton’s second law to find the acceleration. Lastly, the radius of the path is based on
the resulting circular motion from the magnetic force.

Solution

a. The velocity of the unperturbed beam of electrons with crossed fields is calculated by Equation 11.25:

b. The acceleration is calculated from the net force from the magnetic field, equal to mass times acceleration.
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The magnitude of the acceleration is:

c. The radius of the path comes from a balance of the circular and magnetic forces, or Equation 11.25:

Significance
If electrons in the beam had velocities above or below the answer in part (a), those electrons would have a
stronger net force exerted by either the magnetic or electric field. Therefore, only those electrons at this
specific velocity would make it through.

EXAMPLE 11.9

The Hall Potential in a Silver Ribbon
Figure 11.18 shows a silver ribbon whose cross section is 1.0 cm by 0.20 cm. The ribbon carries a current of
100 A from left to right, and it lies in a uniform magnetic field of magnitude 1.5 T. Using a density value of

electrons per cubic meter for silver, find the Hall potential between the edges of the ribbon.

Figure 11.18 Finding the Hall potential in a silver ribbon in a magnetic field is shown.

Strategy
Since the majority of charge carriers are electrons, the polarity of the Hall voltage is that indicated in the figure.
The value of the Hall voltage is calculated using Equation 11.29:

Solution
When calculating the Hall voltage, we need to know the current through the material, the magnetic field, the
length, the number of charge carriers, and the area. Since all of these are given, the Hall voltage is calculated
as:

Significance
As in this example, the Hall potential is generally very small, and careful experimentation with sensitive
equipment is required for its measurement.

CHECK YOUR UNDERSTANDING 11.5

A Hall probe consists of a copper strip, electrons per cubic meter, which is 2.0 cm wide and

11.6 • The Hall Effect 501



0.10 cm thick. What is the magnetic field when I = 50 A and the Hall potential is (a) and (b)

11.7 Applications of Magnetic Forces and Fields
Learning Objectives
By the end of this section, you will be able to:

• Explain how a mass spectrometer works to separate charges
• Explain how a cyclotron works

Being able to manipulate and sort charged particles allows deeper experimentation to understand what matter
is made of. We first look at a mass spectrometer to see how we can separate ions by their charge-to-mass ratio.
Then we discuss cyclotrons as a method to accelerate charges to very high energies.

Mass Spectrometer
The mass spectrometer is a device that separates ions according to their charge-to-mass ratios. One
particular version, the Bainbridge mass spectrometer, is illustrated in Figure 11.19. Ions produced at a source
are first sent through a velocity selector, where the magnetic force is equally balanced with the electric force.
These ions all emerge with the same speed since any ion with a different velocity is deflected
preferentially by either the electric or magnetic force, and ultimately blocked from the next stage. They then
enter a uniform magnetic field where they travel in a circular path whose radius R is given by Equation
11.3. The radius is measured by a particle detector located as shown in the figure.

Figure 11.19 A schematic of the Bainbridge mass spectrometer, showing charged particles leaving a source, followed by a velocity

selector where the electric and magnetic forces are balanced, followed by a region of uniform magnetic field where the particle is ultimately

detected.

The relationship between the charge-to-mass ratio q/m and the radius R is determined by combining Equation
11.3 and Equation 11.25:

Since most ions are singly charged measured values of R can be used with this equation

11.31

502 11 • Magnetic Forces and Fields

Access for free at openstax.org.



to determine the mass of ions. With modern instruments, masses can be determined to one part in

An interesting use of a spectrometer is as part of a system for detecting very small leaks in a research
apparatus. In low-temperature physics laboratories, a device known as a dilution refrigerator uses a mixture of
He-3, He-4, and other cryogens to reach temperatures well below 1 K. The performance of the refrigerator is
severely hampered if even a minute leak between its various components occurs. Consequently, before it is
cooled down to the desired temperature, the refrigerator is subjected to a leak test. A small quantity of gaseous
helium is injected into one of its compartments, while an adjacent, but supposedly isolated, compartment is
connected to a high-vacuum pump to which a mass spectrometer is attached. A heated filament ionizes any
helium atoms evacuated by the pump. The detection of these ions by the spectrometer then indicates a leak
between the two compartments of the dilution refrigerator.

In conjunction with gas chromatography, mass spectrometers are used widely to identify unknown
substances. While the gas chromatography portion breaks down the substance, the mass spectrometer
separates the resulting ionized molecules. This technique is used with fire debris to ascertain the cause, in law
enforcement to identify illegal drugs, in security to identify explosives, and in many medicinal applications.

Cyclotron
The cyclotron was developed by E.O. Lawrence to accelerate charged particles (usually protons, deuterons, or
alpha-particles) to large kinetic energies. These particles are then used for nuclear-collision experiments to
produce radioactive isotopes. A cyclotron is illustrated in Figure 11.20. The particles move between two flat,
semi-cylindrical metallic containers D1 and D2, called dees. The dees are enclosed in a larger metal container,
and the apparatus is placed between the poles of an electromagnet that provides a uniform magnetic field. Air
is removed from the large container so that the particles neither lose energy nor are deflected because of
collisions with air molecules. The dees are connected to a high-frequency voltage source that provides an
alternating electric field in the small region between them. Because the dees are made of metal, their interiors
are shielded from the electric field.

Figure 11.20 The inside of a cyclotron. A uniform magnetic field is applied as circulating protons travel through the dees, gaining energy

as they traverse through the gap between the dees.

Suppose a positively charged particle is injected into the gap between the dees when D2 is at a positive
potential relative to D1. The particle is then accelerated across the gap and enters D1 after gaining kinetic
energy qV, where V is the average potential difference the particle experiences between the dees. When the
particle is inside D1, only the uniform magnetic field of the electromagnet acts on it, so the particle moves in
a circle of radius

with a period of

11.32
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The period of the alternating voltage course is set at T, so while the particle is inside D1, moving along its
semicircular orbit in a time T/2, the polarity of the dees is reversed. When the particle reenters the gap, D1 is
positive with respect to D2, and the particle is again accelerated across the gap, thereby gaining a kinetic
energy qV. The particle then enters D2, circulates in a slightly larger circle, and emerges from D2 after
spending a time T/2 in this dee. This process repeats until the orbit of the particle reaches the boundary of the
dees. At that point, the particle (actually, a beam of particles) is extracted from the cyclotron and used for some
experimental purpose.

The operation of the cyclotron depends on the fact that, in a uniform magnetic field, a particle’s orbital period
is independent of its radius and its kinetic energy. Consequently, the period of the alternating voltage source
need only be set at the one value given by Equation 11.33. With that setting, the electric field accelerates
particles every time they are between the dees.

If the maximum orbital radius in the cyclotron is R, then from Equation 11.32, the maximum speed of a
circulating particle of mass m and charge q is

Thus, its kinetic energy when ejected from the cyclotron is

The maximum kinetic energy attainable with this type of cyclotron is approximately 30 MeV. Above this
energy, relativistic effects become important, which causes the orbital period to increase with the radius. Up to
energies of several hundred MeV, the relativistic effects can be compensated for by making the magnetic field
gradually increase with the radius of the orbit. However, for higher energies, much more elaborate methods
must be used to accelerate particles.

Particles are accelerated to very high energies with either linear accelerators or synchrotrons. The linear
accelerator accelerates particles continuously with the electric field of an electromagnetic wave that travels
down a long evacuated tube. The Stanford Linear Accelerator (SLAC) is about 3.3 km long and accelerates
electrons and positrons (positively charged electrons) to energies of 50 GeV. The synchrotron is constructed so
that its bending magnetic field increases with particle speed in such a way that the particles stay in an orbit of
fixed radius. The world’s highest-energy synchrotron is located at CERN, which is on the Swiss-French border
near Geneva. CERN has been of recent interest with the verified discovery of the Higgs Boson (see Particle
Physics and Cosmology). This synchrotron can accelerate beams of approximately protons to energies of
about GeV.

EXAMPLE 11.10

Accelerating Alpha-Particles in a Cyclotron
A cyclotron used to accelerate alpha-particles ( ) has a radius of 0.50
m and a magnetic field of 1.8 T. (a) What is the period of revolution of the alpha-particles? (b) What is their
maximum kinetic energy?

Strategy

a. The period of revolution is approximately the distance traveled in a circle divided by the speed. Identifying
that the magnetic force applied is the centripetal force, we can derive the period formula.

b. The kinetic energy can be found from the maximum speed of the beam, corresponding to the maximum
radius within the cyclotron.
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Solution

a. By identifying the mass, charge, and magnetic field in the problem, we can calculate the period:

b. By identifying the charge, magnetic field, radius of path, and the mass, we can calculate the maximum
kinetic energy:

CHECK YOUR UNDERSTANDING 11.6

A cyclotron is to be designed to accelerate protons to kinetic energies of 20 MeV using a magnetic field of 2.0 T.
What is the required radius of the cyclotron?

11.7 • Applications of Magnetic Forces and Fields 505



CHAPTER REVIEW
Key Terms
cosmic rays comprised of particles that originate

mainly from outside the solar system and reach
Earth

cyclotron device used to accelerate charged
particles to large kinetic energies

dees large metal containers used in cyclotrons that
serve contain a stream of charged particles as
their speed is increased

gauss G, unit of the magnetic field strength;

Hall effect creation of voltage across a current-
carrying conductor by a magnetic field

helical motion superposition of circular motion
with a straight-line motion that is followed by a
charged particle moving in a region of magnetic
field at an angle to the field

magnetic dipole closed-current loop
magnetic dipole moment term IA of the magnetic

dipole, also called
magnetic field lines continuous curves that show

the direction of a magnetic field; these lines point
in the same direction as a compass points, toward
the magnetic south pole of a bar magnet

magnetic force force applied to a charged particle
moving through a magnetic field

mass spectrometer device that separates ions
according to their charge-to-mass ratios

motor (dc) loop of wire in a magnetic field; when

current is passed through the loops, the magnetic
field exerts torque on the loops, which rotates a
shaft; electrical energy is converted into
mechanical work in the process

north magnetic pole currently where a compass
points to north, near the geographic North Pole;
this is the effective south pole of a bar magnet but
has flipped between the effective north and south
poles of a bar magnet multiple times over the age
of Earth

right-hand rule-1 using your right hand to
determine the direction of either the magnetic
force, velocity of a charged particle, or magnetic
field

south magnetic pole currently where a compass
points to the south, near the geographic South
Pole; this is the effective north pole of a bar
magnet but has flipped just like the north
magnetic pole

tesla SI unit for magnetic field: 1 T = 1 N/A-m
velocity selector apparatus where the crossed

electric and magnetic fields produce equal and
opposite forces on a charged particle moving with
a specific velocity; this particle moves through
the velocity selector not affected by either field
while particles moving with different velocities
are deflected by the apparatus

Key Equations

Force on a charge in a magnetic field

Magnitude of magnetic force

Radius of a particle’s path in a magnetic field

Period of a particle’s motion in a magnetic field

Force on a current-carrying wire in a uniform magnetic field

Magnetic dipole moment

Torque on a current loop

Energy of a magnetic dipole
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Drift velocity in crossed electric and magnetic fields

Hall potential

Hall potential in terms of drift velocity

Charge-to-mass ratio in a mass spectrometer

Maximum speed of a particle in a cyclotron

Summary
11.1 Magnetism and Its Historical
Discoveries

• Magnets have two types of magnetic poles,
called the north magnetic pole and the south
magnetic pole. North magnetic poles are those
that are attracted toward Earth’s geographic
North Pole.

• Like poles repel and unlike poles attract.
• Discoveries of how magnets respond to currents

by Oersted and others created a framework that
led to the invention of modern electronic
devices, electric motors, and magnetic imaging
technology.

11.2 Magnetic Fields and Lines

• Charges moving across a magnetic field
experience a force determined by
The force is perpendicular to the plane formed
by and

• The direction of the force on a moving charge is
given by the right hand rule 1 (RHR-1): Sweep
your fingers in a velocity, magnetic field plane.
Start by pointing them in the direction of
velocity and sweep towards the magnetic field.
Your thumb points in the direction of the
magnetic force for positive charges.

• Magnetic fields can be pictorially represented by
magnetic field lines, which have the following
properties:

1. The field is tangent to the magnetic field line.
2. Field strength is proportional to the line

density.
3. Field lines cannot cross.
4. Field lines form continuous, closed loops.

• Magnetic poles always occur in pairs of north
and south—it is not possible to isolate north and
south poles.

11.3 Motion of a Charged Particle in a
Magnetic Field

• A magnetic force can supply centripetal force
and cause a charged particle to move in a
circular path of radius

• The period of circular motion for a charged
particle moving in a magnetic field
perpendicular to the plane of motion is

• Helical motion results if the velocity of the
charged particle has a component parallel to the
magnetic field as well as a component
perpendicular to the magnetic field.

11.4 Magnetic Force on a Current-Carrying
Conductor

• An electrical current produces a magnetic field
around the wire.

• The directionality of the magnetic field
produced is determined by the right hand
rule-2, where your thumb points in the direction
of the current and your fingers wrap around the
wire in the direction of the magnetic field.

• The magnetic force on current-carrying
conductors is given by where I is
the current and l is the length of a wire in a
uniform magnetic field B.

11.5 Force and Torque on a Current Loop

• The net force on a current-carrying loop of any
plane shape in a uniform magnetic field is zero.

• The net torque τ on a current-carrying loop of
any shape in a uniform magnetic field is
calculated using where is the
magnetic dipole moment and is the magnetic
field strength.

• The magnetic dipole moment is the product of
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the number of turns of wire N, the current in the
loop I, and the area of the loop A or

11.6 The Hall Effect

• Perpendicular electric and magnetic fields exert
equal and opposite forces for a specific velocity
of entering particles, thereby acting as a velocity
selector. The velocity that passes through
undeflected is calculated by

• The Hall effect can be used to measure the sign
of the majority of charge carriers for metals. It

can also be used to measure a magnetic field.

11.7 Applications of Magnetic Forces and
Fields

• A mass spectrometer is a device that separates
ions according to their charge-to-mass ratios by
first sending them through a velocity selector,
then a uniform magnetic field.

• Cyclotrons are used to accelerate charged
particles to large kinetic energies through
applied electric and magnetic fields.

Conceptual Questions
11.2 Magnetic Fields and Lines

1. Discuss the similarities and differences between
the electrical force on a charge and the magnetic
force on a charge.

2. (a) Is it possible for the magnetic force on a
charge moving in a magnetic field to be zero? (b)
Is it possible for the electric force on a charge
moving in an electric field to be zero? (c) Is it
possible for the resultant of the electric and
magnetic forces on a charge moving
simultaneously through both fields to be zero?

11.3 Motion of a Charged Particle in a
Magnetic Field

3. At a given instant, an electron and a proton are
moving with the same velocity in a constant
magnetic field. Compare the magnetic forces on
these particles. Compare their accelerations.

4. Does increasing the magnitude of a uniform
magnetic field through which a charge is
traveling necessarily mean increasing the
magnetic force on the charge? Does changing the
direction of the field necessarily mean a change
in the force on the charge?

5. An electron passes through a magnetic field
without being deflected. What do you conclude
about the magnetic field?

6. If a charged particle moves in a straight line, can
you conclude that there is no magnetic field
present?

7. How could you determine which pole of an

electromagnet is north and which pole is south?

11.4 Magnetic Force on a Current-Carrying
Conductor

8. Describe the error that results from accidently
using your left rather than your right hand when
determining the direction of a magnetic force.

9. Considering the magnetic force law, are the
velocity and magnetic field always
perpendicular? Are the force and velocity always
perpendicular? What about the force and
magnetic field?

10. Why can a nearby magnet distort a cathode ray
tube television picture?

11. A magnetic field exerts a force on the moving
electrons in a current carrying wire. What
exerts the force on a wire?

12. There are regions where the magnetic field of
earth is almost perpendicular to the surface of
Earth. What difficulty does this cause in the use
of a compass?

11.6 The Hall Effect

13. Hall potentials are much larger for poor
conductors than for good conductors. Why?

11.7 Applications of Magnetic Forces and
Fields

14. Describe the primary function of the electric
field and the magnetic field in a cyclotron.

Problems
11.2 Magnetic Fields and Lines

15. What is the direction of the magnetic force on a
positive charge that moves as shown in each of
the six cases?
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16. Repeat previous exercise for a negative charge.
17. What is the direction of the velocity of a negative

charge that experiences the magnetic force
shown in each of the three cases, assuming it
moves perpendicular to B?

18. Repeat previous exercise for a positive charge.
19. What is the direction of the magnetic field that

produces the magnetic force on a positive
charge as shown in each of the three cases,
assuming is perpendicular to ?

20. Repeat previous exercise for a negative charge.
21. (a) Aircraft sometimes acquire small static

charges. Suppose a supersonic jet has a
0.500-μC charge and flies due west at a speed of
660. m/s over Earth’s south magnetic pole,
where the magnetic field
points straight down into the ground. What are
the direction and the magnitude of the magnetic
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force on the plane? (b) Discuss whether the
value obtained in part (a) implies this is a
significant or negligible effect.

22. (a) A cosmic ray proton moving toward Earth at
experiences a magnetic force of

What is the strength of the
magnetic field if there is a 45º angle between it
and the proton’s velocity? (b) Is the value
obtained in part a. consistent with the known
strength of Earth’s magnetic field on its surface?
Discuss.

23. An electron moving at in a
1.25-T magnetic field experiences a magnetic
force of What angle does the
velocity of the electron make with the magnetic
field? There are two answers.

24. (a) A physicist performing a sensitive
measurement wants to limit the magnetic force
on a moving charge in her equipment to less
than What is the greatest the
charge can be if it moves at a maximum speed
of 30.0 m/s in Earth’s field? (b) Discuss whether
it would be difficult to limit the charge to less
than the value found in (a) by comparing it with
typical static electricity and noting that static is
often absent.

11.3 Motion of a Charged Particle in a
Magnetic Field

25. A cosmic-ray electron moves at
perpendicular to Earth’s magnetic field at an
altitude where the field strength is

What is the radius of the circular
path the electron follows?

26. (a) Viewers of Star Trek have heard of an
antimatter drive on the Starship Enterprise.
One possibility for such a futuristic energy
source is to store antimatter charged particles
in a vacuum chamber, circulating in a magnetic
field, and then extract them as needed.
Antimatter annihilates normal matter,
producing pure energy. What strength magnetic
field is needed to hold antiprotons, moving at

in a circular path 2.00 m in
radius? Antiprotons have the same mass as
protons but the opposite (negative) charge. (b) Is
this field strength obtainable with today’s
technology or is it a futuristic possibility?

27. (a) An oxygen-16 ion with a mass of
travels at

perpendicular to a 1.20-T magnetic field, which
makes it move in a circular arc with a 0.231-m

radius. What positive charge is on the ion? (b)
What is the ratio of this charge to the charge of
an electron? (c) Discuss why the ratio found in
(b) should be an integer.

28. An electron in a TV CRT moves with a speed of
in a direction perpendicular to

Earth’s field, which has a strength of
(a) What strength electric field

must be applied perpendicular to the Earth’s
field to make the electron moves in a straight
line? (b) If this is done between plates separated
by 1.00 cm, what is the voltage applied? (Note
that TVs are usually surrounded by a
ferromagnetic material to shield against
external magnetic fields and avoid the need for
such a correction.)

29. (a) At what speed will a proton move in a
circular path of the same radius as the electron
in the previous exercise? (b) What would the
radius of the path be if the proton had the same
speed as the electron? (c) What would the radius
be if the proton had the same kinetic energy as
the electron? (d) The same momentum?

30. (a) What voltage will accelerate electrons to a
speed of (b) Find the radius
of curvature of the path of a proton accelerated
through this potential in a 0.500-T field and
compare this with the radius of curvature of an
electron accelerated through the same
potential.

31. An alpha-particle
travels in a circular path of

radius 25 cm in a uniform magnetic field of
magnitude 1.5 T. (a) What is the speed of the
particle? (b) What is the kinetic energy in
electron-volts? (c) Through what potential
difference must the particle be accelerated in
order to give it this kinetic energy?

32. A particle of charge q and mass m is accelerated
from rest through a potential difference V, after
which it encounters a uniform magnetic field B.
If the particle moves in a plane perpendicular to
B, what is the radius of its circular orbit?

11.4 Magnetic Force on a Current-Carrying
Conductor

33. What is the direction of the magnetic force on
the current in each of the six cases?
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34. What is the direction of a current that
experiences the magnetic force shown in each
of the three cases, assuming the current runs
perpendicular to ?

35. What is the direction of the magnetic field that
produces the magnetic force shown on the
currents in each of the three cases, assuming
is perpendicular to I?

36. (a) What is the force per meter on a lightning
bolt at the equator that carries 20,000 A
perpendicular to Earth’s field? (b)
What is the direction of the force if the current
is straight up and Earth’s field direction is due
north, parallel to the ground?
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37. (a) A dc power line for a light-rail system carries
1000 A at an angle of 30.0º to Earth’s

field. What is the force on a 100-m
section of this line? (b) Discuss practical
concerns this presents, if any.

38. A wire carrying a 30.0-A current passes
between the poles of a strong magnet that is
perpendicular to its field and experiences a
2.16-N force on the 4.00 cm of wire in the field.
What is the average field strength?

11.5 Force and Torque on a Current Loop

39. (a) By how many percent is the torque of a
motor decreased if its permanent magnets lose
5.0% of their strength? (b) How many percent
would the current need to be increased to
return the torque to original values?

40. (a) What is the maximum torque on a 150-turn
square loop of wire 18.0 cm on a side that
carries a 50.0-A current in a 1.60-T field? (b)
What is the torque when θ is 10.9º?

41. Find the current through a loop needed to
create a maximum torque of The loop
has 50 square turns that are 15.0 cm on a side
and is in a uniform 0.800-T magnetic field.

42. Calculate the magnetic field strength needed on
a 200-turn square loop 20.0 cm on a side to
create a maximum torque of 300 N ⋅ m if the
loop is carrying 25.0 A.

43. Since the equation for torque on a current-
carrying loop is τ = NIAB sin θ, the units of N ⋅
m must equal units of A ⋅ m2 T. Verify this.

44. (a) At what angle θ is the torque on a current
loop 90.0% of maximum? (b) 50.0% of
maximum? (c) 10.0% of maximum?

45. A proton has a magnetic field due to its spin.
The field is similar to that created by a circular
current loop in radius with a
current of Find the maximum
torque on a proton in a 2.50-T field. (This is a
significant torque on a small particle.)

46. (a) A 200-turn circular loop of radius 50.0 cm is
vertical, with its axis on an east-west line. A
current of 100 A circulates clockwise in the loop
when viewed from the east. Earth’s field here is
due north, parallel to the ground, with a
strength of What are the direction
and magnitude of the torque on the loop? (b)
Does this device have any practical applications
as a motor?

47. Repeat the previous problem, but with the loop
lying flat on the ground with its current
circulating counterclockwise (when viewed
from above) in a location where Earth’s field is
north, but at an angle 45.0° below the horizontal
and with a strength of

11.6 The Hall Effect

48. A strip of copper is placed in a uniform
magnetic field of magnitude 2.5 T. The Hall
electric field is measured to be
(a) What is the drift speed of the conduction
electrons? (b) Assuming that n =
electrons per cubic meter and that the cross-
sectional area of the strip is
calculate the current in the strip. (c) What is the
Hall coefficient 1/nq?

49. The cross-sectional dimensions of the copper
strip shown are 2.0 cm by 2.0 mm. The strip
carries a current of 100 A, and it is placed in a
magnetic field of magnitude B = 1.5 T. What are
the value and polarity of the Hall potential in the
copper strip?

50. The magnitudes of the electric and magnetic
fields in a velocity selector are
and 0.080 T, respectively. (a) What speed must a
proton have to pass through the selector? (b)
Also calculate the speeds required for an alpha-
particle and a singly ionized atom to pass
through the selector.

51. A charged particle moves through a velocity
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selector at constant velocity. In the selector, E =
and B = 0.250 T. When the

electric field is turned off, the charged particle
travels in a circular path of radius 3.33 mm.
Determine the charge-to-mass ratio of the
particle.

52. A Hall probe gives a reading of for a
current of 2 A when it is placed in a magnetic
field of 1 T. What is the magnetic field in a
region where the reading is for 1.7 A of
current?

11.7 Applications of Magnetic Forces and
Fields

53. A physicist is designing a cyclotron to accelerate
protons to one-tenth the speed of light. The
magnetic field will have a strength of 1.5 T.
Determine (a) the rotational period of the
circulating protons and (b) the maximum radius
of the protons’ orbit.

54. The strengths of the fields in the velocity
selector of a Bainbridge mass spectrometer are
B = 0.500 T and E = and the
strength of the magnetic field that separates the
ions is A stream of singly charged
Li ions is found to bend in a circular arc of
radius 2.32 cm. What is the mass of the Li ions?

55. The magnetic field in a cyclotron is 1.25 T, and
the maximum orbital radius of the circulating
protons is 0.40 m. (a) What is the kinetic energy
of the protons when they are ejected from the

cyclotron? (b) What is this energy in MeV? (c)
Through what potential difference would a
proton have to be accelerated to acquire this
kinetic energy? (d) What is the period of the
voltage source used to accelerate the protons?
(e) Repeat the calculations for alpha-particles.

56. A mass spectrometer is being used to separate
common oxygen-16 from the much rarer
oxygen-18, taken from a sample of old glacial
ice. (The relative abundance of these oxygen
isotopes is related to climatic temperature at
the time the ice was deposited.) The ratio of the
masses of these two ions is 16 to 18, the mass of
oxygen-16 is and they are
singly charged and travel at in a
1.20-T magnetic field. What is the separation
between their paths when they hit a target after
traversing a semicircle?

57. (a) Triply charged uranium-235 and
uranium-238 ions are being separated in a
mass spectrometer. (The much rarer
uranium-235 is used as reactor fuel.) The
masses of the ions are and

respectively, and they travel at
in a 0.250-T field. What is the

separation between their paths when they hit a
target after traversing a semicircle? (b) Discuss
whether this distance between their paths
seems to be big enough to be practical in the
separation of uranium-235 from uranium-238.

Additional Problems
58. Calculate the magnetic force on a hypothetical

particle of charge moving with a
velocity of in a magnetic field of

59. Repeat the previous problem with a new
magnetic field of

60. An electron is projected into a uniform
magnetic field with a velocity of

What is the magnetic
force on the electron?

61. The mass and charge of a water droplet are
and respectively. If

the droplet is given an initial horizontal velocity
of what magnetic field will keep
it moving in this direction? Why must gravity be
considered here?

62. Four different proton velocities are given. For
each case, determine the magnetic force on the
proton in terms of e, and
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63. An electron of kinetic energy 2000 eV passes
between parallel plates that are 1.0 cm apart
and kept at a potential difference of 300 V. What
is the strength of the uniform magnetic field B
that will allow the electron to travel undeflected
through the plates? Assume E and B are
perpendicular.

64. An alpha-particle
moving with a velocity

enters a region
where and

What is the initial
force on it?

65. An electron moving with a velocity
enters a

region where there is a uniform electric field
and a uniform magnetic field. The magnetic
field is given by

If the
electron travels through a region without being
deflected, what is the electric field?

66. At a particular instant, an electron is traveling
west to east with a kinetic energy of 10 keV.
Earth’s magnetic field has a horizontal
component of north and a vertical
component of down. (a) What is
the path of the electron? (b) What is the radius
of curvature of the path?

67. What is the (a) path of a proton and (b) the
magnetic force on the proton that is traveling
west to east with a kinetic energy of 10 keV in
Earth’s magnetic field that has a horizontal
component of 1.8 x 10–5 T north and a vertical
component of 5.0 x 10–5 T down?

68. What magnetic field is required in order to
confine a proton moving with a speed of

to a circular orbit of radius 10
cm?

69. An electron and a proton move with the same
speed in a plane perpendicular to a uniform
magnetic field. Compare the radii and periods
of their orbits.

70. A proton and an alpha-particle have the same
kinetic energy and both move in a plane
perpendicular to a uniform magnetic field.
Compare the periods of their orbits.

71. A singly charged ion takes to
complete eight revolutions in a uniform
magnetic field of magnitude
What is the mass of the ion?

72. A particle moving downward at a speed of
enters a uniform magnetic field

that is horizontal and directed from east to west.
(a) If the particle is deflected initially to the
north in a circular arc, is its charge positive or
negative? (b) If B = 0.25 T and the charge-to-
mass ratio (q/m) of the particle is

what is the radius of the path?
(c) What is the speed of the particle after it has
moved in the field for for 2.0 s?

73. A proton, deuteron, and an alpha-particle are all
accelerated from rest through the same
potential difference. They then enter the same
magnetic field, moving perpendicular to it.
Compute the ratios of the radii of their circular
paths. Assume that and

74. A singly charged ion is moving in a uniform
magnetic field of completes 10
revolutions in Identify the ion.

75. Two particles have the same linear momentum,
but particle A has four times the charge of
particle B. If both particles move in a plane
perpendicular to a uniform magnetic field, what
is the ratio of the radii of their circular
orbits?

76. A uniform magnetic field of magnitude is
directed parallel to the z-axis. A proton enters
the field with a velocity

and travels in a helical
path with a radius of 5.0 cm. (a) What is the
value of ? (b) What is the time required for one
trip around the helix? (c) Where is the proton

after entering the field?
77. An electron moving along the +x -axis at

enters a magnetic field that
makes a angle with the x-axis of magnitude
0.20 T. Calculate the (a) pitch and (b) radius of
the trajectory.

78. (a) A 0.750-m-long section of cable carrying
current to a car starter motor makes an angle of
60º with Earth’s field. What is the
current when the wire experiences a force of

(b) If you run the wire between
the poles of a strong horseshoe magnet,
subjecting 5.00 cm of it to a 1.75-T field, what
force is exerted on this segment of wire?

79. (a) What is the angle between a wire carrying an
8.00-A current and the 1.20-T field it is in if 50.0
cm of the wire experiences a magnetic force of
2.40 N? (b) What is the force on the wire if it is
rotated to make an angle of 90º with the field?
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80. A 1.0-m-long segment of wire lies along the
x-axis and carries a current of 2.0 A in the
positive x-direction. Around the wire is the
magnetic field of Find
the magnetic force on this segment.

81. A 5.0-m section of a long, straight wire carries a
current of 10 A while in a uniform magnetic
field of magnitude Calculate the
magnitude of the force on the section if the
angle between the field and the direction of the
current is (a) 45°; (b) 90°; (c) 0°; or (d) 180°.

82. An electromagnet produces a magnetic field of
magnitude 1.5 T throughout a cylindrical region
of radius 6.0 cm. A straight wire carrying a
current of 25 A passes through the field as
shown in the accompanying figure. What is the
magnetic force on the wire?

83. The current loop shown in the accompanying
figure lies in the plane of the page, as does the
magnetic field. Determine the net force and the
net torque on the loop if I = 10 A and B = 1.5 T.

84. A circular coil of radius 5.0 cm is wound with
five turns and carries a current of 5.0 A. If the
coil is placed in a uniform magnetic field of
strength 5.0 T, what is the maximum torque on
it?

85. A circular coil of wire of radius 5.0 cm has 20
turns and carries a current of 2.0 A. The coil lies
in a magnetic field of magnitude 0.50 T that is
directed parallel to the plane of the coil. (a)
What is the magnetic dipole moment of the coil?
(b) What is the torque on the coil?

86. A current-carrying coil in a magnetic field
experiences a torque that is 75% of the
maximum possible torque. What is the angle
between the magnetic field and the normal to
the plane of the coil?

87. A 4.0-cm by 6.0-cm rectangular current loop
carries a current of 10 A. What is the magnetic
dipole moment of the loop?

88. A circular coil with 200 turns has a radius of 2.0
cm. (a) What current through the coil results in
a magnetic dipole moment of 3.0 Am2? (b) What
is the maximum torque that the coil will
experience in a uniform field of strength

(c) If the angle between μ and B
is 45°, what is the magnitude of the torque on
the coil? (d) What is the magnetic potential
energy of coil for this orientation?

89. The current through a circular wire loop of
radius 10 cm is 5.0 A. (a) Calculate the magnetic
dipole moment of the loop. (b) What is the
torque on the loop if it is in a uniform 0.20-T
magnetic field such that and B are directed at

to each other? (c) For this position, what is
the potential energy of the dipole?

90. A wire of length 1.0 m is wound into a single-
turn planar loop. The loop carries a current of
5.0 A, and it is placed in a uniform magnetic
field of strength 0.25 T. (a) What is the
maximum torque that the loop will experience if
it is square? (b) If it is circular? (c) At what angle
relative to B would the normal to the circular
coil have to be oriented so that the torque on it
would be the same as the maximum torque on
the square coil?

91. Consider an electron rotating in a circular orbit
of radius r. Show that the magnitudes of the
magnetic dipole moment μ and the angular
momentum L of the electron are related by:
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92. The Hall effect is to be used to find the sign of
charge carriers in a semiconductor sample. The
probe is placed between the poles of a magnet
so that magnetic field is pointed up. A current is
passed through a rectangular sample placed
horizontally. As current is passed through the
sample in the east direction, the north side of
the sample is found to be at a higher potential
than the south side. Decide if the number
density of charge carriers is positively or
negatively charged.

93. The density of charge carriers for copper is
electrons per cubic meter. What

will be the Hall voltage reading from a probe
made up of

copper
plate when a current of 1.5 A is passed through
it in a magnetic field of 2.5 T perpendicular to
the

94. The Hall effect is to be used to find the density
of charge carriers in an unknown material. A
Hall voltage 40 for 3-A current is observed
in a 3-T magnetic field for a rectangular sample
with length 2 cm, width 1.5 cm, and height 0.4
cm. Determine the density of the charge
carriers.

95. Show that the Hall voltage across wires made of
the same material, carrying identical currents,
and subjected to the same magnetic field is
inversely proportional to their diameters. (Hint:
Consider how drift velocity depends on wire
diameter.)

96. A velocity selector in a mass spectrometer uses
a 0.100-T magnetic field. (a) What electric field
strength is needed to select a speed of

(b) What is the voltage between
the plates if they are separated by 1.00 cm?

97. Find the radius of curvature of the path of a
25.0-MeV proton moving perpendicularly to the
1.20-T field of a cyclotron.

98. Unreasonable results To construct a non-
mechanical water meter, a 0.500-T magnetic
field is placed across the supply water pipe to a
home and the Hall voltage is recorded. (a) Find
the flow rate through a 3.00-cm-diameter pipe
if the Hall voltage is 60.0 mV. (b) What would the
Hall voltage be for the same flow rate through a
10.0-cm-diameter pipe with the same field
applied?

99. Unreasonable results A charged particle
having mass (that of a helium
atom) moving at perpendicular
to a 1.50-T magnetic field travels in a circular
path of radius 16.0 mm. (a) What is the charge
of the particle? (b) What is unreasonable about
this result? (c) Which assumptions are
responsible?

100. Unreasonable results An inventor wants to
generate 120-V power by moving a 1.00-m-
long wire perpendicular to Earth’s

field. (a) Find the speed with
which the wire must move. (b) What is
unreasonable about this result? (c) Which
assumption is responsible?

101. Unreasonable results Frustrated by the small
Hall voltage obtained in blood flow
measurements, a medical physicist decides to
increase the applied magnetic field strength to
get a 0.500-V output for blood moving at 30.0
cm/s in a 1.50-cm-diameter vessel. (a) What
magnetic field strength is needed? (b) What is
unreasonable about this result? (c) Which
premise is responsible?

Challenge Problems
102. A particle of charge +q and mass m moves with

velocity pointed in the +y-direction as it
crosses the x-axis at x = R at a particular time.
There is a negative charge –Q fixed at the
origin, and there exists a uniform magnetic
field pointed in the +z-direction. It is found
that the particle describes a circle of radius R
about –Q. Find in terms of the given
quantities.

103. A proton of speed v = enters a
region of uniform magnetic field of B = 0.5 T at
an angle of to the magnetic field. In the
region of magnetic field proton describes a
helical path with radius R and pitch p (distance
between loops). Find R and p.
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104. A particle’s path is bent when it passes through
a region of non-zero magnetic field although
its speed remains unchanged. This is very
useful for “beam steering” in particle
accelerators. Consider a proton of speed

entering a region of uniform
magnetic field 0.2 T over a 5-cm-wide region.
Magnetic field is perpendicular to the velocity
of the particle. By how much angle will the path
of the proton be bent? (Hint: The particle
comes out tangent to a circle.)

105. In a region a non-uniform magnetic field exists
such that
where a is a constant. At some time t, a wire of
length L is carrying a current I is located along
the x-axis from origin to x = L. Find the
magnetic force on the wire at this instant in
time.

106. A copper rod of mass m and length L is hung from
the ceiling using two springs of spring constant k. A
uniform magnetic field of magnitude pointing
perpendicular to the rod and spring (coming into
the page in the figure) exists in a region of space
covering a length w of the copper rod. The ends of
the rod are then connected by flexible copper wire
across the terminals of a battery of voltage V.
Determine the change in the length of the springs
when a current I runs through the copper rod in the
direction shown in figure. (Ignore any force by the
flexible wire.)

107. The accompanied figure shows an
arrangement for measuring mass of ions by an
instrument called the mass spectrometer. An
ion of mass m and charge +q is produced
essentially at rest in source S, a chamber in
which a gas discharge is taking place. The ion
is accelerated by a potential difference
and allowed to enter a region of constant
magnetic field In the uniform magnetic
field region, the ion moves in a semicircular
path striking a photographic plate at a distance
x from the entry point. Derive a formula for
mass m in terms of q, and x.

108. A wire is made into a circular shape of radius R
and pivoted along a central support. The two ends
of the wire are touching a brush that is connected
to a dc power source. The structure is between the
poles of a magnet such that we can assume there is
a uniform magnetic field on the wire. In terms of a
coordinate system with origin at the center of the
ring, magnetic field is and
the ring rotates about the z-axis. Find the torque
on the ring when it is not in the xz-plane.

109. A long-rigid wire lies along the x-axis and
carries a current of 2.5 A in the positive
x-direction. Around the wire is the magnetic
field with x in meters and B
in millitesla. Calculate the magnetic force on
the segment of wire between x = 2.0 m and x =
4.0 m.
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110. A circular loop of wire of area 10 cm2 carries a
current of 25 A. At a particular instant, the
loop lies in the xy-plane and is subjected to a
magnetic field

As
viewed from above the xy-plane, the current is
circulating clockwise. (a) What is the magnetic
dipole moment of the current loop? (b) At this
instant, what is the magnetic torque on the
loop?
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INTRODUCTION

CHAPTER 12
Sources of Magnetic Fields

12.1 The Biot-Savart Law

12.2 Magnetic Field Due to a Thin Straight Wire

12.3 Magnetic Force between Two Parallel Currents

12.4 Magnetic Field of a Current Loop

12.5 Ampère’s Law

12.6 Solenoids and Toroids

12.7 Magnetism in Matter

In the preceding chapter, we saw that a moving charged particle produces a magnetic field.
This connection between electricity and magnetism is exploited in electromagnetic devices, such as a
computer hard drive. In fact, it is the underlying principle behind most of the technology in modern society,
including telephones, television, computers, and the internet.

In this chapter, we examine how magnetic fields are created by arbitrary distributions of electric current, using
the Biot-Savart law. Then we look at how current-carrying wires create magnetic fields and deduce the forces

Figure 12.1 An external hard drive attached to a computer works by magnetically encoding information that can be
stored or retrieved quickly. A key idea in the development of digital devices is the ability to produce and use
magnetic fields in this way. (credit: modification of work by “Miss Karen”/Flickr)

Chapter Outline



that arise between two current-carrying wires due to these magnetic fields. We also study the torques
produced by the magnetic fields of current loops. We then generalize these results to an important law of
electromagnetism, called Ampère’s law.

We examine some devices that produce magnetic fields from currents in geometries based on loops, known as
solenoids and toroids. Finally, we look at how materials behave in magnetic fields and categorize materials
based on their responses to magnetic fields.

12.1 The Biot-Savart Law
Learning Objectives
By the end of this section, you will be able to:

• Explain how to derive a magnetic field from an arbitrary current in a line segment
• Calculate magnetic field from the Biot-Savart law in specific geometries, such as a current in a line and a

current in a circular arc

We have seen that mass produces a gravitational field and also interacts with that field. Charge produces an
electric field and also interacts with that field. Since moving charge (that is, current) interacts with a magnetic
field, we might expect that it also creates that field—and it does.

The equation used to calculate the magnetic field produced by a current is known as the Biot-Savart law. It is
an empirical law named in honor of two scientists who investigated the interaction between a straight,
current-carrying wire and a permanent magnet. This law enables us to calculate the magnitude and direction
of the magnetic field produced by a current in a wire. The Biot-Savart law states that at any point P (Figure
12.2), the magnetic field due to an element of a current-carrying wire is given by

Figure 12.2 A current element produces a magnetic field at point P given by the Biot-Savart law.

The constant is known as the permeability of free space and is exactly

in the SI system. The infinitesimal wire segment is in the same direction as the current I (assumed positive),
r is the distance from to P and is a unit vector that points from to P, as shown in the figure.

The direction of is determined by applying the right-hand rule to the vector product The
magnitude of is

where is the angle between and Notice that if then The field produced by a current
element has no component parallel to

12.1

12.2

12.3
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The magnetic field due to a finite length of current-carrying wire is found by integrating Equation 12.3 along
the wire, giving us the usual form of the Biot-Savart law.

Since this is a vector integral, contributions from different current elements may not point in the same
direction. Consequently, the integral is often difficult to evaluate, even for fairly simple geometries. The
following strategy may be helpful.

PROBLEM-SOLVING STRATEGY

Solving Biot-Savart Problems
To solve Biot-Savart law problems, the following steps are helpful:

1. Identify that the Biot-Savart law is the chosen method to solve the given problem. If there is symmetry in
the problem comparing and Ampère’s law may be the preferred method to solve the question.

2. Draw the current element length and the unit vector noting that points in the direction of the
current and points from the current element toward the point where the field is desired.

3. Calculate the cross product The resultant vector gives the direction of the magnetic field
according to the Biot-Savart law.

4. Use Equation 12.4 and substitute all given quantities into the expression to solve for the magnetic field.
Note all variables that remain constant over the entire length of the wire may be factored out of the
integration.

5. Use the right-hand rule to verify the direction of the magnetic field produced from the current or to write
down the direction of the magnetic field if only the magnitude was solved for in the previous part.

EXAMPLE 12.1

Calculating Magnetic Fields of Short Current Segments
A short wire of length 1.0 cm carries a current of 2.0 A in the vertical direction (Figure 12.3). The rest of the
wire is shielded so it does not add to the magnetic field produced by the wire. Calculate the magnetic field at
point P, which is 1 meter from the wire in the x-direction.

Figure 12.3 A small line segment carries a current I in the vertical direction. What is the magnetic field at a distance x from the segment?

Biot-Savart law

The magnetic field due to an element of a current-carrying wire is given by

12.4
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Strategy
We can determine the magnetic field at point P using the Biot-Savart law. Since the current segment is much
smaller than the distance x, we can drop the integral from the expression. The integration is converted back
into a summation, but only for small dl, which we now write as Another way to think about it is that each of
the radius values is nearly the same, no matter where the current element is on the line segment, if is small
compared to x. The angle is calculated using a tangent function. Using the numbers given, we can calculate
the magnetic field at P.

Solution

The angle between and is calculated from trigonometry, knowing the distances l and x from the problem:

The magnetic field at point P is calculated by the Biot-Savart law:

From the right-hand rule and the Biot-Savart law, the field is directed into the page.

Significance
This approximation is only good if the length of the line segment is very small compared to the distance from
the current element to the point. If not, the integral form of the Biot-Savart law must be used over the entire
line segment to calculate the magnetic field.

CHECK YOUR UNDERSTANDING 12.1

Using Example 12.1, at what distance would P have to be to measure a magnetic field half of the given answer?

EXAMPLE 12.2

Calculating Magnetic Field of a Circular Arc of Wire
A wire carries a current I in a circular arc with radius R swept through an arbitrary angle (Figure 12.4).
Calculate the magnetic field at the center of this arc at point P.

Figure 12.4 A wire segment carrying a current I. The path and radial direction are indicated.

Strategy
We can determine the magnetic field at point P using the Biot-Savart law. The radial and path length directions
are always at a right angle, so the cross product turns into multiplication. We also know that the distance along
the path dl is related to the radius times the angle (in radians). Then we can pull all constants out of the
integration and solve for the magnetic field.

Solution
The Biot-Savart law starts with the following equation:
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As we integrate along the arc, all the contributions to the magnetic field are in the same direction (out of the
page), so we can work with the magnitude of the field. The cross product turns into multiplication because the
path dl and the radial direction are perpendicular. We can also substitute the arc length formula, :

The current and radius can be pulled out of the integral because they are the same regardless of where we are
on the path. This leaves only the integral over the angle,

The angle varies on the wire from 0 to ; hence, the result is

Significance
The direction of the magnetic field at point P is determined by the right-hand rule, as shown in the previous
chapter. If there are other wires in the diagram along with the arc, and you are asked to find the net magnetic
field, find each contribution from a wire or arc and add the results by superposition of vectors. Make sure to
pay attention to the direction of each contribution. Also note that in a symmetric situation, like a straight or
circular wire, contributions from opposite sides of point P cancel each other.

CHECK YOUR UNDERSTANDING 12.2

The wire loop forms a full circle of radius R and current I. What is the magnitude of the magnetic field at the
center?

12.2 Magnetic Field Due to a Thin Straight Wire
Learning Objectives
By the end of this section, you will be able to:

• Explain how the Biot-Savart law is used to determine the magnetic field due to a thin, straight wire.
• Determine the dependence of the magnetic field from a thin, straight wire based on the distance from it and

the current flowing in the wire.
• Sketch the magnetic field created from a thin, straight wire by using the second right-hand rule.

How much current is needed to produce a significant magnetic field, perhaps as strong as Earth’s field?
Surveyors will tell you that overhead electric power lines create magnetic fields that interfere with their
compass readings. Indeed, when Oersted discovered in 1820 that a current in a wire affected a compass
needle, he was not dealing with extremely large currents. How does the shape of wires carrying current affect
the shape of the magnetic field created? We noted in Chapter 28 that a current loop created a magnetic field
similar to that of a bar magnet, but what about a straight wire? We can use the Biot-Savart law to answer all of
these questions, including determining the magnetic field of a long straight wire.

Figure 12.5 shows a section of an infinitely long, straight wire that carries a current I. What is the magnetic
field at a point P, located a distance R from the wire?
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Figure 12.5 A section of a thin, straight current-carrying wire. The independent variable has the limits and

Let’s begin by considering the magnetic field due to the current element located at the position x. Using
the right-hand rule 1 from the previous chapter, points out of the page for any element along the wire.
At point P, therefore, the magnetic fields due to all current elements have the same direction. This means that
we can calculate the net field there by evaluating the scalar sum of the contributions of the elements. With

we have from the Biot-Savart law

The wire is symmetrical about point O, so we can set the limits of the integration from zero to infinity and
double the answer, rather than integrate from negative infinity to positive infinity. Based on the picture and
geometry, we can write expressions for r and in terms of x and R, namely:

Substituting these expressions into Equation 12.5, the magnetic field integration becomes

Evaluating the integral yields

Substituting the limits gives us the solution

The magnetic field lines of the infinite wire are circular and centered at the wire (Figure 12.6), and they are
identical in every plane perpendicular to the wire. Since the field decreases with distance from the wire, the
spacing of the field lines must increase correspondingly with distance. The direction of this magnetic field may
be found with a second form of the right-hand rule (illustrated in Figure 12.6). If you hold the wire with your
right hand so that your thumb points along the current, then your fingers wrap around the wire in the same
sense as

12.5

∞
12.6

∞
12.7

12.8
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Figure 12.6 Some magnetic field lines of an infinite wire. The direction of can be found with a form of the right-hand rule.

The direction of the field lines can be observed experimentally by placing several small compass needles on a
circle near the wire, as illustrated in Figure 12.7. When there is no current in the wire, the needles align with
Earth’s magnetic field. However, when a large current is sent through the wire, the compass needles all point
tangent to the circle. Iron filings sprinkled on a horizontal surface also delineate the field lines, as shown in
Figure 12.7.

Figure 12.7 The shape of the magnetic field lines of a long wire can be seen using (a) small compass needles and (b) iron filings.

EXAMPLE 12.3

Calculating Magnetic Field Due to Three Wires
Three wires sit at the corners of a square, all carrying currents of 2 amps into the page as shown in Figure 12.8.
Calculate the magnitude of the magnetic field at the other corner of the square, point P, if the length of each
side of the square is 1 cm.

Figure 12.8 Three wires have current flowing into the page. The magnetic field is determined at the fourth corner of the square.
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Strategy
The magnetic field due to each wire at the desired point is calculated. The diagonal distance is calculated using
the Pythagorean theorem. Next, the direction of each magnetic field’s contribution is determined by drawing a
circle centered at the point of the wire and out toward the desired point. The direction of the magnetic field
contribution from that wire is tangential to the curve. Lastly, working with these vectors, the resultant is
calculated.

Solution
Wires 1 and 3 both have the same magnitude of magnetic field contribution at point P:

Wire 2 has a longer distance and a magnetic field contribution at point P of:

The vectors for each of these magnetic field contributions are shown.

The magnetic field in the x-direction has contributions from wire 3 and the x-component of wire 2:

The y-component is similarly the contributions from wire 1 and the y-component of wire 2:

Therefore, the net magnetic field is the resultant of these two components:

Significance
The geometry in this problem results in the magnetic field contributions in the x- and y-directions having the
same magnitude. This is not necessarily the case if the currents were different values or if the wires were
located in different positions. Regardless of the numerical results, working on the components of the vectors
will yield the resulting magnetic field at the point in need.

CHECK YOUR UNDERSTANDING 12.3

Using Example 12.3, keeping the currents the same in wires 1 and 3, what should the current be in wire 2 to
counteract the magnetic fields from wires 1 and 3 so that there is no net magnetic field at point P?
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12.3 Magnetic Force between Two Parallel Currents
Learning Objectives
By the end of this section, you will be able to:

• Explain how parallel wires carrying currents can attract or repel each other
• Define the ampere and describe how it is related to current-carrying wires
• Calculate the force of attraction or repulsion between two current-carrying wires

You might expect that two current-carrying wires generate significant forces between them, since ordinary
currents produce magnetic fields and these fields exert significant forces on ordinary currents. But you might
not expect that the force between wires is used to define the ampere. It might also surprise you to learn that
this force has something to do with why large circuit breakers burn up when they attempt to interrupt large
currents.

The force between two long, straight, and parallel conductors separated by a distance r can be found by
applying what we have developed in the preceding sections. Figure 12.9 shows the wires, their currents, the
field created by one wire, and the consequent force the other wire experiences from the created field. Let us
consider the field produced by wire 1 and the force it exerts on wire 2 (call the force ). The field due to at a
distance r is

Figure 12.9 (a) The magnetic field produced by a long straight conductor is perpendicular to a parallel conductor, as indicated by right-

hand rule (RHR)-2. (b) A view from above of the two wires shown in (a), with one magnetic field line shown for wire 1. RHR-1 shows that the

force between the parallel conductors is attractive when the currents are in the same direction. A similar analysis shows that the force is

repulsive between currents in opposite directions.

This field is uniform from the wire 1 and perpendicular to it, so the force it exerts on a length l of wire 2 is
given by with

The forces on the wires are equal in magnitude, so we just write F for the magnitude of (Note that
) Since the wires are very long, it is convenient to think in terms of F/l, the force per unit length.

Substituting the expression for into Equation 12.10 and rearranging terms gives

The ratio F/l is the force per unit length between two parallel currents and separated by a distance r. The
force is attractive if the currents are in the same direction and repulsive if they are in opposite directions.

This force is responsible for the pinch effect in electric arcs and other plasmas. The force exists whether the

12.9
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currents are in wires or not. It is only apparent if the overall charge density is zero; otherwise, the Coulomb
repulsion overwhelms the magnetic attraction. In an electric arc, where charges are moving parallel to one
another, an attractive force squeezes currents into a smaller tube. In large circuit breakers, such as those used
in neighborhood power distribution systems, the pinch effect can concentrate an arc between plates of a
switch trying to break a large current, burn holes, and even ignite the equipment. Another example of the
pinch effect is found in the solar plasma, where jets of ionized material, such as solar flares, are shaped by
magnetic forces.

The definition of the ampere is based on the force between current-carrying wires. Note that for long, parallel
wires separated by 1 meter with each carrying 1 ampere, the force per meter is

Since is exactly by definition, and because the force per meter is
exactly This is the basis of the definition of the ampere.

Infinite-length wires are impractical, so in practice, a current balance is constructed with coils of wire
separated by a few centimeters. Force is measured to determine current. This also provides us with a method
for measuring the coulomb. We measure the charge that flows for a current of one ampere in one second. That
is, For both the ampere and the coulomb, the method of measuring force between conductors is
the most accurate in practice.

EXAMPLE 12.4

Calculating Forces on Wires
Two wires, both carrying current out of the page, have a current of magnitude 5.0 mA. The first wire is located
at (0.0 cm, 3.0 cm) while the other wire is located at (4.0 cm, 0.0 cm) as shown in Figure 12.10. What is the
magnetic force per unit length of the first wire on the second and the second wire on the first?

Figure 12.10 Two current-carrying wires at given locations with currents out of the page.

Strategy
Each wire produces a magnetic field felt by the other wire. The distance along the hypotenuse of the triangle
between the wires is the radial distance used in the calculation to determine the force per unit length. Since
both wires have currents flowing in the same direction, the direction of the force is toward each other.

Solution
The distance between the wires results from finding the hypotenuse of a triangle:

The force per unit length can then be calculated using the known currents in the wires:

The force from the first wire pulls the second wire. The angle between the radius and the x-axis is

12.12
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The unit vector for this is calculated by

Therefore, the force per unit length from wire one on wire 2 is

The force per unit length from wire 2 on wire 1 is the negative of the previous answer:

Significance
These wires produced magnetic fields of equal magnitude but opposite directions at each other’s locations.
Whether the fields are identical or not, the forces that the wires exert on each other are always equal in
magnitude and opposite in direction (Newton’s third law).

CHECK YOUR UNDERSTANDING 12.4

Two wires, both carrying current out of the page, have a current of magnitude 2.0 mA and 3.0 mA, respectively.
The first wire is located at (0.0 cm, 5.0 cm) while the other wire is located at (12.0 cm, 0.0 cm). What is the
magnitude of the magnetic force per unit length of the first wire on the second and the second wire on the first?

12.4 Magnetic Field of a Current Loop
Learning Objectives
By the end of this section, you will be able to:

• Explain how the Biot-Savart law is used to determine the magnetic field due to a current in a loop of wire at
a point along a line perpendicular to the plane of the loop.

• Determine the magnetic field of an arc of current.

The circular loop of Figure 12.11 has a radius R, carries a current I, and lies in the xz-plane. What is the
magnetic field due to the current at an arbitrary point P along the axis of the loop?
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Figure 12.11 Determining the magnetic field at point P along the axis of a current-carrying loop of wire.

We can use the Biot-Savart law to find the magnetic field due to a current. We first consider arbitrary segments
on opposite sides of the loop to qualitatively show by the vector results that the net magnetic field direction is
along the central axis from the loop. From there, we can use the Biot-Savart law to derive the expression for
magnetic field.

Let P be a distance y from the center of the loop. From the right-hand rule, the magnetic field at P, produced
by the current element is directed at an angle above the y-axis as shown. Since is parallel along the
x-axis and is in the yz-plane, the two vectors are perpendicular, so we have

where we have used

Now consider the magnetic field due to the current element which is directly opposite on the

loop. The magnitude of is also given by Equation 12.13, but it is directed at an angle below the y-axis. The

components of and perpendicular to the y-axis therefore cancel, and in calculating the net magnetic
field, only the components along the y-axis need to be considered. The components perpendicular to the axis
of the loop sum to zero in pairs. Hence at point P:

For all elements on the wire, y, R, and are constant and are related by

Now from Equation 12.14, the magnetic field at P is

12.13
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where we have used As discussed in the previous chapter, the closed current loop is a magnetic

dipole of moment For this example, and so the magnetic field at P can also be
written as

By setting in Equation 12.16, we obtain the magnetic field at the center of the loop:

This equation becomes for a flat coil of n loops per length. It can also be expressed as

If we consider in Equation 12.16, the expression reduces to an expression known as the magnetic field
from a dipole:

The calculation of the magnetic field due to the circular current loop at points off-axis requires rather complex
mathematics, so we’ll just look at the results. The magnetic field lines are shaped as shown in Figure 12.12.
Notice that one field line follows the axis of the loop. This is the field line we just found. Also, very close to the
wire, the field lines are almost circular, like the lines of a long straight wire.

Figure 12.12 Sketch of the magnetic field lines of a circular current loop.

EXAMPLE 12.5

Magnetic Field between Two Loops
Two loops of wire carry the same current of 10 mA, but flow in opposite directions as seen in Figure 12.13. One
loop is measured to have a radius of while the other loop has a radius of The distance
from the first loop to the point where the magnetic field is measured is 0.25 m, and the distance from that
point to the second loop is 0.75 m. What is the magnitude of the net magnetic field at point P?
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Figure 12.13 Two loops of different radii have the same current but flowing in opposite directions. The magnetic field at point P is

measured to be zero.

Strategy
The magnetic field at point P has been determined in Equation 12.15. Since the currents are flowing in
opposite directions, the net magnetic field is the difference between the two fields generated by the coils. Using
the given quantities in the problem, the net magnetic field is then calculated.

Solution
Solving for the net magnetic field using Equation 12.15 and the given quantities in the problem yields

Significance
Helmholtz coils typically have loops with equal radii with current flowing in the same direction to have a
strong uniform field at the midpoint between the loops. A similar application of the magnetic field distribution
created by Helmholtz coils is found in a magnetic bottle that can temporarily trap charged particles. See
Magnetic Forces and Fields for a discussion on this.

CHECK YOUR UNDERSTANDING 12.5

Using Example 12.5, at what distance would you have to move the first coil to have zero measurable magnetic
field at point P?

12.5 Ampère’s Law
Learning Objectives
By the end of this section, you will be able to:

• Explain how Ampère’s law relates the magnetic field produced by a current to the value of the current
• Calculate the magnetic field from a long straight wire, either thin or thick, by Ampère’s law
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A fundamental property of a static magnetic field is that, unlike an electrostatic field, it is not conservative. A
conservative vector field is one whose line integral between two end points is the same regardless of the path
chosen. Magnetic fields do not have such a property. Instead, there is a relationship between the magnetic field
and its source, electric current. It is expressed in terms of the line integral of and is known as Ampère’s law.
This law can also be derived directly from the Biot-Savart law. We now consider that derivation for the special
case of an infinite, straight wire.

Figure 12.14 shows an arbitrary plane perpendicular to an infinite, straight wire whose current I is directed
out of the page. The magnetic field lines are circles directed counterclockwise and centered on the wire. To

begin, let’s consider over the closed paths M and N. Notice that one path (M) encloses the wire,

whereas the other (N) does not. Since the field lines are circular, is the product of B and the projection of
dl onto the circle passing through If the radius of this particular circle is r, the projection is and

Figure 12.14 The current I of a long, straight wire is directed out of the page. The integral equals and 0, respectively, for paths M

and N.

With given by Equation 12.9,

For path M, which circulates around the wire, and

Path N, on the other hand, circulates through both positive (counterclockwise) and negative (clockwise) (see

Figure 12.14), and since it is closed, Thus for path N,
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The extension of this result to the general case is Ampère’s law.

To determine whether a specific current I is positive or negative, curl the fingers of your right hand in the
direction of the path of integration, as shown in Figure 12.14. If I passes through S in the same direction as
your extended thumb, I is positive; if I passes through S in the direction opposite to your extended thumb, it is
negative.

PROBLEM-SOLVING STRATEGY

Ampère’s Law
To calculate the magnetic field created from current in wire(s), use the following steps:

1. Identify the symmetry of the current in the wire(s). If there is no symmetry, use the Biot-Savart law to
determine the magnetic field.

2. Determine the direction of the magnetic field created by the wire(s) by right-hand rule 2.
3. Chose a path loop where the magnetic field is either constant or zero.
4. Calculate the current inside the loop.

5. Calculate the line integral around the closed loop.

6. Equate with and solve for

EXAMPLE 12.6

Using Ampère’s Law to Calculate the Magnetic Field Due to a Wire
Use Ampère’s law to calculate the magnetic field due to a steady current I in an infinitely long, thin, straight
wire as shown in Figure 12.15.

Ampère’s law

Over an arbitrary closed path,

where I is the total current passing through any open surface S whose perimeter is the path of integration.
Only currents inside the path of integration need be considered.

12.23

534 12 • Sources of Magnetic Fields

Access for free at openstax.org.



Figure 12.15 The possible components of the magnetic field B due to a current I, which is directed out of the page. The radial component

is zero because the angle between the magnetic field and the path is at a right angle.

Strategy
Consider an arbitrary plane perpendicular to the wire, with the current directed out of the page. The possible
magnetic field components in this plane, and are shown at arbitrary points on a circle of radius r
centered on the wire. Since the field is cylindrically symmetric, neither nor varies with the position on
this circle. Also from symmetry, the radial lines, if they exist, must be directed either all inward or all outward
from the wire. This means, however, that there must be a net magnetic flux across an arbitrary cylinder
concentric with the wire. The radial component of the magnetic field must be zero because
Therefore, we can apply Ampère’s law to the circular path as shown.

Solution

Over this path is constant and parallel to so

Thus Ampère’s law reduces to

Finally, since is the only component of we can drop the subscript and write

This agrees with the Biot-Savart calculation above.

Significance

Ampère’s law works well if you have a path to integrate over which has results that are easy to simplify.
For the infinite wire, this works easily with a path that is circular around the wire so that the magnetic field
factors out of the integration. If the path dependence looks complicated, you can always go back to the Biot-
Savart law and use that to find the magnetic field.
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EXAMPLE 12.7

Calculating the Magnetic Field of a Thick Wire with Ampère’s Law
The radius of the long, straight wire of Figure 12.16 is a, and the wire carries a current that is distributed
uniformly over its cross-section. Find the magnetic field both inside and outside the wire.

Figure 12.16 (a) A model of a current-carrying wire of radius a and current (b) A cross-section of the same wire showing the radius a

and the Ampère’s loop of radius r.

Strategy
This problem has the same geometry as Example 12.6, but the enclosed current changes as we move the
integration path from outside the wire to inside the wire, where it doesn’t capture the entire current enclosed
(see Figure 12.16).

Solution
For any circular path of radius r that is centered on the wire,

From Ampère’s law, this equals the total current passing through any surface bounded by the path of
integration.

Consider first a circular path that is inside the wire such as that shown in part (a) of Figure 12.16. We
need the current I passing through the area enclosed by the path. It’s equal to the current density J times the
area enclosed. Since the current is uniform, the current density inside the path equals the current density in
the whole wire, which is Therefore the current I passing through the area enclosed by the path is

We can consider this ratio because the current density J is constant over the area of the wire. Therefore, the
current density of a part of the wire is equal to the current density in the whole area. Using Ampère’s law, we
obtain

and the magnetic field inside the wire is

Outside the wire, the situation is identical to that of the infinite thin wire of the previous example; that is,
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The variation of B with r is shown in Figure 12.17.

Figure 12.17 Variation of the magnetic field produced by a current in a long, straight wire of radius a.

Significance
The results show that as the radial distance increases inside the thick wire, the magnetic field increases from
zero to a familiar value of the magnetic field of a thin wire. Outside the wire, the field drops off regardless of
whether it was a thick or thin wire.

This result is similar to how Gauss’s law for electrical charges behaves inside a uniform charge distribution,
except that Gauss’s law for electrical charges has a uniform volume distribution of charge, whereas Ampère’s
law here has a uniform area of current distribution. Also, the drop-off outside the thick wire is similar to how
an electric field drops off outside of a linear charge distribution, since the two cases have the same geometry
and neither case depends on the configuration of charges or currents once the loop is outside the distribution.

EXAMPLE 12.8

Using Ampère’s Law with Arbitrary Paths

Use Ampère’s law to evaluate for the current configurations and paths in Figure 12.18.
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Figure 12.18 Current configurations and paths for Example 12.8.

Strategy

Ampère’s law states that where I is the total current passing through the enclosed loop. The

quickest way to evaluate the integral is to calculate by finding the net current through the loop. Positive
currents flow with your right-hand thumb if your fingers wrap around in the direction of the loop. This will tell
us the sign of the answer.

Solution
(a) The current going downward through the loop equals the current going out of the loop, so the net current is

zero. Thus,

(b) The only current to consider in this problem is 2A because it is the only current inside the loop. The right-
hand rule shows us the current going downward through the loop is in the positive direction. Therefore, the

answer is

(c) The right-hand rule shows us the current going downward through the loop is in the positive direction.
There are of current going downward and –3 A going upward. Therefore, the total current is 9

A and

Significance
If the currents all wrapped around so that the same current went into the loop and out of the loop, the net
current would be zero and no magnetic field would be present. This is why wires are very close to each other in
an electrical cord. The currents flowing toward a device and away from a device in a wire equal zero total
current flow through an Ampère loop around these wires. Therefore, no stray magnetic fields can be present
from cords carrying current.

CHECK YOUR UNDERSTANDING 12.6

Consider using Ampère’s law to calculate the magnetic fields of a finite straight wire and of a circular loop of
wire. Why is it not useful for these calculations?
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12.6 Solenoids and Toroids
Learning Objectives
By the end of this section, you will be able to:

• Establish a relationship for how the magnetic field of a solenoid varies with distance and current by using
both the Biot-Savart law and Ampère’s law

• Establish a relationship for how the magnetic field of a toroid varies with distance and current by using
Ampère’s law

Two of the most common and useful electromagnetic devices are called solenoids and toroids. In one form or
another, they are part of numerous instruments, both large and small. In this section, we examine the
magnetic field typical of these devices.

Solenoids
A long wire wound in the form of a helical coil is known as a solenoid. Solenoids are commonly used in
experimental research requiring magnetic fields. A solenoid is generally easy to wind, and near its center, its
magnetic field is quite uniform and directly proportional to the current in the wire.

Figure 12.19 shows a solenoid consisting of N turns of wire tightly wound over a length L. A current I is flowing
along the wire of the solenoid. The number of turns per unit length is N/L; therefore, the number of turns in an
infinitesimal length dy are (N/L)dy turns. This produces a current

We first calculate the magnetic field at the point P of Figure 12.19. This point is on the central axis of the
solenoid. We are basically cutting the solenoid into thin slices that are dy thick and treating each as a current
loop. Thus, dI is the current through each slice. The magnetic field due to the current dI in dy can be found
with the help of Equation 12.15 and Equation 12.24:

where we used Equation 12.24 to replace dI. The resultant field at P is found by integrating along the entire
length of the solenoid. It’s easiest to evaluate this integral by changing the independent variable from y to
From inspection of Figure 12.19, we have:
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Figure 12.19 (a) A solenoid is a long wire wound in the shape of a helix. (b) The magnetic field at the point P on the axis of the solenoid is

the net field due to all of the current loops.

Taking the differential of both sides of this equation, we obtain

When this is substituted into the equation for we have

which is the magnetic field along the central axis of a finite solenoid.

Of special interest is the infinitely long solenoid, for which ∞ From a practical point of view, the infinite

solenoid is one whose length is much larger than its radius In this case, and Then
from Equation 12.27, the magnetic field along the central axis of an infinite solenoid is

or
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where n is the number of turns per unit length. You can find the direction of with a right-hand rule: Curl your
fingers in the direction of the current, and your thumb points along the magnetic field in the interior of the
solenoid.

We now use these properties, along with Ampère’s law, to calculate the magnitude of the magnetic field at any
location inside the infinite solenoid. Consider the closed path of Figure 12.20. Along segment 1, is uniform
and parallel to the path. Along segments 2 and 4, is perpendicular to part of the path and vanishes over the
rest of it. Therefore, segments 2 and 4 do not contribute to the line integral in Ampère’s law. Along segment 3,

because the magnetic field is zero outside the solenoid. If you consider an Ampère’s law loop outside of
the solenoid, the current flows in opposite directions on different segments of wire. Therefore, there is no
enclosed current and no magnetic field according to Ampère’s law. Thus, there is no contribution to the line
integral from segment 3. As a result, we find

Figure 12.20 The path of integration used in Ampère’s law to evaluate the magnetic field of an infinite solenoid.

The solenoid has n turns per unit length, so the current that passes through the surface enclosed by the path is
nlI. Therefore, from Ampère’s law,

and

within the solenoid. This agrees with what we found earlier for B on the central axis of the solenoid. Here,
however, the location of segment 1 is arbitrary, so we have found that this equation gives the magnetic field
everywhere inside the infinite solenoid.

When a patient undergoes a magnetic resonance imaging (MRI) scan, the person lies down on a table that is
moved into the center of a large solenoid that can generate very large magnetic fields. The solenoid is capable
of these high fields from high currents flowing through superconducting wires. The large magnetic field is
used to change the spin of protons in the patient’s body. The time it takes for the spins to align or relax (return
to original orientation) is a signature of different tissues that can be analyzed to see if the structures of the
tissues is normal (Figure 12.21).

12.28

12.29

12.30

12.6 • Solenoids and Toroids 541



Figure 12.21 In an MRI machine, a large magnetic field is generated by the cylindrical solenoid surrounding the patient. (credit: Liz West)

EXAMPLE 12.9

Magnetic Field Inside a Solenoid
A solenoid has 300 turns wound around a cylinder of diameter 1.20 cm and length 14.0 cm. If the current
through the coils is 0.410 A, what is the magnitude of the magnetic field inside and near the middle of the
solenoid?

Strategy
We are given the number of turns and the length of the solenoid so we can find the number of turns per unit
length. Therefore, the magnetic field inside and near the middle of the solenoid is given by Equation 12.30.
Outside the solenoid, the magnetic field is zero.

Solution
The number of turns per unit length is

The magnetic field produced inside the solenoid is

Significance
This solution is valid only if the length of the solenoid is reasonably large compared with its diameter. This
example is a case where this is valid.

CHECK YOUR UNDERSTANDING 12.7

What is the ratio of the magnetic field produced from using a finite formula over the infinite approximation for
an angle of (a) (b) The solenoid has 1000 turns in 50 cm with a current of 1.0 A flowing through the
coils

Toroids
A toroid is a donut-shaped coil closely wound with one continuous wire, as illustrated in part (a) of Figure
12.22. If the toroid has N windings and the current in the wire is I, what is the magnetic field both inside and
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outside the toroid?

Figure 12.22 (a) A toroid is a coil wound into a donut-shaped object. (b) A loosely wound toroid does not have cylindrical symmetry. (c) In

a tightly wound toroid, cylindrical symmetry is a very good approximation. (d) Several paths of integration for Ampère’s law.

We begin by assuming cylindrical symmetry around the axis OO’. Actually, this assumption is not precisely
correct, for as part (b) of Figure 12.22 shows, the view of the toroidal coil varies from point to point (for
example, and ) on a circular path centered around OO’. However, if the toroid is tightly wound, all
points on the circle become essentially equivalent [part (c) of Figure 12.22], and cylindrical symmetry is an
accurate approximation.

With this symmetry, the magnetic field must be tangent to and constant in magnitude along any circular path
centered on OO’. This allows us to write for each of the paths and shown in part (d) of Figure 12.22,

Ampère’s law relates this integral to the net current passing through any surface bounded by the path of
integration. For a path that is external to the toroid, either no current passes through the enclosing surface
(path ), or the current passing through the surface in one direction is exactly balanced by the current
passing through it in the opposite direction In either case, there is no net current passing through
the surface, so

and

The turns of a toroid form a helix, rather than circular loops. As a result, there is a small field external to the
coil; however, the derivation above holds if the coils were circular.

For a circular path within the toroid (path ), the current in the wire cuts the surface N times, resulting in a
net current NI through the surface. We now find with Ampère’s law,
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and

The magnetic field is directed in the counterclockwise direction for the windings shown. When the current in
the coils is reversed, the direction of the magnetic field also reverses.

The magnetic field inside a toroid is not uniform, as it varies inversely with the distance r from the axis OO’.
However, if the central radius R (the radius midway between the inner and outer radii of the toroid) is much
larger than the cross-sectional diameter of the coils r, the variation is fairly small, and the magnitude of the
magnetic field may be calculated by Equation 12.33 where

12.7 Magnetism in Matter
Learning Objectives
By the end of this section, you will be able to:

• Classify magnetic materials as paramagnetic, diamagnetic, or ferromagnetic, based on their response to a
magnetic field

• Sketch how magnetic dipoles align with the magnetic field in each type of substance
• Define hysteresis and magnetic susceptibility, which determines the type of magnetic material

Why are certain materials magnetic and others not? And why do certain substances become magnetized by a
field, whereas others are unaffected? To answer such questions, we need an understanding of magnetism on a
microscopic level.

Within an atom, every electron travels in an orbit and spins on an internal axis. Both types of motion produce
current loops and therefore magnetic dipoles. For a particular atom, the net magnetic dipole moment is the
vector sum of the magnetic dipole moments. Values of for several types of atoms are given in Table 12.1.
Notice that some atoms have a zero net dipole moment and that the magnitudes of the nonvanishing moments
are typically

Atom Magnetic Moment

H 9.27

He 0

Li 9.27

O 13.9

Na 9.27

S 13.9

Table 12.1 Magnetic Moments of Some Atoms

A handful of matter has approximately atoms and ions, each with its magnetic dipole moment. If no
external magnetic field is present, the magnetic dipoles are randomly oriented—as many are pointed up as
down, as many are pointed east as west, and so on. Consequently, the net magnetic dipole moment of the
sample is zero. However, if the sample is placed in a magnetic field, these dipoles tend to align with the field
(see Equation 12.14), and this alignment determines how the sample responds to the field. On the basis of this
response, a material is said to be either paramagnetic, ferromagnetic, or diamagnetic.

In a paramagnetic material, only a small fraction (roughly one-third) of the magnetic dipoles are aligned with

12.33
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the applied field. Since each dipole produces its own magnetic field, this alignment contributes an extra
magnetic field, which enhances the applied field. When a ferromagnetic material is placed in a magnetic
field, its magnetic dipoles also become aligned; furthermore, they become locked together so that a permanent
magnetization results, even when the field is turned off or reversed. This permanent magnetization happens in
ferromagnetic materials but not paramagnetic materials. Diamagnetic materials are composed of atoms that
have no net magnetic dipole moment. However, when a diamagnetic material is placed in a magnetic field, a
magnetic dipole moment is directed opposite to the applied field and therefore produces a magnetic field that
opposes the applied field. We now consider each type of material in greater detail.

Paramagnetic Materials
For simplicity, we assume our sample is a long, cylindrical piece that completely fills the interior of a long,
tightly wound solenoid. When there is no current in the solenoid, the magnetic dipoles in the sample are
randomly oriented and produce no net magnetic field. With a solenoid current, the magnetic field due to the
solenoid exerts a torque on the dipoles that tends to align them with the field. In competition with the aligning
torque are thermal collisions that tend to randomize the orientations of the dipoles. The relative importance of
these two competing processes can be estimated by comparing the energies involved. From Equation 12.14,
the energy difference between a magnetic dipole aligned with and against a magnetic field is If

(the value of atomic hydrogen) and B = 1.0 T, then

At a room temperature of the thermal energy per atom is

which is about 220 times greater than Clearly, energy exchanges in thermal collisions can seriously
interfere with the alignment of the magnetic dipoles. As a result, only a small fraction of the dipoles is aligned
at any instant.

The four sketches of Figure 12.23 furnish a simple model of this alignment process. In part (a), before the field
of the solenoid (not shown) containing the paramagnetic sample is applied, the magnetic dipoles are randomly
oriented and there is no net magnetic dipole moment associated with the material. With the introduction of
the field, a partial alignment of the dipoles takes place, as depicted in part (b). The component of the net
magnetic dipole moment that is perpendicular to the field vanishes. We may then represent the sample by part
(c), which shows a collection of magnetic dipoles completely aligned with the field. By treating these dipoles as
current loops, we can picture the dipole alignment as equivalent to a current around the surface of the
material, as in part (d). This fictitious surface current produces its own magnetic field, which enhances the
field of the solenoid.
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Figure 12.23 The alignment process in a paramagnetic material filling a solenoid (not shown). (a) Without an applied field, the magnetic

dipoles are randomly oriented. (b) With a field, partial alignment occurs. (c) An equivalent representation of part (b). (d) The internal

currents cancel, leaving an effective surface current that produces a magnetic field similar to that of a finite solenoid.

We can express the total magnetic field in the material as

where is the field due to the current in the solenoid and is the field due to the surface current
around the sample. Now is usually proportional to a fact we express by

where is a dimensionless quantity called the magnetic susceptibility. Values of for some paramagnetic
materials are given in Table 12.2. Since the alignment of magnetic dipoles is so weak, is very small for
paramagnetic materials. By combining Equation 12.34 and Equation 12.35, we obtain:

For a sample within an infinite solenoid, this becomes

This expression tells us that the insertion of a paramagnetic material into a solenoid increases the field by a
factor of However, since is so small, the field isn’t enhanced very much.

The quantity

is called the magnetic permeability of a material. In terms of Equation 12.37 can be written as

for the filled solenoid.

12.34

12.35

12.36

12.37

12.38

12.39
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Paramagnetic Materials Diamagnetic Materials

Aluminum Bismuth

Calcium Carbon (diamond)

Chromium Copper

Magnesium Lead

Oxygen gas (1 atm) Mercury

Oxygen liquid (90 K) Hydrogen gas (1 atm)

Tungsten Nitrogen gas (1 atm)

Air (1 atm) Water

Table 12.2 Magnetic Susceptibilities *Note: Unless otherwise specified, values given are for room
temperature.

Diamagnetic Materials
A magnetic field always induces a magnetic dipole in an atom. This induced dipole points opposite to the
applied field, so its magnetic field is also directed opposite to the applied field. In paramagnetic and
ferromagnetic materials, the induced magnetic dipole is masked by much stronger permanent magnetic
dipoles of the atoms. However, in diamagnetic materials, whose atoms have no permanent magnetic dipole
moments, the effect of the induced dipole is observable.

We can now describe the magnetic effects of diamagnetic materials with the same model developed for
paramagnetic materials. In this case, however, the fictitious surface current flows opposite to the solenoid
current, and the magnetic susceptibility is negative. Values of for some diamagnetic materials are also
given in Table 12.2.

INTERACTIVE

Water is a common diamagnetic material. Animals are mostly composed of water. Experiments have been
performed on frogs (https://openstax.org/l/21frogs) and mice (https://openstax.org/l/21mice) in diverging
magnetic fields. The water molecules are repelled from the applied magnetic field against gravity until the
animal reaches an equilibrium. The result is that the animal is levitated by the magnetic field.

Ferromagnetic Materials
Common magnets are made of a ferromagnetic material such as iron or one of its alloys. Experiments reveal
that a ferromagnetic material consists of tiny regions known as magnetic domains. Their volumes typically
range from to and they contain about to atoms. Within a domain, the magnetic
dipoles are rigidly aligned in the same direction by coupling among the atoms. This coupling, which is due to
quantum mechanical effects, is so strong that even thermal agitation at room temperature cannot break it. The
result is that each domain has a net dipole moment. Some materials have weaker coupling and are
ferromagnetic only at lower temperatures.

If the domains in a ferromagnetic sample are randomly oriented, as shown in Figure 12.24, the sample has no
net magnetic dipole moment and is said to be unmagnetized. Suppose that we fill the volume of a solenoid with
an unmagnetized ferromagnetic sample. When the magnetic field of the solenoid is turned on, the dipole
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moments of the domains rotate so that they align somewhat with the field, as depicted in Figure 12.24. In
addition, the aligned domains tend to increase in size at the expense of unaligned ones. The net effect of these
two processes is the creation of a net magnetic dipole moment for the ferromagnet that is directed along the
applied magnetic field. This net magnetic dipole moment is much larger than that of a paramagnetic sample,
and the domains, with their large numbers of atoms, do not become misaligned by thermal agitation.
Consequently, the field due to the alignment of the domains is quite large.

Figure 12.24 (a) Domains are randomly oriented in an unmagnetized ferromagnetic sample such as iron. The arrows represent the

orientations of the magnetic dipoles within the domains. (b) In an applied magnetic field, the domains align somewhat with the field. (c)

The domains of a single crystal of nickel. The white lines show the boundaries of the domains. These lines are produced by iron oxide

powder sprinkled on the crystal.

Besides iron, only four elements contain the magnetic domains needed to exhibit ferromagnetic behavior:
cobalt, nickel, gadolinium, and dysprosium. Many alloys of these elements are also ferromagnetic.
Ferromagnetic materials can be described using Equation 12.34 through Equation 12.39, the paramagnetic
equations. However, the value of for ferromagnetic material is usually on the order of to and it also
depends on the history of the magnetic field to which the material has been subject. A typical plot of B (the
total field in the material) versus (the applied field) for an initially unmagnetized piece of iron is shown in
Figure 12.25. Some sample numbers are (1) for and

; (2) for and

Figure 12.25 (a) The magnetic field B in annealed iron as a function of the applied field

When is varied over a range of positive and negative values, B is found to behave as shown in Figure 12.26.
Note that the same (corresponding to the same current in the solenoid) can produce different values of B in
the material. The magnetic field B produced in a ferromagnetic material by an applied field depends on the
magnetic history of the material. This effect is called hysteresis, and the curve of Figure 12.26 is called a
hysteresis loop. Notice that B does not disappear when (i.e., when the current in the solenoid is turned
off). The iron stays magnetized, which means that it has become a permanent magnet.
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Figure 12.26 A typical hysteresis loop for a ferromagnet. When the material is first magnetized, it follows a curve from 0 to a. When is

reversed, it takes the path shown from a to b. If is reversed again, the material follows the curve from b to a.

Like the paramagnetic sample of Figure 12.23, the partial alignment of the domains in a ferromagnet is
equivalent to a current flowing around the surface. A bar magnet can therefore be pictured as a tightly wound
solenoid with a large current circulating through its coils (the surface current). You can see in Figure 12.27 that
this model fits quite well. The fields of the bar magnet and the finite solenoid are strikingly similar. The figure
also shows how the poles of the bar magnet are identified. To form closed loops, the field lines outside the
magnet leave the north (N) pole and enter the south (S) pole, whereas inside the magnet, they leave S and enter
N.

Figure 12.27 Comparison of the magnetic fields of a finite solenoid and a bar magnet.

Ferromagnetic materials are found in computer hard disk drives and permanent data storage devices (Figure
12.28). A material used in your hard disk drives is called a spin valve, which has alternating layers of
ferromagnetic (aligning with the external magnetic field) and antiferromagnetic (each atom is aligned opposite
to the next) metals. It was observed that a significant change in resistance was discovered based on whether an
applied magnetic field was on the spin valve or not. This large change in resistance creates a quick and
consistent way for recording or reading information by an applied current.
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Figure 12.28 The inside of a hard disk drive. The silver disk contains the information, whereas the thin stylus on top of the disk reads and

writes information to the disk.

EXAMPLE 12.10

Iron Core in a Coil
A long coil is tightly wound around an iron cylinder whose magnetization curve is shown in Figure 12.25. (a) If

turns per centimeter, what is the applied field when (b) What is the net magnetic field
for this same current? (c) What is the magnetic susceptibility in this case?

Strategy
(a) The magnetic field of a solenoid is calculated using Equation 12.28. (b) The graph is read to determine the
net magnetic field for this same current. (c) The magnetic susceptibility is calculated using Equation 12.37.

Solution

a. The applied field of the coil is

b. From inspection of the magnetization curve of Figure 12.25, we see that, for this value of
Notice that the internal field of the aligned atoms is much larger than the externally applied field.

c. The magnetic susceptibility is calculated to be

Significance
Ferromagnetic materials have susceptibilities in the range of which compares well to our results here.
Paramagnetic materials have fractional susceptibilities, so their applied field of the coil is much greater than
the magnetic field generated by the material.

CHECK YOUR UNDERSTANDING 12.8

Repeat the calculations from the previous example for
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CHAPTER REVIEW
Key Terms
Ampère’s law physical law that states that the line

integral of the magnetic field around an electric
current is proportional to the current

Biot-Savart law an equation giving the magnetic
field at a point produced by a current-carrying
wire

diamagnetic materials their magnetic dipoles
align oppositely to an applied magnetic field;
when the field is removed, the material is
unmagnetized

ferromagnetic materials contain groups of
dipoles, called domains, that align with the
applied magnetic field; when this field is
removed, the material is still magnetized

hysteresis property of ferromagnets that is seen
when a material’s magnetic field is examined
versus the applied magnetic field; a loop is
created resulting from sweeping the applied field
forward and reverse

magnetic domains groups of magnetic dipoles that

are all aligned in the same direction and are
coupled together quantum mechanically

magnetic susceptibility ratio of the magnetic field
in the material over the applied field at that time;
positive susceptibilities are either paramagnetic
or ferromagnetic (aligned with the field) and
negative susceptibilities are diamagnetic (aligned
oppositely with the field)

paramagnetic materials their magnetic dipoles
align partially in the same direction as the
applied magnetic field; when this field is
removed, the material is unmagnetized

permeability of free space measure of the
ability of a material, in this case free space, to
support a magnetic field

solenoid thin wire wound into a coil that produces
a magnetic field when an electric current is
passed through it

toroid donut-shaped coil closely wound around
that is one continuous wire

Key Equations

Permeability of free space

Contribution to magnetic field
from a current element

Biot–Savart law

Magnetic field due to a
long straight wire

Force between two parallel currents

Magnetic field of a current loop

Ampère’s law

Magnetic field strength
inside a solenoid

Magnetic field strength inside a toroid
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Magnetic permeability

Magnetic field of a solenoid
filled with paramagnetic material

Summary
12.1 The Biot-Savart Law

• The magnetic field created by a current-
carrying wire is found by the Biot-Savart law.

• The current element produces a magnetic
field a distance r away.

12.2 Magnetic Field Due to a Thin Straight
Wire

• The strength of the magnetic field created by
current in a long straight wire is given by

(long straight wire) where I is the
current, R is the shortest distance to the wire,
and the constant is the
permeability of free space.

• The direction of the magnetic field created by a
long straight wire is given by right-hand rule 2
(RHR-2): Point the thumb of the right hand in
the direction of current, and the fingers curl in
the direction of the magnetic field loops created
by it.

12.3 Magnetic Force between Two Parallel
Currents

• The force between two parallel currents and
separated by a distance r, has a magnitude

per unit length given by
• The force is attractive if the currents are in the

same direction, repulsive if they are in opposite
directions.

12.4 Magnetic Field of a Current Loop

• The magnetic field strength at the center of a
circular loop is given by

where R is the
radius of the loop. RHR-2 gives the direction of
the field about the loop.

12.5 Ampère’s Law

• The magnetic field created by current following
any path is the sum (or integral) of the fields due
to segments along the path (magnitude and

direction as for a straight wire), resulting in a
general relationship between current and field
known as Ampère’s law.

• Ampère’s law can be used to determine the
magnetic field from a thin wire or thick wire by a
geometrically convenient path of integration.
The results are consistent with the Biot-Savart
law.

12.6 Solenoids and Toroids

• The magnetic field strength inside a solenoid is

where n is the number of loops per unit length
of the solenoid. The field inside is very uniform
in magnitude and direction.

• The magnetic field strength inside a toroid is

where N is the number of windings. The field
inside a toroid is not uniform and varies with
the distance as 1/r.

12.7 Magnetism in Matter

• Materials are classified as paramagnetic,
diamagnetic, or ferromagnetic, depending on
how they behave in an applied magnetic field.

• Paramagnetic materials have partial alignment
of their magnetic dipoles with an applied
magnetic field. This is a positive magnetic
susceptibility. Only a surface current remains,
creating a solenoid-like magnetic field.

• Diamagnetic materials exhibit induced dipoles
opposite to an applied magnetic field. This is a
negative magnetic susceptibility.

• Ferromagnetic materials have groups of dipoles,
called domains, which align with the applied
magnetic field. However, when the field is
removed, the ferromagnetic material remains
magnetized, unlike paramagnetic materials.
This magnetization of the material versus the
applied field effect is called hysteresis.
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Conceptual Questions
12.1 The Biot-Savart Law

1. For calculating magnetic fields, what are the
advantages and disadvantages of the Biot-Savart
law?

2. Describe the magnetic field due to the current in
two wires connected to the two terminals of a
source of emf and twisted tightly around each
other.

3. How can you decide if a wire is infinite?
4. Identical currents are carried in two circular

loops; however, one loop has twice the diameter
as the other loop. Compare the magnetic fields
created by the loops at the center of each loop.

12.2 Magnetic Field Due to a Thin Straight
Wire

5. How would you orient two long, straight, current-
carrying wires so that there is no net magnetic
force between them? (Hint: What orientation
would lead to one wire not experiencing a
magnetic field from the other?)

12.3 Magnetic Force between Two Parallel
Currents

6. Compare and contrast the electric field of an
infinite line of charge and the magnetic field of
an infinite line of current.

7. Is constant in magnitude for points that lie on a
magnetic field line?

12.4 Magnetic Field of a Current Loop

8. Is the magnetic field of a current loop uniform?
9. What happens to the length of a suspended

spring when a current passes through it?
10. Two concentric circular wires with different

diameters carry currents in the same direction.
Describe the force on the inner wire.

12.5 Ampère’s Law

11. Is Ampère’s law valid for all closed paths? Why
isn’t it normally useful for calculating a
magnetic field?

12.6 Solenoids and Toroids

12. Is the magnetic field inside a toroid completely
uniform? Almost uniform?

13. Explain why inside a long, hollow copper
pipe that is carrying an electric current parallel
to the axis. Is outside the pipe?

12.7 Magnetism in Matter

14. A diamagnetic material is brought close to a
permanent magnet. What happens to the
material?

15. If you cut a bar magnet into two pieces, will you
end up with one magnet with an isolated north
pole and another magnet with an isolated south
pole? Explain your answer.

Problems
12.1 The Biot-Savart Law

16. A 10-A current flows through the wire shown. What
is the magnitude of the magnetic field due to a
0.5-mm segment of wire as measured at (a) point A
and (b) point B?

17. Ten amps flow through a square loop where
each side is 20 cm in length. At each corner of
the loop is a 0.01-cm segment that connects the
longer wires as shown. Calculate the magnitude
of the magnetic field at the center of the loop.

18. What is the magnetic field at P due to the
current I in the wire shown?
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19. The accompanying figure shows a current loop
consisting of two concentric circular arcs and
two perpendicular radial lines. Determine the
magnetic field at point P.

20. Find the magnetic field at the center C of the
rectangular loop of wire shown in the
accompanying figure.

21. Two long wires, one of which has a semicircular
bend of radius R, are positioned as shown in the
accompanying figure. If both wires carry a
current I, how far apart must their parallel
sections be so that the net magnetic field at P is
zero? Does the current in the straight wire flow
up or down?

12.2 Magnetic Field Due to a Thin Straight
Wire

22. A typical current in a lightning bolt is A.
Estimate the magnetic field 1 m from the bolt.

23. The magnitude of the magnetic field 50 cm from
a long, thin, straight wire is What is the
current through the long wire?

24. A transmission line strung 7.0 m above the
ground carries a current of 500 A. What is the
magnetic field on the ground directly below the
wire? Compare your answer with the magnetic
field of Earth.

25. A long, straight, horizontal wire carries a left-to-
right current of 20 A. If the wire is placed in a
uniform magnetic field of magnitude

that is directed vertically
downward, what is the resultant magnitude of
the magnetic field 20 cm above the wire? 20 cm
below the wire?

26. The two long, parallel wires shown in the
accompanying figure carry currents in the same
direction. If and what is
the magnetic field at point P?

27. The accompanying figure shows two long, straight,
horizontal wires that are parallel and a distance 2a
apart. If both wires carry current I in the same
direction, (a) what is the magnetic field at (b)
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28. Repeat the calculations of the preceding
problem with the direction of the current in the
lower wire reversed.

29. Consider the area between the wires of the
preceding problem. At what distance from the
top wire is the net magnetic field a minimum?
Assume that the currents are equal and flow in
opposite directions.

12.3 Magnetic Force between Two Parallel
Currents

30. Two long, straight wires are parallel and 25 cm
apart. (a) If each wire carries a current of 50 A in
the same direction, what is the magnetic force
per meter exerted on each wire? (b) Does the
force pull the wires together or push them
apart? (c) What happens if the currents flow in
opposite directions?

31. Two long, straight wires are parallel and 10 cm
apart. One carries a current of 2.0 A, the other a
current of 5.0 A. (a) If the two currents flow in
opposite directions, what is the magnitude and
direction of the force per unit length of one wire
on the other? (b) What is the magnitude and
direction of the force per unit length if the
currents flow in the same direction?

32. Two long, parallel wires are hung by cords of
length 5.0 cm, as shown in the accompanying
figure. Each wire has a mass per unit length of 30
g/m, and they carry the same current in opposite
directions. What is the current if the cords hang at

with respect to the vertical?

33. A circuit with current I has two long parallel
wire sections that carry current in opposite
directions. Find magnetic field at a point P near
these wires that is a distance a from one wire
and b from the other wire as shown in the
figure.

34. The infinite, straight wire shown in the
accompanying figure carries a current The
rectangular loop, whose long sides are parallel
to the wire, carries a current What are the
magnitude and direction of the force on the
rectangular loop due to the magnetic field of the
wire?

12.4 Magnetic Field of a Current Loop

35. When the current through a circular loop is 6.0
A, the magnetic field at its center is

What is the radius of the loop?
36. How many turns must be wound on a flat,

circular coil of radius 20 cm in order to produce
a magnetic field of magnitude at
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the center of the coil when the current through
it is 0.85 A?

37. A flat, circular loop has 20 turns. The radius of
the loop is 10.0 cm and the current through the
wire is 0.50 A. Determine the magnitude of the
magnetic field at the center of the loop.

38. A circular loop of radius R carries a current I. At
what distance along the axis of the loop is the
magnetic field one-half its value at the center of
the loop?

39. Two flat, circular coils, each with a radius R and
wound with N turns, are mounted along the
same axis so that they are parallel a distance d
apart. What is the magnetic field at the
midpoint of the common axis if a current I flows
in the same direction through each coil?

40. For the coils in the preceding problem, what is
the magnetic field at the center of either coil?

12.5 Ampère’s Law

41. A current I flows around the rectangular loop
shown in the accompanying figure. Evaluate

for the paths A, B, C, and D.

42. Evaluate for each of the cases shown in the

accompanying figure.
43. The coil whose lengthwise cross section is shown in

the accompanying figure carries a current I and has
N evenly spaced turns distributed along the length

l. Evaluate for the paths indicated.

44. A superconducting wire of diameter 0.25 cm
carries a current of 1000 A. What is the
magnetic field just outside the wire?

45. A long, straight wire of radius R carries a
current I that is distributed uniformly over the
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cross-section of the wire. At what distance from
the axis of the wire is the magnitude of the
magnetic field a maximum?

46. The accompanying figure shows a cross-section
of a long, hollow, cylindrical conductor of inner
radius and outer radius

A 50-A current distributed
uniformly over the cross-section flows into the
page. Calculate the magnetic field at

47. A long, solid, cylindrical conductor of radius 3.0
cm carries a current of 50 A distributed
uniformly over its cross-section. Plot the
magnetic field as a function of the radial
distance r from the center of the conductor.

48. A portion of a long, cylindrical coaxial cable is
shown in the accompanying figure. A current I
flows down the center conductor, and this current
is returned in the outer conductor. Determine the
magnetic field in the regions (a) (b)

(c) and (d)
Assume that the current is distributed uniformly
over the cross sections of the two parts of the cable.

12.6 Solenoids and Toroids

49. A solenoid is wound with 2000 turns per meter.

When the current is 5.2 A, what is the magnetic
field within the solenoid?

50. A solenoid has 12 turns per centimeter. What
current will produce a magnetic field of

within the solenoid?
51. If a current is 2.0 A, how many turns per

centimeter must be wound on a solenoid in
order to produce a magnetic field of

within it?
52. A solenoid is 40 cm long, has a diameter of 3.0

cm, and is wound with 500 turns. If the current
through the windings is 4.0 A, what is the
magnetic field at a point on the axis of the
solenoid that is (a) at the center of the solenoid,
(b) 10.0 cm from one end of the solenoid, and (c)
5.0 cm from one end of the solenoid? (d)
Compare these answers with the infinite-
solenoid case.
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53. Determine the magnetic field on the central axis
at the opening of a semi-infinite solenoid. (That
is, take the opening to be at and the other
end to be at

∞ )

54. By how much is the approximation in
error at the center of a solenoid that is 15.0 cm
long, has a diameter of 4.0 cm, is wrapped with

n turns per meter, and carries a current I?
55. A solenoid with 25 turns per centimeter carries

a current I. An electron moves within the
solenoid in a circle that has a radius of 2.0 cm
and is perpendicular to the axis of the solenoid.
If the speed of the electron is
what is I?

56. A toroid has 250 turns of wire and carries a
current of 20 A. Its inner and outer radii are 8.0
and 9.0 cm. What are the values of its magnetic
field at and

57. A toroid with a square cross section 3.0 cm
3.0 cm has an inner radius of 25.0 cm. It is
wound with 500 turns of wire, and it carries a
current of 2.0 A. What is the strength of the
magnetic field at the center of the square cross
section?

12.7 Magnetism in Matter

58. The magnetic field in the core of an air-filled
solenoid is 1.50 T. By how much will this
magnetic field decrease if the air is pumped out
of the core while the current is held constant?

59. A solenoid has a ferromagnetic core, n = 1000
turns per meter, and I = 5.0 A. If B inside the
solenoid is 2.0 T, what is for the core material?

60. A 20-A current flows through a solenoid with
2000 turns per meter. What is the magnetic field
inside the solenoid if its core is (a) a vacuum
and (b) filled with liquid oxygen at 90 K?

61. The magnetic dipole moment of the iron atom is
about (a) Calculate the
maximum magnetic dipole moment of a
domain consisting of iron atoms. (b) What
current would have to flow through a single
circular loop of wire of diameter 1.0 cm to
produce this magnetic dipole moment?

62. Suppose you wish to produce a 1.2-T magnetic
field in a toroid with an iron core for which

The toroid has a mean radius of
15 cm and is wound with 500 turns. What
current is required?

63. A current of 1.5 A flows through the windings of
a large, thin toroid with 200 turns per meter and
a radius of 1 meter. If the toroid is filled with
iron for which what is the
magnetic field within it?

64. A solenoid with an iron core is 25 cm long and is
wrapped with 100 turns of wire. When the
current through the solenoid is 10 A, the
magnetic field inside it is 2.0 T. For this current,
what is the permeability of the iron? If the
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current is turned off and then restored to 10 A,
will the magnetic field necessarily return to 2.0

T?

Additional Problems
65. Three long, straight, parallel wires, all carrying 20

A, are positioned as shown in the accompanying
figure. What is the magnitude of the magnetic field
at the point P?

66. A current I flows around a wire bent into the
shape of a square of side a. What is the
magnetic field at the point P that is a distance z
above the center of the square (see the
accompanying figure)?

67. The accompanying figure shows a long, straight wire
carrying a current of 10 A. What is the magnetic
force on an electron at the instant it is 20 cm from
the wire, traveling parallel to the wire with a speed of

Describe qualitatively the
subsequent motion of the electron.

68. Current flows along a thin, infinite sheet as
shown in the accompanying figure. The current
per unit length along the sheet is J in amperes
per meter. (a) Use the Biot-Savart law to show
that on either side of the sheet. What
is the direction of on each side? (b) Now use
Ampère’s law to calculate the field.

69. (a) Use the result of the previous problem to
calculate the magnetic field between, above, and
below the pair of infinite sheets shown in the
accompanying figure. (b) Repeat your
calculations if the direction of the current in the
lower sheet is reversed.

70. We often assume that the magnetic field is
uniform in a region and zero everywhere else.
Show that in reality it is impossible for a
magnetic field to drop abruptly to zero, as
illustrated in the accompanying figure. (Hint:
Apply Ampère’s law over the path shown.)
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71. How is the fractional change in the strength of
the magnetic field across the face of the toroid
related to the fractional change in the radial
distance from the axis of the toroid?

72. Show that the expression for the magnetic field
of a toroid reduces to that for the field of an
infinite solenoid in the limit that the central
radius goes to infinity.

73. A toroid with an inner radius of 20 cm and an
outer radius of 22 cm is tightly wound with one
layer of wire that has a diameter of 0.25 mm. (a)
How many turns are there on the toroid? (b) If
the current through the toroid windings is 2.0 A,
what is the strength of the magnetic field at the
center of the toroid?

74. A wire element has
where A and dv are the cross-sectional area and
volume of the element, respectively. Use this,
the Biot-Savart law, and to show that
the magnetic field of a moving point charge q is
given by:

75. A reasonably uniform magnetic field over a
limited region of space can be produced with
the Helmholtz coil, which consists of two
parallel coils centered on the same axis. The
coils are connected so that they carry the same
current I. Each coil has N turns and radius R,
which is also the distance between the coils. (a)
Find the magnetic field at any point on the
z-axis shown in the accompanying figure. (b)
Show that dB/dz and are both zero at z
= 0. (These vanishing derivatives demonstrate
that the magnetic field varies only slightly near
z = 0.)

76. A charge of is distributed uniformly
around a thin ring of insulating material. The
ring has a radius of 0.20 m and rotates at

around the axis that passes
through its center and is perpendicular to the
plane of the ring. What is the magnetic field at
the center of the ring?

77. A thin, nonconducting disk of radius R is free to
rotate around the axis that passes through its
center and is perpendicular to the face of the
disk. The disk is charged uniformly with a total
charge q. If the disk rotates at a constant
angular velocity what is the magnetic field at
its center?

78. Consider the disk in the previous problem.
Calculate the magnetic field at a point on its
central axis that is a distance y above the disk.

79. Consider the axial magnetic field
of the circular

current loop shown below. (a) Evaluate

Also show that

∞
(b) Can you deduce this

limit without evaluating the integral? (Hint: See
the accompanying figure.)

80. The current density in the long, cylindrical wire
shown in the accompanying figure varies with
distance r from the center of the wire according
to where c is a constant. (a) What is the
current through the wire? (b) What is the
magnetic field produced by this current for

For
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81. A long, straight, cylindrical conductor contains
a cylindrical cavity whose axis is displaced by a
from the axis of the conductor, as shown in the
accompanying figure. The current density in the
conductor is given by where is a
constant and is along the axis of the
conductor. Calculate the magnetic field at an
arbitrary point P in the cavity by superimposing
the field of a solid cylindrical conductor with
radius and current density onto the field of
a solid cylindrical conductor with radius and
current density Then use the fact that the
appropriate azimuthal unit vectors can be
expressed as and to
show that everywhere inside the cavity the
magnetic field is given by the constant

where and
is the position of P relative to the

center of the conductor and is the
position of P relative to the center of the cavity.

82. Between the two ends of a horseshoe magnet
the field is uniform as shown in the diagram. As
you move out to outside edges, the field bends.
Show by Ampère’s law that the field must bend
and thereby the field weakens due to these
bends.

83. Show that the magnetic field of a thin wire and
that of a current loop are zero if you are
infinitely far away.

84. An Ampère loop is chosen as shown by dashed
lines for a parallel constant magnetic field as
shown by solid arrows. Calculate for each

side of the loop then find the entire

Can you think of an Ampère loop that would
make the problem easier? Do those results
match these?

85. A very long, thick cylindrical wire of radius R
carries a current density J that varies across its
cross-section. The magnitude of the current
density at a point a distance r from the center of
the wire is given by where is a
constant. Find the magnetic field (a) at a point
outside the wire and (b) at a point inside the
wire. Write your answer in terms of the net
current I through the wire.

86. A very long, cylindrical wire of radius a has a
circular hole of radius b in it at a distance d
from the center. The wire carries a uniform
current of magnitude I through it. The direction
of the current in the figure is out of the paper.
Find the magnetic field (a) at a point at the edge
of the hole closest to the center of the thick wire,
(b) at an arbitrary point inside the hole, and (c)
at an arbitrary point outside the wire. (Hint:
Think of the hole as a sum of two wires carrying
current in the opposite directions.)
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87. Magnetic field inside a torus. Consider a torus of
rectangular cross-section with inner radius a
and outer radius b. N turns of an insulated thin
wire are wound evenly on the torus tightly all
around the torus and connected to a battery
producing a steady current I in the wire.
Assume that the current on the top and bottom
surfaces in the figure is radial, and the current
on the inner and outer radii surfaces is vertical.
Find the magnetic field inside the torus as a
function of radial distance r from the axis.

88. Two long coaxial copper tubes, each of length L,
are connected to a battery of voltage V. The
inner tube has inner radius a and outer radius
b, and the outer tube has inner radius c and
outer radius d. The tubes are then disconnected
from the battery and rotated in the same
direction at angular speed of radians per
second about their common axis. Find the
magnetic field (a) at a point inside the space
enclosed by the inner tube and (b) at a
point between the tubes and (c) at a
point outside the tubes (Hint: Think of
copper tubes as a capacitor and find the charge
density based on the voltage applied,

Challenge Problems
89. The accompanying figure shows a flat, infinitely

long sheet of width a that carries a current I
uniformly distributed across it. Find the magnetic
field at the point P, which is in the plane of the
sheet and at a distance x from one edge. Test your
result for the limit

90. A hypothetical current flowing in the z-direction
creates the field in
the rectangular region of the xy-plane shown in
the accompanying figure. Use Ampère’s law to
find the current through the rectangle.
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91. A nonconducting hard rubber circular disk of
radius R is painted with a uniform surface
charge density It is rotated about its axis with
angular speed (a) Find the magnetic field
produced at a point on the axis a distance h
meters from the center of the disk. (b) Find the
numerical value of magnitude of the magnetic
field when
and and compare it with the
magnitude of magnetic field of Earth, which is
about 1/2 Gauss.
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INTRODUCTION

CHAPTER 13
Electromagnetic Induction

13.1 Faraday’s Law

13.2 Lenz's Law

13.3 Motional Emf

13.4 Induced Electric Fields

13.5 Eddy Currents

13.6 Electric Generators and Back Emf

13.7 Applications of Electromagnetic Induction

We have been considering electric fields created by fixed charge distributions and magnetic
fields produced by constant currents, but electromagnetic phenomena are not restricted to these stationary
situations. Most of the interesting applications of electromagnetism are, in fact, time-dependent. To
investigate some of these applications, we now remove the time-independent assumption that we have been
making and allow the fields to vary with time. In this and the next several chapters, you will see a wonderful

Figure 13.1 The black strip found on the back of credit cards and driver’s licenses is a very thin layer of magnetic
material with information stored on it. Reading and writing the information on the credit card is done with a swiping
motion. The physical reason why this is necessary is called electromagnetic induction and is discussed in this
chapter. (credit: modification of work by Jane Whitney)

Chapter Outline



symmetry in the behavior exhibited by time-varying electric and magnetic fields. Mathematically, this
symmetry is expressed by an additional term in Ampère’s law and by another key equation of
electromagnetism called Faraday’s law. We also discuss how moving a wire through a magnetic field produces
an emf or voltage. Lastly, we describe applications of these principles, such as the card reader shown above.

13.1 Faraday’s Law
Learning Objectives
By the end of this section, you will be able to:

• Determine the magnetic flux through a surface, knowing the strength of the magnetic field, the surface area,
and the angle between the normal to the surface and the magnetic field

• Use Faraday’s law to determine the magnitude of induced emf in a closed loop due to changing magnetic
flux through the loop

The first productive experiments concerning the effects of time-varying magnetic fields were performed by
Michael Faraday in 1831. One of his early experiments is represented in Figure 13.2. An emf is induced when
the magnetic field in the coil is changed by pushing a bar magnet into or out of the coil. Emfs of opposite signs
are produced by motion in opposite directions, and the directions of emfs are also reversed by reversing poles.
The same results are produced if the coil is moved rather than the magnet—it is the relative motion that is
important. The faster the motion, the greater the emf, and there is no emf when the magnet is stationary
relative to the coil.

Figure 13.2 Movement of a magnet relative to a coil produces emfs as shown (a–d). The same emfs are produced if the coil is moved

relative to the magnet. This short-lived emf is only present during the motion. The greater the speed, the greater the magnitude of the emf,

and the emf is zero when there is no motion, as shown in (e).

Faraday also discovered that a similar effect can be produced using two circuits—a changing current in one
circuit induces a current in a second, nearby circuit. For example, when the switch is closed in circuit 1 of
Figure 13.3(a), the ammeter needle of circuit 2 momentarily deflects, indicating that a short-lived current
surge has been induced in that circuit. The ammeter needle quickly returns to its original position, where it
remains. However, if the switch of circuit 1 is now suddenly opened, another short-lived current surge in the
direction opposite from before is observed in circuit 2.
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Figure 13.3 (a) Closing the switch of circuit 1 produces a short-lived current surge in circuit 2. (b) If the switch remains closed, no current

is observed in circuit 2. (c) Opening the switch again produces a short-lived current in circuit 2 but in the opposite direction from before.

Faraday realized that in both experiments, a current flowed in the circuit containing the ammeter only when
the magnetic field in the region occupied by that circuit was changing. As the magnet of the figure was moved,
the strength of its magnetic field at the loop changed; and when the current in circuit 1 was turned on or off,
the strength of its magnetic field at circuit 2 changed. Faraday was eventually able to interpret these and all
other experiments involving magnetic fields that vary with time in terms of the following law:

The magnetic flux is a measurement of the amount of magnetic field lines through a given surface area, as
seen in Figure 13.4. This definition is similar to the electric flux studied earlier. This means that if we have

then the induced emf or the voltage generated by a conductor or coil moving in a magnetic field is

The negative sign describes the direction in which the induced emf drives current around a circuit. However,
that direction is most easily determined with a rule known as Lenz’s law, which we will discuss shortly.

Figure 13.4 The magnetic flux is the amount of magnetic field lines cutting through a surface area A defined by the unit area vector If

Faraday’s Law

The emf induced is the negative change in the magnetic flux per unit time. Any change in the
magnetic field or change in orientation of the area of the coil with respect to the magnetic field induces a
voltage (emf).

13.1

13.2
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the angle between the unit area and magnetic field vector are parallel or antiparallel, as shown in the diagram, the magnetic flux is the

highest possible value given the values of area and magnetic field.

Part (a) of Figure 13.5 depicts a circuit and an arbitrary surface S that it bounds. Notice that S is an open
surface. It can be shown that any open surface bounded by the circuit in question can be used to evaluate
For example, is the same for the various surfaces of part (b) of the figure.

Figure 13.5 (a) A circuit bounding an arbitrary open surface S. The planar area bounded by the circuit is not part of S. (b) Three arbitrary

open surfaces bounded by the same circuit. The value of is the same for all these surfaces.

The SI unit for magnetic flux is the weber (Wb),

Occasionally, the magnetic field unit is expressed as webers per square meter ( ) instead of teslas, based
on this definition. In many practical applications, the circuit of interest consists of a number N of tightly wound
turns (see Figure 13.6). Each turn experiences the same magnetic flux. Therefore, the net magnetic flux
through the circuits is N times the flux through one turn, and Faraday’s law is written as

EXAMPLE 13.1

A Square Coil in a Changing Magnetic Field
The square coil of Figure 13.6 has sides long and is tightly wound with turns of wire. The
resistance of the coil is The coil is placed in a spatially uniform magnetic field that is directed
perpendicular to the face of the coil and whose magnitude is decreasing at a rate (a) What
is the magnitude of the emf induced in the coil? (b) What is the magnitude of the current circulating through
the coil?

13.3
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Figure 13.6 A square coil with N turns of wire with uniform magnetic field directed in the downward direction, perpendicular to the coil.

Strategy
The area vector, or direction, is perpendicular to area covering the loop. We will choose this to be pointing
downward so that is parallel to and that the flux turns into multiplication of magnetic field times area. The
area of the loop is not changing in time, so it can be factored out of the time derivative, leaving the magnetic
field as the only quantity varying in time. Lastly, we can apply Ohm’s law once we know the induced emf to find
the current in the loop.

Solution

a. The flux through one turn is

so we can calculate the magnitude of the emf from Faraday’s law. The sign of the emf will be discussed in
the next section, on Lenz’s law:

b. The magnitude of the current induced in the coil is

Significance
If the area of the loop were changing in time, we would not be able to pull it out of the time derivative. Since the
loop is a closed path, the result of this current would be a small amount of heating of the wires until the
magnetic field stops changing. This may increase the area of the loop slightly as the wires are heated.

CHECK YOUR UNDERSTANDING 13.1

A closely wound coil has a radius of 4.0 cm, 50 turns, and a total resistance of . At what rate must a
magnetic field perpendicular to the face of the coil change in order to produce Joule heating in the coil at a rate
of 2.0 mW?
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13.2 Lenz's Law
Learning Objectives
By the end of this section, you will be able to:

• Use Lenz’s law to determine the direction of induced emf whenever a magnetic flux changes
• Use Faraday’s law with Lenz’s law to determine the induced emf in a coil and in a solenoid

The direction in which the induced emf drives current around a wire loop can be found through the negative
sign. However, it is usually easier to determine this direction with Lenz’s law, named in honor of its discoverer,
Heinrich Lenz (1804–1865). (Faraday also discovered this law, independently of Lenz.) We state Lenz’s law as
follows:

Lenz’s law can also be considered in terms of conservation of energy. If pushing a magnet into a coil causes
current, the energy in that current must have come from somewhere. If the induced current causes a magnetic
field opposing the increase in field of the magnet we pushed in, then the situation is clear. We pushed a magnet
against a field and did work on the system, and that showed up as current. If it were not the case that the
induced field opposes the change in the flux, the magnet would be pulled in produce a current without
anything having done work. Electric potential energy would have been created, violating the conservation of
energy.

To determine an induced emf , you first calculate the magnetic flux and then obtain The
magnitude of is given by Finally, you can apply Lenz’s law to determine the sense of . This
will be developed through examples that illustrate the following problem-solving strategy.

PROBLEM-SOLVING STRATEGY

Lenz’s Law
To use Lenz’s law to determine the directions of induced magnetic fields, currents, and emfs:

1. Make a sketch of the situation for use in visualizing and recording directions.
2. Determine the direction of the applied magnetic field
3. Determine whether its magnetic flux is increasing or decreasing.
4. Now determine the direction of the induced magnetic field The induced magnetic field tries to reinforce

a magnetic flux that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced
magnetic field adds or subtracts to the applied magnetic field, depending on the change in magnetic flux.

5. Use right-hand rule 2 (RHR-2; see Magnetic Forces and Fields) to determine the direction of the induced
current I that is responsible for the induced magnetic field

6. The direction (or polarity) of the induced emf can now drive a conventional current in this direction.

Let’s apply Lenz’s law to the system of Figure 13.7(a). We designate the “front” of the closed conducting loop as
the region containing the approaching bar magnet, and the “back” of the loop as the other region. As the north
pole of the magnet moves toward the loop, the flux through the loop due to the field of the magnet increases
because the strength of field lines directed from the front to the back of the loop is increasing. A current is
therefore induced in the loop. By Lenz’s law, the direction of the induced current must be such that its own
magnetic field is directed in a way to oppose the changing flux caused by the field of the approaching magnet.
Hence, the induced current circulates so that its magnetic field lines through the loop are directed from the
back to the front of the loop. By RHR-2, place your thumb pointing against the magnetic field lines, which is
toward the bar magnet. Your fingers wrap in a counterclockwise direction as viewed from the bar magnet.

Lenz’s Law

The direction of the induced emf drives current around a wire loop to always oppose the change in
magnetic flux that causes the emf.
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Alternatively, we can determine the direction of the induced current by treating the current loop as an
electromagnet that opposes the approach of the north pole of the bar magnet. This occurs when the induced
current flows as shown, for then the face of the loop nearer the approaching magnet is also a north pole.

Figure 13.7 The change in magnetic flux caused by the approaching magnet induces a current in the loop. (a) An approaching north pole

induces a counterclockwise current with respect to the bar magnet. (b) An approaching south pole induces a clockwise current with respect

to the bar magnet.

Part (b) of the figure shows the south pole of a magnet moving toward a conducting loop. In this case, the flux
through the loop due to the field of the magnet increases because the number of field lines directed from the
back to the front of the loop is increasing. To oppose this change, a current is induced in the loop whose field
lines through the loop are directed from the front to the back. Equivalently, we can say that the current flows in
a direction so that the face of the loop nearer the approaching magnet is a south pole, which then repels the
approaching south pole of the magnet. By RHR-2, your thumb points away from the bar magnet. Your fingers
wrap in a clockwise fashion, which is the direction of the induced current.

Another example illustrating the use of Lenz’s law is shown in Figure 13.8. When the switch is opened, the
decrease in current through the solenoid causes a decrease in magnetic flux through its coils, which induces
an emf in the solenoid. This emf must oppose the change (the termination of the current) causing it.
Consequently, the induced emf has the polarity shown and drives in the direction of the original current. This
may generate an arc across the terminals of the switch as it is opened.

Figure 13.8 (a) A solenoid connected to a source of emf. (b) Opening switch S terminates the current, which in turn induces an emf in the

solenoid. (c) A potential difference between the ends of the sharply pointed rods is produced by inducing an emf in a coil. This potential

difference is large enough to produce an arc between the sharp points.

CHECK YOUR UNDERSTANDING 13.2

Find the direction of the induced current in the wire loop shown below as the magnet enters, passes through,
and leaves the loop.
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CHECK YOUR UNDERSTANDING 13.3

Verify the directions of the induced currents in Figure 13.3.

EXAMPLE 13.2

A Circular Coil in a Changing Magnetic Field
A magnetic field is directed outward perpendicular to the plane of a circular coil of radius (Figure
13.9). The field is cylindrically symmetrical with respect to the center of the coil, and its magnitude decays

exponentially according to where B is in teslas and t is in seconds. (a) Calculate the emf
induced in the coil at the times and (b) Determine the current in the coil
at these three times if its resistance is

Figure 13.9 A circular coil in a decreasing magnetic field.

Strategy
Since the magnetic field is perpendicular to the plane of the coil and constant over each spot in the coil, the dot
product of the magnetic field and normal to the area unit vector turns into a multiplication. The magnetic
field can be pulled out of the integration, leaving the flux as the product of the magnetic field times area. We
need to take the time derivative of the exponential function to calculate the emf using Faraday’s law. Then we
use Ohm’s law to calculate the current.

Solution

a. Since is perpendicular to the plane of the coil, the magnetic flux is given by

From Faraday’s law, the magnitude of the induced emf is

Since is directed out of the page and is decreasing, the induced current must flow counterclockwise

572 13 • Electromagnetic Induction

Access for free at openstax.org.



when viewed from above so that the magnetic field it produces through the coil also points out of the page.
For all three times, the sense of ε is counterclockwise; its magnitudes are

b. From Ohm’s law, the respective currents are

and

Significance
An emf voltage is created by a changing magnetic flux over time. If we know how the magnetic field varies with
time over a constant area, we can take its time derivative to calculate the induced emf.

EXAMPLE 13.3

Changing Magnetic Field Inside a Solenoid
The current through the windings of a solenoid with turns per meter is changing at a rate

(See Sources of Magnetic Fields for a discussion of solenoids.) The solenoid is 50-cm long and
has a cross-sectional diameter of 3.0 cm. A small coil consisting of closely wound turns wrapped in a
circle of diameter 1.0 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular
to the central axis of the solenoid. Assuming that the infinite-solenoid approximation is valid at the location of
the small coil, determine the magnitude of the emf induced in the coil.

Strategy
The magnetic field in the middle of the solenoid is a uniform value of This field is producing a maximum
magnetic flux through the coil as it is directed along the length of the solenoid. Therefore, the magnetic flux
through the coil is the product of the solenoid’s magnetic field times the area of the coil. Faraday’s law involves
a time derivative of the magnetic flux. The only quantity varying in time is the current, the rest can be pulled
out of the time derivative. Lastly, we include the number of turns in the coil to determine the induced emf in
the coil.

Solution
Since the field of the solenoid is given by the flux through each turn of the small coil is

where d is the diameter of the coil. Now from Faraday’s law, the magnitude of the emf induced in the coil is

Significance
When the current is turned on in a vertical solenoid, as shown in Figure 13.10, the ring has an induced emf
from the solenoid’s changing magnetic flux that opposes the change. The result is that the ring is fired
vertically into the air.
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Figure 13.10 The jumping ring. When a current is turned on in the vertical solenoid, a current is induced in the metal ring. The stray field

produced by the solenoid causes the ring to jump off the solenoid.

INTERACTIVE

Visit this website (https://openstax.org/l/21mitjumpring) for a demonstration of the jumping ring from MIT.

13.3 Motional Emf
Learning Objectives
By the end of this section, you will be able to:

• Determine the magnitude of an induced emf in a wire moving at a constant speed through a magnetic field
• Discuss examples that use motional emf, such as a rail gun and a tethered satellite

Magnetic flux depends on three factors: the strength of the magnetic field, the area through which the field
lines pass, and the orientation of the field with the surface area. If any of these quantities varies, a
corresponding variation in magnetic flux occurs. So far, we’ve only considered flux changes due to a changing
field. Now we look at another possibility: a changing area through which the field lines pass including a change
in the orientation of the area.

Two examples of this type of flux change are represented in Figure 13.11. In part (a), the flux through the
rectangular loop increases as it moves into the magnetic field, and in part (b), the flux through the rotating coil
varies with the angle .
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Figure 13.11 (a) Magnetic flux changes as a loop moves into a magnetic field; (b) magnetic flux changes as a loop rotates in a magnetic

field.

It’s interesting to note that what we perceive as the cause of a particular flux change actually depends on the
frame of reference we choose. For example, if you are at rest relative to the moving coils of Figure 13.11, you
would see the flux vary because of a changing magnetic field—in part (a), the field moves from left to right in
your reference frame, and in part (b), the field is rotating. It is often possible to describe a flux change through
a coil that is moving in one particular reference frame in terms of a changing magnetic field in a second frame,
where the coil is stationary. However, reference-frame questions related to magnetic flux are beyond the level
of this textbook. We’ll avoid such complexities by always working in a frame at rest relative to the laboratory
and explain flux variations as due to either a changing field or a changing area.

Now let’s look at a conducting rod pulled in a circuit, changing magnetic flux. The area enclosed by the circuit
‘MNOP’ of Figure 13.12 is lx and is perpendicular to the magnetic field, so we can simplify the integration of
Equation 13.1 into a multiplication of magnetic field and area. The magnetic flux through the open surface is
therefore

Since B and l are constant and the velocity of the rod is we can now restate Faraday’s law, Equation
13.2, for the magnitude of the emf in terms of the moving conducting rod as

The current induced in the circuit is the emf divided by the resistance or

Furthermore, the direction of the induced emf satisfies Lenz’s law, as you can verify by inspection of the figure.

This calculation of motionally induced emf is not restricted to a rod moving on conducting rails. With
as the starting point, it can be shown that holds for any change in flux caused by the

motion of a conductor. We saw in Faraday’s Law that the emf induced by a time-varying magnetic field obeys
this same relationship, which is Faraday’s law. Thus Faraday’s law holds for all flux changes, whether they are
produced by a changing magnetic field, by motion, or by a combination of the two.

13.4

13.5
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Figure 13.12 A conducting rod is pushed to the right at constant velocity. The resulting change in the magnetic flux induces a current in

the circuit.

From an energy perspective, produces power and the resistor dissipates power . Since the rod is
moving at constant velocity, the applied force must balance the magnetic force on the rod when
it is carrying the induced current I. Thus the power produced is

The power dissipated is

In satisfying the principle of energy conservation, the produced and dissipated powers are equal.

This principle can be seen in the operation of a rail gun. A rail gun is an electromagnetic projectile launcher
that uses an apparatus similar to Figure 13.12 and is shown in schematic form in Figure 13.13. The conducting
rod is replaced with a projectile or weapon to be fired. So far, we’ve only heard about how motion causes an
emf. In a rail gun, the optimal shutting off/ramping down of a magnetic field decreases the flux in between the
rails, causing a current to flow in the rod (armature) that holds the projectile. This current through the
armature experiences a magnetic force and is propelled forward. Rail guns, however, are not used widely in the
military due to the high cost of production and high currents: Nearly one million amps is required to produce
enough energy for a rail gun to be an effective weapon.

Figure 13.13 Current through two rails drives a conductive projectile forward by the magnetic force created.

We can calculate a motionally induced emf with Faraday’s law even when an actual closed circuit is not
present. We simply imagine an enclosed area whose boundary includes the moving conductor, calculate ,

13.6

13.7
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and then find the emf from Faraday’s law. For example, we can let the moving rod of Figure 13.14 be one side
of the imaginary rectangular area represented by the dashed lines. The area of the rectangle is lx, so the
magnetic flux through it is Differentiating this equation, we obtain

which is identical to the potential difference between the ends of the rod that we determined earlier.

Figure 13.14 With the imaginary rectangle shown, we can use Faraday’s law to calculate the induced emf in the moving rod.

Motional emfs in Earth’s weak magnetic field are not ordinarily very large, or we would notice voltage along
metal rods, such as a screwdriver, during ordinary motions. For example, a simple calculation of the motional
emf of a 1.0-m rod moving at 3.0 m/s perpendicular to the Earth’s field gives

This small value is consistent with experience. There is a spectacular exception, however. In 1992 and 1996,
attempts were made with the space shuttle to create large motional emfs. The tethered satellite was to be let
out on a 20-km length of wire, as shown in Figure 13.15, to create a 5-kV emf by moving at orbital speed
through Earth’s field. This emf could be used to convert some of the shuttle’s kinetic and potential energy into
electrical energy if a complete circuit could be made. To complete the circuit, the stationary ionosphere was to
supply a return path through which current could flow. (The ionosphere is the rarefied and partially ionized
atmosphere at orbital altitudes. It conducts because of the ionization. The ionosphere serves the same function
as the stationary rails and connecting resistor in Figure 13.13, without which there would not be a complete
circuit.) Drag on the current in the cable due to the magnetic force does the work that reduces
the shuttle’s kinetic and potential energy, and allows it to be converted into electrical energy. Both tests were
unsuccessful. In the first, the cable hung up and could only be extended a couple of hundred meters; in the
second, the cable broke when almost fully extended. Example 13.4 indicates feasibility in principle.

13.8
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Figure 13.15 Motional emf as electrical power conversion for the space shuttle was the motivation for the tethered satellite experiment.

A 5-kV emf was predicted to be induced in the 20-km tether while moving at orbital speed in Earth’s magnetic field. The circuit is

completed by a return path through the stationary ionosphere.

EXAMPLE 13.4

Calculating the Large Motional Emf of an Object in Orbit
Calculate the motional emf induced along a 20.0-km conductor moving at an orbital speed of 7.80 km/s
perpendicular to Earth’s magnetic field.

Strategy
This is a great example of using the equation motional

Solution
Entering the given values into gives

Significance
The value obtained is greater than the 5-kV measured voltage for the shuttle experiment, since the actual
orbital motion of the tether is not perpendicular to Earth’s field. The 7.80-kV value is the maximum emf
obtained when and so

EXAMPLE 13.5

A Metal Rod Rotating in a Magnetic Field
Part (a) of Figure 13.16 shows a metal rod OS that is rotating in a horizontal plane around point O. The rod
slides along a wire that forms a circular arc PST of radius r. The system is in a constant magnetic field that is
directed out of the page. (a) If you rotate the rod at a constant angular velocity , what is the current I in the
closed loop OPSO? Assume that the resistor R furnishes all of the resistance in the closed loop. (b) Calculate the
work per unit time that you do while rotating the rod and show that it is equal to the power dissipated in the
resistor.
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Figure 13.16 (a) The end of a rotating metal rod slides along a circular wire in a horizontal plane. (b) The induced current in the rod. (c)

The magnetic force on an infinitesimal current segment.

Strategy
The magnetic flux is the magnetic field times the area of the quarter circle or When finding the emf
through Faraday’s law, all variables are constant in time but , with To calculate the work per unit
time, we know this is related to the torque times the angular velocity. The torque is calculated by knowing the
force on a rod and integrating it over the length of the rod.

Solution

a. From geometry, the area of the loop OPSO is Hence, the magnetic flux through the loop is

Differentiating with respect to time and using we have

When divided by the resistance R of the loop, this yields for the magnitude of the induced current

As increases, so does the flux through the loop due to To counteract this increase, the magnetic field
due to the induced current must be directed into the page in the region enclosed by the loop. Therefore, as
part (b) of Figure 13.16 illustrates, the current circulates clockwise.

b. You rotate the rod by exerting a torque on it. Since the rod rotates at constant angular velocity, this torque
is equal and opposite to the torque exerted on the current in the rod by the original magnetic field. The
magnetic force on the infinitesimal segment of length dx shown in part (c) of Figure 13.16 is
so the magnetic torque on this segment is

The net magnetic torque on the rod is then

The torque that you exert on the rod is equal and opposite to and the work that you do when the rod
rotates through an angle is Hence, the work per unit time that you do on the rod is

where we have substituted for I. The power dissipated in the resister is , which can be written as
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Therefore, we see that

Hence, the power dissipated in the resistor is equal to the work per unit time done in rotating the rod.

Significance
An alternative way of looking at the induced emf from Faraday’s law is to integrate in space instead of time.
The solution, however, would be the same. The motional emf is

The velocity can be written as the angular velocity times the radius and the differential length written as dr.
Therefore,

which is the same solution as before.

EXAMPLE 13.6

A Rectangular Coil Rotating in a Magnetic Field
A rectangular coil of area A and N turns is placed in a uniform magnetic field as shown in Figure
13.17. The coil is rotated about the z-axis through its center at a constant angular velocity Obtain an
expression for the induced emf in the coil.

Figure 13.17 A rectangular coil rotating in a uniform magnetic field.

Strategy

According to the diagram, the angle between the perpendicular to the surface ( ) and the magnetic field is
. The dot product of simplifies to only the component of the magnetic field, namely where the

magnetic field projects onto the unit area vector . The magnitude of the magnetic field and the area of the
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loop are fixed over time, which makes the integration simplify quickly. The induced emf is written out using
Faraday’s law.

Solution

When the coil is in a position such that its normal vector makes an angle with the magnetic field the
magnetic flux through a single turn of the coil is

From Faraday’s law, the emf induced in the coil is

The constant angular velocity is The angle represents the time evolution of the angular velocity or
. This is changes the function to time space rather than . The induced emf therefore varies sinusoidally

with time according to

where

Significance
If the magnetic field strength or area of the loop were also changing over time, these variables wouldn’t be able
to be pulled out of the time derivative to simply the solution as shown. This example is the basis for an electric
generator, as we will give a full discussion in Applications of Newton’s Law.

CHECK YOUR UNDERSTANDING 13.4

Shown below is a rod of length l that is rotated counterclockwise around the axis through O by the torque due
to Assuming that the rod is in a uniform magnetic field , what is the emf induced between the ends of the
rod when its angular velocity is ? Which end of the rod is at a higher potential?

CHECK YOUR UNDERSTANDING 13.5

A rod of length 10 cm moves at a speed of 10 m/s perpendicularly through a 1.5-T magnetic field. What is the
potential difference between the ends of the rod?
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13.4 Induced Electric Fields
Learning Objectives
By the end of this section, you will be able to:

• Connect the relationship between an induced emf from Faraday’s law to an electric field, thereby showing
that a changing magnetic flux creates an electric field

• Solve for the electric field based on a changing magnetic flux in time

The fact that emfs are induced in circuits implies that work is being done on the conduction electrons in the
wires. What can possibly be the source of this work? We know that it’s neither a battery nor a magnetic field,
for a battery does not have to be present in a circuit where current is induced, and magnetic fields never do
work on moving charges. The answer is that the source of the work is an electric field that is induced in the
wires. The work done by in moving a unit charge completely around a circuit is the induced emf ε; that is,

where represents the line integral around the circuit. Faraday’s law can be written in terms of the induced

electric field as

There is an important distinction between the electric field induced by a changing magnetic field and the
electrostatic field produced by a fixed charge distribution. Specifically, the induced electric field is
nonconservative because it does net work in moving a charge over a closed path, whereas the electrostatic
field is conservative and does no net work over a closed path. Hence, electric potential can be associated with
the electrostatic field, but not with the induced field. The following equations represent the distinction
between the two types of electric field:

Our results can be summarized by combining these equations:

EXAMPLE 13.7

Induced Electric Field in a Circular Coil
What is the induced electric field in the circular coil of Example 13.2 (and Figure 13.9) at the three times
indicated?

Strategy
Using cylindrical symmetry, the electric field integral simplifies into the electric field times the circumference
of a circle. Since we already know the induced emf, we can connect these two expressions by Faraday’s law to
solve for the induced electric field.

Solution
The induced electric field in the coil is constant in magnitude over the cylindrical surface, similar to how
Ampere’s law problems with cylinders are solved. Since is tangent to the coil,

13.9

13.10

13.11

13.12
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When combined with Equation 13.12, this gives

The direction of is counterclockwise, and circulates in the same direction around the coil. The values of E
are

Significance
When the magnetic flux through a circuit changes, a nonconservative electric field is induced, which drives
current through the circuit. But what happens if in free space where there isn’t a conducting path?
The answer is that this case can be treated as if a conducting path were present; that is, nonconservative
electric fields are induced wherever whether or not there is a conducting path present.

These nonconservative electric fields always satisfy Equation 13.12. For example, if the circular coil of Figure
13.9 were removed, an electric field in free space at would still be directed counterclockwise, and
its magnitude would still be 1.9 V/m at , 1.5 V/m at etc. The existence of induced electric
fields is certainly not restricted to wires in circuits.

EXAMPLE 13.8

Electric Field Induced by the Changing Magnetic Field of a Solenoid
Part (a) of Figure 13.18 shows a long solenoid with radius R and n turns per unit length; its current decreases
with time according to What is the magnitude of the induced electric field at a point a distance r
from the central axis of the solenoid (a) when and (b) when [see part (b) of Figure 13.18]. (c) What
is the direction of the induced field at both locations? Assume that the infinite-solenoid approximation is valid
throughout the regions of interest.
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Figure 13.18 (a) The current in a long solenoid is decreasing exponentially. (b) A cross-sectional view of the solenoid from its left end. The

cross-section shown is near the middle of the solenoid. An electric field is induced both inside and outside the solenoid.

Strategy
Using the formula for the magnetic field inside an infinite solenoid and Faraday’s law, we calculate the induced
emf. Since we have cylindrical symmetry, the electric field integral reduces to the electric field times the
circumference of the integration path. Then we solve for the electric field.

Solution

a. The magnetic field is confined to the interior of the solenoid where

Thus, the magnetic flux through a circular path whose radius r is greater than R, the solenoid radius, is

The induced field is tangent to this path, and because of the cylindrical symmetry of the system, its
magnitude is constant on the path. Hence, we have

b. For a path of radius r inside the solenoid, so

and the induced field is

c. The magnetic field points into the page as shown in part (b) and is decreasing. If either of the circular
paths were occupied by conducting rings, the currents induced in them would circulate as shown, in
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conformity with Lenz’s law. The induced electric field must be so directed as well.

Significance

In part (b), note that increases with r inside and decreases as 1/r outside the solenoid, as shown in Figure

13.19.

Figure 13.19 The electric field vs. distance r. When the electric field rises linearly, whereas when the electric field falls of

proportional to 1/r.

CHECK YOUR UNDERSTANDING 13.6

Suppose that the coil of Example 13.2 is a square rather than circular. Can Equation 13.12 be used to calculate
(a) the induced emf and (b) the induced electric field?

CHECK YOUR UNDERSTANDING 13.7

What is the magnitude of the induced electric field in Example 13.8 at if
turns per meter, and

CHECK YOUR UNDERSTANDING 13.8

The magnetic field shown below is confined to the cylindrical region shown and is changing with time. Identify

those paths for which
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CHECK YOUR UNDERSTANDING 13.9

A long solenoid of cross-sectional area is wound with 25 turns of wire per centimeter. It is placed in the
middle of a closely wrapped coil of 10 turns and radius 25 cm, as shown below. (a) What is the emf induced in
the coil when the current through the solenoid is decreasing at a rate (b) What is the
electric field induced in the coil?

13.5 Eddy Currents
Learning Objectives
By the end of this section, you will be able to:

• Explain how eddy currents are created in metals
• Describe situations where eddy currents are beneficial and where they are not helpful

As discussed two sections earlier, a motional emf is induced when a conductor moves in a magnetic field or
when a magnetic field moves relative to a conductor. If motional emf can cause a current in the conductor, we
refer to that current as an eddy current.

Magnetic Damping
Eddy currents can produce significant drag, called magnetic damping, on the motion involved. Consider the
apparatus shown in Figure 13.20, which swings a pendulum bob between the poles of a strong magnet. (This is
another favorite physics demonstration.) If the bob is metal, significant drag acts on the bob as it enters and
leaves the field, quickly damping the motion. If, however, the bob is a slotted metal plate, as shown in part (b) of
the figure, the magnet produces a much smaller effect. There is no discernible effect on a bob made of an
insulator. Why does drag occur in both directions, and are there any uses for magnetic drag?

Figure 13.20 A common physics demonstration device for exploring eddy currents and magnetic damping. (a) The motion of a metal

pendulum bob swinging between the poles of a magnet is quickly damped by the action of eddy currents. (b) There is little effect on the

motion of a slotted metal bob, implying that eddy currents are made less effective. (c) There is also no magnetic damping on a

nonconducting bob, since the eddy currents are extremely small.
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Figure 13.21 shows what happens to the metal plate as it enters and leaves the magnetic field. In both cases, it
experiences a force opposing its motion. As it enters from the left, flux increases, setting up an eddy current
(Faraday’s law) in the counterclockwise direction (Lenz’s law), as shown. Only the right-hand side of the
current loop is in the field, so an unopposed force acts on it to the left (RHR-1). When the metal plate is
completely inside the field, there is no eddy current if the field is uniform, since the flux remains constant in
this region. But when the plate leaves the field on the right, flux decreases, causing an eddy current in the
clockwise direction that, again, experiences a force to the left, further slowing the motion. A similar analysis of
what happens when the plate swings from the right toward the left shows that its motion is also damped when
entering and leaving the field.

Figure 13.21 A more detailed look at the conducting plate passing between the poles of a magnet. As it enters and leaves the field, the

change in flux produces an eddy current. Magnetic force on the current loop opposes the motion. There is no current and no magnetic drag

when the plate is completely inside the uniform field.

When a slotted metal plate enters the field (Figure 13.22), an emf is induced by the change in flux, but it is less
effective because the slots limit the size of the current loops. Moreover, adjacent loops have currents in
opposite directions, and their effects cancel. When an insulating material is used, the eddy current is
extremely small, so magnetic damping on insulators is negligible. If eddy currents are to be avoided in
conductors, then they must be slotted or constructed of thin layers of conducting material separated by
insulating sheets.

Figure 13.22 Eddy currents induced in a slotted metal plate entering a magnetic field form small loops, and the forces on them tend to
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cancel, thereby making magnetic drag almost zero.

Applications of Magnetic Damping
One use of magnetic damping is found in sensitive laboratory balances. To have maximum sensitivity and
accuracy, the balance must be as friction-free as possible. But if it is friction-free, then it will oscillate for a very
long time. Magnetic damping is a simple and ideal solution. With magnetic damping, drag is proportional to
speed and becomes zero at zero velocity. Thus, the oscillations are quickly damped, after which the damping
force disappears, allowing the balance to be very sensitive (Figure 13.23). In most balances, magnetic damping
is accomplished with a conducting disc that rotates in a fixed field.

Figure 13.23 Magnetic damping of this sensitive balance slows its oscillations. Since Faraday’s law of induction gives the greatest effect

for the most rapid change, damping is greatest for large oscillations and goes to zero as the motion stops.

Since eddy currents and magnetic damping occur only in conductors, recycling centers can use magnets to
separate metals from other materials. Trash is dumped in batches down a ramp, beneath which lies a powerful
magnet. Conductors in the trash are slowed by magnetic damping while nonmetals in the trash move on,
separating from the metals (Figure 13.24). This works for all metals, not just ferromagnetic ones. A magnet can
separate out the ferromagnetic materials alone by acting on stationary trash.
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Figure 13.24 Metals can be separated from other trash by magnetic drag. Eddy currents and magnetic drag are created in the metals sent

down this ramp by the powerful magnet beneath it. Nonmetals move on.

Other major applications of eddy currents appear in metal detectors and braking systems in trains and roller
coasters. Portable metal detectors (Figure 13.25) consist of a primary coil carrying an alternating current and a
secondary coil in which a current is induced. An eddy current is induced in a piece of metal close to the
detector, causing a change in the induced current within the secondary coil. This can trigger some sort of
signal, such as a shrill noise.

Figure 13.25 A soldier in Iraq uses a metal detector to search for explosives and weapons. (credit: U.S. Army)

Braking using eddy currents is safer because factors such as rain do not affect the braking and the braking is
smoother. However, eddy currents cannot bring the motion to a complete stop, since the braking force
produced decreases as speed is reduced. Thus, speed can be reduced from say 20 m/s to 5 m/s, but another
form of braking is needed to completely stop the vehicle. Generally, powerful rare-earth magnets such as
neodymium magnets are used in roller coasters. Figure 13.26 shows rows of magnets in such an application.
The vehicle has metal fins (normally containing copper) that pass through the magnetic field, slowing the
vehicle down in much the same way as with the pendulum bob shown in Figure 13.20.
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Figure 13.26 The rows of rare-earth magnets (protruding horizontally) are used for magnetic braking in roller coasters. (credit: Stefan

Scheer)

Induction cooktops have electromagnets under their surface. The magnetic field is varied rapidly, producing
eddy currents in the base of the pot, causing the pot and its contents to increase in temperature. Induction
cooktops have high efficiencies and good response times when the base of the pot is a conductor, such as iron
or steel.

13.6 Electric Generators and Back Emf
Learning Objectives
By the end of this section, you will be able to:

• Explain how an electric generator works
• Determine the induced emf in a loop at any time interval, rotating at a constant rate in a magnetic field
• Show that rotating coils have an induced emf; in motors this is called back emf because it opposes the emf

input to the motor

A variety of important phenomena and devices can be understood with Faraday’s law. In this section, we
examine two of these.

Electric Generators
Electric generators induce an emf by rotating a coil in a magnetic field, as briefly discussed in Motional Emf.
We now explore generators in more detail. Consider the following example.

EXAMPLE 13.9

Calculating the Emf Induced in a Generator Coil
The generator coil shown in Figure 13.27 is rotated through one-fourth of a revolution (from to
in 15.0 ms. The 200-turn circular coil has a 5.00-cm radius and is in a uniform 0.80-T magnetic field. What is
the emf induced?
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Figure 13.27 When this generator coil is rotated through one-fourth of a revolution, the magnetic flux changes from its maximum to

zero, inducing an emf.

Strategy
Faraday’s law of induction is used to find the emf induced:

We recognize this situation as the same one in Example 13.6. According to the diagram, the projection of the
surface normal vector to the magnetic field is initially and this is inserted by the definition of the dot
product. The magnitude of the magnetic field and area of the loop are fixed over time, which makes the
integration simplify quickly. The induced emf is written out using Faraday’s law:

Solution
We are given that , , and The area of the loop is

Entering this value gives
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Significance
This is a practical average value, similar to the 120 V used in household power.

The emf calculated in Example 13.9 is the average over one-fourth of a revolution. What is the emf at any given
instant? It varies with the angle between the magnetic field and a perpendicular to the coil. We can get an
expression for emf as a function of time by considering the motional emf on a rotating rectangular coil of width
w and height l in a uniform magnetic field, as illustrated in Figure 13.28.

Figure 13.28 A generator with a single rectangular coil rotated at constant angular velocity in a uniform magnetic field produces an emf

that varies sinusoidally in time. Note the generator is similar to a motor, except the shaft is rotated to produce a current rather than the

other way around.

Charges in the wires of the loop experience the magnetic force, because they are moving in a magnetic field.
Charges in the vertical wires experience forces parallel to the wire, causing currents. But those in the top and
bottom segments feel a force perpendicular to the wire, which does not cause a current. We can thus find the
induced emf by considering only the side wires. Motional emf is given to be , where the velocity v is
perpendicular to the magnetic field B. Here the velocity is at an angle with B, so that its component
perpendicular to B is v sin (see Figure 13.28). Thus, in this case, the emf induced on each side is

, and they are in the same direction. The total emf around the loop is then

This expression is valid, but it does not give emf as a function of time. To find the time dependence of emf, we
assume the coil rotates at a constant angular velocity . The angle is related to angular velocity by so
that

Now, linear velocity v is related to angular velocity by Here, so that and

Noting that the area of the loop is and allowing for N loops, we find that

This is the emf induced in a generator coil of N turns and area A rotating at a constant angular velocity in a
uniform magnetic field B. This can also be expressed as

where

is the peak emf, since the maximum value of . Note that the frequency of the oscillation is

13.13
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and the period is Figure 13.29 shows a graph of emf as a function of time, and it now seems
reasonable that ac voltage is sinusoidal.

Figure 13.29 The emf of a generator is sent to a light bulb with the system of rings and brushes shown. The graph gives the emf of the

generator as a function of time, where is the peak emf. The period is where f is the frequency.

The fact that the peak emf is makes good sense. The greater the number of coils, the larger their
area, and the stronger the field, the greater the output voltage. It is interesting that the faster the generator is
spun (greater ), the greater the emf. This is noticeable on bicycle generators—at least the cheaper varieties.

Figure 13.30 shows a scheme by which a generator can be made to produce pulsed dc. More elaborate
arrangements of multiple coils and split rings can produce smoother dc, although electronic rather than
mechanical means are usually used to make ripple-free dc.

Figure 13.30 Split rings, called commutators, produce a pulsed dc emf output in this configuration.

In real life, electric generators look a lot different from the figures in this section, but the principles are the
same. The source of mechanical energy that turns the coil can be falling water (hydropower), steam produced
by the burning of fossil fuels, or the kinetic energy of wind. Figure 13.31 shows a cutaway view of a steam
turbine; steam moves over the blades connected to the shaft, which rotates the coil within the generator. The
generation of electrical energy from mechanical energy is the basic principle of all power that is sent through
our electrical grids to our homes.
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Figure 13.31 Steam turbine/generator. The steam produced by burning coal impacts the turbine blades, turning the shaft, which is

connected to the generator.

Generators illustrated in this section look very much like the motors illustrated previously. This is not
coincidental. In fact, a motor becomes a generator when its shaft rotates. Certain early automobiles used their
starter motor as a generator. In the next section, we further explore the action of a motor as a generator.

Back Emf
Generators convert mechanical energy into electrical energy, whereas motors convert electrical energy into
mechanical energy. Thus, it is not surprising that motors and generators have the same general construction.
A motor works by sending a current through a loop of wire located in a magnetic field. As a result, the magnetic
field exerts torque on the loop. This rotates a shaft, thereby extracting mechanical work out of the electrical
current sent in initially. (Refer to Force and Torque on a Current Loop for a discussion on motors that will help
you understand more about them before proceeding.)

When the coil of a motor is turned, magnetic flux changes through the coil, and an emf (consistent with
Faraday’s law) is induced. The motor thus acts as a generator whenever its coil rotates. This happens whether
the shaft is turned by an external input, like a belt drive, or by the action of the motor itself. That is, when a
motor is doing work and its shaft is turning, an emf is generated. Lenz’s law tells us the emf opposes any
change, so that the input emf that powers the motor is opposed by the motor’s self-generated emf, called the
back emf of the motor (Figure 13.32).

Figure 13.32 The coil of a dc motor is represented as a resistor in this schematic. The back emf is represented as a variable emf that

opposes the emf driving the motor. Back emf is zero when the motor is not turning and increases proportionally to the motor’s angular

velocity.

The generator output of a motor is the difference between the supply voltage and the back emf. The back emf is
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zero when the motor is first turned on, meaning that the coil receives the full driving voltage and the motor
draws maximum current when it is on but not turning. As the motor turns faster, the back emf grows, always
opposing the driving emf, and reduces both the voltage across the coil and the amount of current it draws. This
effect is noticeable in many common situations. When a vacuum cleaner, refrigerator, or washing machine is
first turned on, lights in the same circuit dim briefly due to the IR drop produced in feeder lines by the large
current drawn by the motor.

When a motor first comes on, it draws more current than when it runs at its normal operating speed. When a
mechanical load is placed on the motor, like an electric wheelchair going up a hill, the motor slows, the back
emf drops, more current flows, and more work can be done. If the motor runs at too low a speed, the larger
current can overheat it (via resistive power in the coil, perhaps even burning it out. On the other
hand, if there is no mechanical load on the motor, it increases its angular velocity until the back emf is
nearly equal to the driving emf. Then the motor uses only enough energy to overcome friction.

Eddy currents in iron cores of motors can cause troublesome energy losses. These are usually minimized by
constructing the cores out of thin, electrically insulated sheets of iron. The magnetic properties of the core are
hardly affected by the lamination of the insulating sheet, while the resistive heating is reduced considerably.
Consider, for example, the motor coils represented in Figure 13.32. The coils have an equivalent resistance of

and are driven by an emf of 48.0 V. Shortly after being turned on, they draw a current

and thus dissipate of energy as heat transfer. Under normal operating conditions for this
motor, suppose the back emf is 40.0 V. Then at operating speed, the total voltage across the coils is 8.0 V (48.0
V minus the 40.0 V back emf), and the current drawn is

Under normal load, then, the power dissipated is This does not cause a
problem for this motor, whereas the former 5.76 kW would burn out the coils if sustained.

EXAMPLE 13.10

A Series-Wound Motor in Operation
The total resistance of a series-wound dc motor is (Figure 13.33). When connected to a 120-V
source ( ), the motor draws 10 A while running at constant angular velocity. (a) What is the back emf induced
in the rotating coil, (b) What is the mechanical power output of the motor? (c) How much power is
dissipated in the resistance of the coils? (d) What is the power output of the 120-V source? (e) Suppose the load
on the motor increases, causing it to slow down to the point where it draws 20 A. Answer parts (a) through (d)
for this situation.

Figure 13.33 Circuit representation of a series-wound direct current motor.

Strategy
The back emf is calculated based on the difference between the supplied voltage and the loss from the current
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through the resistance. The power from each device is calculated from one of the power formulas based on the
given information.

Solution

a. The back emf is

b. Since the potential across the armature is 100 V when the current through it is 10 A, the power output of
the motor is

c. A 10-A current flows through coils whose combined resistance is , so the power dissipated in the
coils is

d. Since 10 A is drawn from the 120-V source, its power output is

e. Repeating the same calculations with , we find

The motor is turning more slowly in this case, so its power output and the power of the source are larger.

Significance
Notice that we have an energy balance in part (d):

13.7 Applications of Electromagnetic Induction
Learning Objectives
By the end of this section, you will be able to:

• Explain how computer hard drives and graphic tablets operate using magnetic induction
• Explain how hybrid/electric vehicles and transcranial magnetic stimulation use magnetic induction to their

advantage

Modern society has numerous applications of Faraday’s law of induction, as we will explore in this chapter and
others. At this juncture, let us mention several that involve recording information using magnetic fields.

Some computer hard drives apply the principle of magnetic induction. Recorded data are made on a coated,
spinning disk. Historically, reading these data was made to work on the principle of induction. However, most
input information today is carried in digital rather than analog form—a series of 0s or 1s are written upon the
spinning hard drive. Therefore, most hard drive readout devices do not work on the principle of induction, but
use a technique known as giant magnetoresistance. Giant magnetoresistance is the effect of a large change of
electrical resistance induced by an applied magnetic field to thin films of alternating ferromagnetic and
nonmagnetic layers. This is one of the first large successes of nanotechnology.

Graphics tablets, or tablet computers where a specially designed pen is used to draw digital images, also
applies induction principles. The tablets discussed here are labeled as passive tablets, since there are other
designs that use either a battery-operated pen or optical signals to write with. The passive tablets are different
than the touch tablets and phones many of us use regularly, but may still be found when signing your signature
at a cash register. Underneath the screen, shown in Figure 13.34, are tiny wires running across the length and
width of the screen. The pen has a tiny magnetic field coming from the tip. As the tip brushes across the
screen, a changing magnetic field is felt in the wires which translates into an induced emf that is converted
into the line you just drew.
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Figure 13.34 A tablet with a specially designed pen to write with is another application of magnetic induction. (credit: Jane Whitney)

Another application of induction is the magnetic stripe on the back of your personal credit card as used at the
grocery store or the ATM machine. This works on the same principle as the audio or video tape, in which a
playback head reads personal information from your card.

INTERACTIVE

Check out this video (https://openstax.org/l/21flashmagind) to see how flashlights can use magnetic induction.
A magnet moves by your mechanical work through a wire. The induced current charges a capacitor that stores
the charge that will light the lightbulb even while you are not doing this mechanical work.

Electric and hybrid vehicles also take advantage of electromagnetic induction. One limiting factor that inhibits
widespread acceptance of 100% electric vehicles is that the lifetime of the battery is not as long as the time you
get to drive on a full tank of gas. To increase the amount of charge in the battery during driving, the motor can
act as a generator whenever the car is braking, taking advantage of the back emf produced. This extra emf can
be newly acquired stored energy in the car’s battery, prolonging the life of the battery.

Another contemporary area of research in which electromagnetic induction is being successfully
implemented is transcranial magnetic stimulation (TMS). A host of disorders, including depression and
hallucinations, can be traced to irregular localized electrical activity in the brain. In transcranial magnetic
stimulation, a rapidly varying and very localized magnetic field is placed close to certain sites identified in the
brain. The usage of TMS as a diagnostic technique is well established.

INTERACTIVE

Check out this Youtube video (https://openstax.org/l/21randrelectro) to see how rock-and-roll instruments like
electric guitars use electromagnetic induction to get those strong beats.
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CHAPTER REVIEW
Key Terms
back emf emf generated by a running motor,

because it consists of a coil turning in a magnetic
field; it opposes the voltage powering the motor

eddy current current loop in a conductor caused
by motional emf

electric generator device for converting
mechanical work into electric energy; it induces
an emf by rotating a coil in a magnetic field

Faraday’s law induced emf is created in a closed
loop due to a change in magnetic flux through the
loop

induced electric field created based on the
changing magnetic flux with time

induced emf short-lived voltage generated by a
conductor or coil moving in a magnetic field

Lenz’s law direction of an induced emf opposes
the change in magnetic flux that produced it; this
is the negative sign in Faraday’s law

magnetic damping drag produced by eddy
currents

magnetic flux measurement of the amount of
magnetic field lines through a given area

motionally induced emf voltage produced by the
movement of a conducting wire in a magnetic
field

peak emf maximum emf produced by a generator

Key Equations

Magnetic flux

Faraday’s law

Motionally induced emf

Motional emf around a circuit

Emf produced by an electric generator

Summary
13.1 Faraday’s Law

• The magnetic flux through an enclosed area is
defined as the amount of field lines cutting
through a surface area A defined by the unit
area vector.

• The units for magnetic flux are webers, where

• The induced emf in a closed loop due to a
change in magnetic flux through the loop is
known as Faraday’s law. If there is no change in
magnetic flux, no induced emf is created.

13.2 Lenz's Law

• We can use Lenz’s law to determine the
directions of induced magnetic fields, currents,
and emfs.

• The direction of an induced emf always opposes
the change in magnetic flux that causes the emf,

a result known as Lenz’s law.

13.3 Motional Emf

• The relationship between an induced emf in a
wire moving at a constant speed v through a
magnetic field B is given by

• An induced emf from Faraday’s law is created
from a motional emf that opposes the change in
flux.

13.4 Induced Electric Fields

• A changing magnetic flux induces an electric
field.

• Both the changing magnetic flux and the
induced electric field are related to the induced
emf from Faraday’s law.
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13.5 Eddy Currents

• Current loops induced in moving conductors are
called eddy currents. They can create significant
drag, called magnetic damping.

• Manipulation of eddy currents has resulted in
applications such as metal detectors, braking in
trains or roller coasters, and induction cooktops.

13.6 Electric Generators and Back Emf

• An electric generator rotates a coil in a magnetic
field, inducing an emf given as a function of
time by where A is the area
of an N-turn coil rotated at a constant angular
velocity in a uniform magnetic field

• The peak emf of a generator is .
• Any rotating coil produces an induced emf. In

motors, this is called back emf because it
opposes the emf input to the motor.

13.7 Applications of Electromagnetic
Induction

• Hard drives utilize magnetic induction to read/
write information.

• Other applications of magnetic induction can be
found in graphics tablets, electric and hybrid
vehicles, and in transcranial magnetic
stimulation.

Conceptual Questions
13.1 Faraday’s Law

1. A stationary coil is in a magnetic field that is
changing with time. Does the emf induced in the
coil depend on the actual values of the magnetic
field?

2. In Faraday’s experiments, what would be the
advantage of using coils with many turns?

3. A copper ring and a wooden ring of the same
dimensions are placed in magnetic fields so that
there is the same change in magnetic flux
through them. Compare the induced electric
fields and currents in the rings.

4. Discuss the factors determining the induced emf
in a closed loop of wire.

5. (a) Does the induced emf in a circuit depend on
the resistance of the circuit? (b) Does the induced
current depend on the resistance of the circuit?

6. How would changing the radius of loop D shown
below affect its emf, assuming C and D are much
closer together compared to their radii?

7. Can there be an induced emf in a circuit at an
instant when the magnetic flux through the
circuit is zero?

8. Does the induced emf always act to decrease the
magnetic flux through a circuit?

9. How would you position a flat loop of wire in a
changing magnetic field so that there is no
induced emf in the loop?

10. The normal to the plane of a single-turn
conducting loop is directed at an angle to a
spatially uniform magnetic field It has a fixed
area and orientation relative to the magnetic
field. Show that the emf induced in the loop is
given by where A is the
area of the loop.

13.2 Lenz's Law

11. The circular conducting loops shown in the
accompanying figure are parallel,
perpendicular to the plane of the page, and
coaxial. (a) When the switch S is closed, what is
the direction of the current induced in D? (b)
When the switch is opened, what is the
direction of the current induced in loop D?

12. The north pole of a magnet is moved toward a
copper loop, as shown below. If you are looking
at the loop from above the magnet, will you say
the induced current is circulating clockwise or
counterclockwise?
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13. The accompanying figure shows a conducting ring
at various positions as it moves through a magnetic
field. What is the sense of the induced emf for each
of those positions?

14. Show that and have the same units.
15. State the direction of the induced current for each

case shown below, observing from the side of the
magnet.

13.3 Motional Emf

16. A bar magnet falls under the influence of gravity
along the axis of a long copper tube. If air
resistance is negligible, will there be a force to
oppose the descent of the magnet? If so, will the
magnet reach a terminal velocity?

17. Around the geographic North Pole (or magnetic
South Pole), Earth’s magnetic field is almost
vertical. If an airplane is flying northward in
this region, which side of the wing is positively
charged and which is negatively charged?

18. A wire loop moves translationally (no rotation)
in a uniform magnetic field. Is there an emf
induced in the loop?

13.4 Induced Electric Fields

19. Is the work required to accelerate a rod from
rest to a speed v in a magnetic field greater than
the final kinetic energy of the rod? Why?

20. The copper sheet shown below is partially in a
magnetic field. When it is pulled to the right, a
resisting force pulls it to the left. Explain. What
happen if the sheet is pushed to the left?

13.5 Eddy Currents

21. A conducting sheet lies in a plane
perpendicular to a magnetic field that is
below the sheet. If oscillates at a high
frequency and the conductor is made of a
material of low resistivity, the region above the
sheet is effectively shielded from . Explain
why. Will the conductor shield this region from
static magnetic fields?

22. Electromagnetic braking can be achieved by
applying a strong magnetic field to a spinning
metal disk attached to a shaft. (a) How can a
magnetic field slow the spinning of a disk? (b)
Would the brakes work if the disk was made of
plastic instead of metal?

23. A coil is moved through a magnetic field as shown
below. The field is uniform inside the rectangle and
zero outside. What is the direction of the induced
current and what is the direction of the magnetic
force on the coil at each position shown?
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Problems
13.1 Faraday’s Law

24. A 50-turn coil has a diameter of 15 cm. The coil
is placed in a spatially uniform magnetic field of
magnitude 0.50 T so that the face of the coil and
the magnetic field are perpendicular. Find the
magnitude of the emf induced in the coil if the
magnetic field is reduced to zero uniformly in
(a) 0.10 s, (b) 1.0 s, and (c) 60 s.

25. Repeat your calculations of the preceding
problem’s time of 0.1 s with the plane of the coil
making an angle of (a) (b) and (c)
with the magnetic field.

26. A square loop whose sides are 6.0-cm long is
made with copper wire of radius 1.0 mm. If a
magnetic field perpendicular to the loop is
changing at a rate of 5.0 mT/s, what is the
current in the loop?

27. The magnetic field through a circular loop of
radius 10.0 cm varies with time as shown below.
The field is perpendicular to the loop. Plot the
magnitude of the induced emf in the loop as a
function of time.

28. The accompanying figure shows a single-turn
rectangular coil that has a resistance of
The magnetic field at all points inside the coil
varies according to where

and What is the
current induced in the coil at (a) , (b)
0.002 s, (c) 2.0 s?

29. How would the answers to the preceding
problem change if the coil consisted of 20
closely spaced turns?

30. A long solenoid with turns per
centimeter has a cross-sectional area of
and carries a current of 0.25 A. A coil with five
turns encircles the solenoid. When the current
through the solenoid is turned off, it decreases
to zero in 0.050 s. What is the average emf
induced in the coil?

31. A rectangular wire loop with length a and width
b lies in the xy-plane, as shown below. Within
the loop there is a time-dependent magnetic
field given by

, with
in tesla. Determine the emf induced in the loop
as a function of time.

32. The magnetic field perpendicular to a single
wire loop of diameter 10.0 cm decreases from
0.50 T to zero. The wire is made of copper and
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has a diameter of 2.0 mm and length 1.0 cm.
How much charge moves through the wire while
the field is changing?

13.2 Lenz's Law

33. A single-turn circular loop of wire of radius 50
mm lies in a plane perpendicular to a spatially
uniform magnetic field. During a 0.10-s time
interval, the magnitude of the field increases
uniformly from 200 to 300 mT. (a) Determine
the emf induced in the loop. (b) If the magnetic
field is directed out of the page, what is the
direction of the current induced in the loop?

34. When a magnetic field is first turned on, the flux
through a 20-turn loop varies with time
according to where is in
milliwebers, t is in seconds, and the loop is in
the plane of the page with the unit normal
pointing outward. (a) What is the emf induced in
the loop as a function of time? What is the
direction of the induced current at (b) t = 0, (c)
0.10, (d) 1.0, and (e) 2.0 s?

35. The magnetic flux through the loop shown in
the accompanying figure varies with time
according to where

is in milliwebers. What are the direction
and magnitude of the current through the

resistor at (a) ; (b)
and (c)

36. Use Lenz’s law to determine the direction of
induced current in each case.

13.3 Motional Emf

37. An automobile with a radio antenna 1.0 m long
travels at 100.0 km/h in a location where the
Earth’s horizontal magnetic field is

What is the maximum possible
emf induced in the antenna due to this motion?

38. The rectangular loop of N turns shown below
moves to the right with a constant velocity
while leaving the poles of a large electromagnet.
(a) Assuming that the magnetic field is uniform
between the pole faces and negligible
elsewhere, determine the induced emf in the
loop. (b) What is the source of work that
produces this emf?

39. Suppose the magnetic field of the preceding
problem oscillates with time according to

What then is the emf induced in
the loop when its trailing side is a distance d
from the right edge of the magnetic field region?

40. A coil of 1000 turns encloses an area of .
It is rotated in 0.010 s from a position where its
plane is perpendicular to Earth’s magnetic field
to one where its plane is parallel to the field. If
the strength of the field is what is
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the average emf induced in the coil?
41. In the circuit shown in the accompanying

figure, the rod slides along the conducting rails
at a constant velocity The velocity is in the
same plane as the rails and directed at an angle

to them. A uniform magnetic field is
directed out of the page. What is the emf
induced in the rod?

42. The rod shown in the accompanying figure is
moving through a uniform magnetic field of
strength with a constant velocity of
magnitude What is the potential
difference between the ends of the rod? Which
end of the rod is at a higher potential?

43. A 25-cm rod moves at 5.0 m/s in a plane
perpendicular to a magnetic field of strength
0.25 T. The rod, velocity vector, and magnetic
field vector are mutually perpendicular, as
indicated in the accompanying figure. Calculate
(a) the magnetic force on an electron in the rod,
(b) the electric field in the rod, and (c) the
potential difference between the ends of the
rod. (d) What is the speed of the rod if the
potential difference is 1.0 V?

44. In the accompanying figure, the rails,
connecting end piece, and rod all have a
resistance per unit length of The rod
moves to the left at If
everywhere in the region, what is the current in
the circuit (a) when (b) when

Specify also the sense of the
current flow.

45. The rod shown below moves to the right on
essentially zero-resistance rails at a speed of

If everywhere in the
region, what is the current through the
resistor? Does the current circulate clockwise or
counterclockwise?

46. Shown below is a conducting rod that slides
along metal rails. The apparatus is in a uniform
magnetic field of strength 0.25 T, which is
directly into the page. The rod is pulled to the
right at a constant speed of 5.0 m/s by a force
The only significant resistance in the circuit
comes from the resistor shown. (a) What
is the emf induced in the circuit? (b) What is the
induced current? Does it circulate clockwise or
counter clockwise? (c) What is the magnitude of

? (d) What are the power output of and the
power dissipated in the resistor?

13.4 Induced Electric Fields

47. Calculate the induced electric field in a 50-turn
coil with a diameter of 15 cm that is placed in a
spatially uniform magnetic field of magnitude
0.50 T so that the face of the coil and the
magnetic field are perpendicular. This magnetic
field is reduced to zero in 0.10 seconds. Assume
that the magnetic field is cylindrically
symmetric with respect to the central axis of the
coil.
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48. The magnetic field through a circular loop of
radius 10.0 cm varies with time as shown in the
accompanying figure. The field is perpendicular
to the loop. Assuming cylindrical symmetry
with respect to the central axis of the loop, plot
the induced electric field in the loop as a
function of time.

49. The current I through a long solenoid with n
turns per meter and radius R is changing with
time as given by dI/dt. Calculate the induced
electric field as a function of distance r from the
central axis of the solenoid.

50. Calculate the electric field induced both inside
and outside the solenoid of the preceding
problem if

51. Over a region of radius R, there is a spatially
uniform magnetic field (See below.) At ,

after which it decreases at a constant
rate to zero in 30 s. (a) What is the electric field
in the regions where and during
that 30-s interval? (b) Assume that

. How much work is done by the
electric field on a proton that is carried once
clock wise around a circular path of radius 5.0
cm? (c) How much work is done by the electric
field on a proton that is carried once
counterclockwise around a circular path of any
radius ? (d) At the instant when

, a proton enters the magnetic field
at A, moving a velocity
as shown. What are the electric and magnetic
forces on the proton at that instant?

52. The magnetic field at all points within the
cylindrical region whose cross-section is
indicated in the accompanying figure starts at
1.0 T and decreases uniformly to zero in 20 s.
What is the electric field (both magnitude and
direction) as a function of r, the distance from
the geometric center of the region?

53. The current in a long solenoid with 20 turns per
centimeter of radius 3 cm is varied with time at
a rate of 2 A/s. A circular loop of wire of radius 5
cm and resistance surrounds the solenoid.
Find the electrical current induced in the loop.

54. The current in a long solenoid of radius 3 cm
and 20 turns/cm is varied with time at a rate of
2 A/s. Find the electric field at a distance of 4 cm
from the center of the solenoid.

13.6 Electric Generators and Back Emf

55. Design a current loop that, when rotated in a
uniform magnetic field of strength 0.10 T, will
produce an emf where
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and
56. A flat, square coil of 20 turns that has sides of

length 15.0 cm is rotating in a magnetic field of
strength 0.050 T. If the maximum emf produced
in the coil is 30.0 mV, what is the angular
velocity of the coil?

57. A 50-turn rectangular coil with dimensions
rotates in a uniform magnetic

field of magnitude 0.75 T at 3600 rev/min. (a)
Determine the emf induced in the coil as a
function of time. (b) If the coil is connected to a

resistor, what is the power as a function
of time required to keep the coil turning at 3600
rpm? (c) Answer part (b) if the coil is connected
to a 2000- resistor.

58. The square armature coil of an alternating
current generator has 200 turns and is 20.0 cm
on side. When it rotates at 3600 rpm, its peak
output voltage is 120 V. (a) What is the
frequency of the output voltage? (b) What is the
strength of the magnetic field in which the coil
is turning?

59. A flip coil is a relatively simple device used to
measure a magnetic field. It consists of a
circular coil of N turns wound with fine
conducting wire. The coil is attached to a
ballistic galvanometer, a device that measures
the total charge that passes through it. The coil
is placed in a magnetic field such that its face
is perpendicular to the field. It is then flipped
through and the total charge Q that flows
through the galvanometer is measured. (a) If the
total resistance of the coil and galvanometer is

R, what is the relationship between B and Q?
Because the coil is very small, you can assume
that is uniform over it. (b) How can you
determine whether or not the magnetic field is
perpendicular to the face of the coil?

60. The flip coil of the preceding problem has a
radius of 3.0 cm and is wound with 40 turns of
copper wire. The total resistance of the coil and
ballistic galvanometer is When the coil
is flipped through in a magnetic field a
change of 0.090 C flows through the ballistic
galvanometer. (a) Assuming that and the face
of the coil are initially perpendicular, what is the
magnetic field? (b) If the coil is flipped through

what is the reading of the galvanometer?
61. A 120-V, series-wound motor has a field

resistance of 80 and an armature resistance
of 10 . When it is operating at full speed, a
back emf of 75 V is generated. (a) What is the
initial current drawn by the motor? When the
motor is operating at full speed, where are (b)
the current drawn by the motor, (c) the power
output of the source, (d) the power output of the
motor, and (e) the power dissipated in the two
resistances?

62. A small series-wound dc motor is operated from
a 12-V car battery. Under a normal load, the
motor draws 4.0 A, and when the armature is
clamped so that it cannot turn, the motor draws
24 A. What is the back emf when the motor is
operating normally?

Additional Problems
63. Shown in the following figure is a long, straight

wire and a single-turn rectangular loop, both of
which lie in the plane of the page. The wire is
parallel to the long sides of the loop and is 0.50
m away from the closer side. At an instant when
the emf induced in the loop is 2.0 V, what is the
time rate of change of the current in the wire?

64. A metal bar of mass 500 g slides outward at a
constant speed of 1.5 cm/s over two parallel
rails separated by a distance of 30 cm which are
part of a U-shaped conductor. There is a
uniform magnetic field of magnitude 2 T
pointing out of the page over the entire area.
The railings and metal bar have an equivalent
resistance of (a) Determine the induced
current, both magnitude and direction. (b) Find
the direction of the induced current if the
magnetic field is pointing into the page. (c) Find
the direction of the induced current if the
magnetic field is pointed into the page and the
bar moves inwards.
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65. A current is induced in a circular loop of radius
1.5 cm between two poles of a horseshoe
electromagnet when the current in the
electromagnet is varied. The magnetic field in
the area of the loop is perpendicular to the area
and has a uniform magnitude. If the rate of
change of magnetic field is 10 T/s, find the
magnitude and direction of the induced current
if resistance of the loop is .

66. A metal bar of length 25 cm is placed
perpendicular to a uniform magnetic field of
strength 3 T. (a) Determine the induced emf
between the ends of the rod when it is not
moving. (b) Determine the emf when the rod is
moving perpendicular to its length and
magnetic field with a speed of 50 cm/s.

67. A coil with 50 turns and area 10 is oriented
with its plane perpendicular to a 0.75-T
magnetic field. If the coil is flipped over (rotated
through ) in 0.20 s, what is the average emf
induced in it?

68. A 2-turn planer loop of flexible wire is placed
inside a long solenoid of n turns per meter that
carries a constant current . The area A of the
loop is changed by pulling on its sides while
ensuring that the plane of the loop always
remains perpendicular to the axis of the
solenoid. If per meter,
and what is the emf induced in the
loop when

69. The conducting rod shown in the accompanying
figure moves along parallel metal rails that are
25-cm apart. The system is in a uniform
magnetic field of strength 0.75 T, which is
directed into the page. The resistances of the
rod and the rails are negligible, but the section
PQ has a resistance of . (a) What is the
emf (including its sense) induced in the rod
when it is moving to the right with a speed of 5.0
m/s? (b) What force is required to keep the rod
moving at this speed? (c) What is the rate at
which work is done by this force? (d) What is the
power dissipated in the resistor?

70. A circular loop of wire of radius 10 cm is mounted
on a vertical shaft and rotated at a frequency of 5
cycles per second in a region of uniform magnetic
field of 2 Gauss perpendicular to the axis of rotation.
(a) Find an expression for the time-dependent flux
through the ring. (b) Determine the time-dependent
current through the ring if it has a resistance of 10

71. The magnetic field between the poles of a
horseshoe electromagnet is uniform and has a
cylindrical symmetry about an axis from the
middle of the South Pole to the middle of the
North Pole. The magnitude of the magnetic field
changes as a rate of dB/dt due to the changing
current through the electromagnet. Determine
the electric field at a distance r from the center.

72. A long solenoid of radius a with n turns per unit
length is carrying a time-dependent current

, where and are constants.
The solenoid is surrounded by a wire of
resistance R that has two circular loops of
radius b with (see the following figure).
Find the magnitude and direction of current
induced in the outer loops at time .
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73. A 120-V, series-wound dc motor draws 0.50 A
from its power source when operating at full
speed, and it draws 2.0 A when it starts. The
resistance of the armature coils is . (a)
What is the resistance of the field coils? (b) What
is the back emf of the motor when it is running
at full speed? (c) The motor operates at a
different speed and draws 1.0 A from the
source. What is the back emf in this case?

74. The armature and field coils of a series-wound
motor have a total resistance of . When
connected to a 120-V source and running at
normal speed, the motor draws 4.0 A. (a) How
large is the back emf? (b) What current will the
motor draw just after it is turned on? Can you
suggest a way to avoid this large initial current?

Challenge Problems
75. A copper wire of length L is fashioned into a

circular coil with N turns. When the magnetic
field through the coil changes with time, for
what value of N is the induced emf a maximum?

76. A 0.50-kg copper sheet drops through a uniform
horizontal magnetic field of 1.5 T, and it reaches
a terminal velocity of 2.0 m/s. (a) What is the net
magnetic force on the sheet after it reaches
terminal velocity? (b) Describe the mechanism
responsible for this force. (c) How much power
is dissipated as Joule heating while the sheet
moves at terminal velocity?

77. A circular copper disk of radius 7.5 cm rotates
at 2400 rpm around the axis through its center
and perpendicular to its face. The disk is in a
uniform magnetic field of strength 1.2 T that
is directed along the axis. What is the potential
difference between the rim and the axis of the
disk?

78. A short rod of length a moves with its velocity
parallel to an infinite wire carrying a current I
(see below). If the end of the rod nearer the wire
is a distance b from the wire, what is the emf
induced in the rod?

79. A rectangular circuit containing a resistance R
is pulled at a constant velocity away from a
long, straight wire carrying a current (see
below). Derive an equation that gives the
current induced in the circuit as a function of
the distance x between the near side of the
circuit and the wire.
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80. Two infinite solenoids cross the plane of the
circuit as shown below. The radii of the
solenoids are 0.10 and 0.20 m, respectively, and
the current in each solenoid is changing such
that What are the currents in
the resistors of the circuit?

81. An eight-turn coil is tightly wrapped around the
outside of the long solenoid as shown below.
The radius of the solenoid is 2.0 cm and it has
10 turns per centimeter. The current through
the solenoid increases according to

where and
What is the emf induced in

the coil when (a) , (b) and
(c) ∞

82. Shown below is a long rectangular loop of width w,
length l, mass m, and resistance R. The loop starts
from rest at the edge of a uniform magnetic field
and is pushed into the field by a constant force
Calculate the speed of the loop as a function of
time.
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83. A square bar of mass m and resistance R is
sliding without friction down very long, parallel
conducting rails of negligible resistance (see
below). The two rails are a distance l apart and
are connected to each other at the bottom of the
incline by a zero-resistance wire. The rails are
inclined at an angle , and there is a uniform
vertical magnetic field throughout the region.
(a) Show that the bar acquires a terminal
velocity given by (b) Calculate

the work per unit time done by the force of
gravity. (c) Compare this with the power
dissipated in the Joule heating of the bar. (d)
What would happen if were reversed?

84. The accompanying figure shows a metal disk of
inner radius and other radius rotating at an
angular velocity while in a uniform magnetic
field directed parallel to the rotational axis. The
brush leads of a voltmeter are connected to the
dark’s inner and outer surfaces as shown. What is
the reading of the voltmeter?

85. A long solenoid with 10 turns per centimeter is
placed inside a copper ring such that both
objects have the same central axis. The radius
of the ring is 10.0 cm, and the radius of the
solenoid is 5.0 cm. (a) What is the emf induced
in the ring when the current I through the
solenoid is 5.0 A and changing at a rate of 100
A/s? (b) What is the emf induced in the ring
when and (c) What
is the electric field inside the ring for these two
cases? (d) Suppose the ring is moved so that its
central axis and the central axis of the solenoid
are still parallel but no longer coincide. (You
should assume that the solenoid is still inside
the ring.) Now what is the emf induced in the
ring? (e) Can you calculate the electric field in
the ring as you did in part (c)?

86. The current in the long, straight wire shown in
the accompanying figure is given by

where and
What is the current induced in

the rectangular loop at (a) and (b)
The resistance of the loop is

87. A 500-turn coil with a area is spun in
Earth’s magnetic field,
producing a 12.0-kV maximum emf. (a) At what
angular velocity must the coil be spun? (b) What
is unreasonable about this result? (c) Which
assumption or premise is responsible?

88. A circular loop of wire of radius 10 cm is
mounted on a vertical shaft and rotated at a
frequency of 5 cycles per second in a region of
uniform magnetic field of
perpendicular to the axis of rotation. (a) Find an
expression for the time-dependent flux through
the ring (b) Determine the time-dependent
current through the ring if it has a resistance of

.
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89. A long solenoid of radius with turns per unit
length is carrying a time-dependent current

where and are constants.
The solenoid is surrounded by a wire of
resistance R that has two circular loops of
radius b with . Find the magnitude and
direction of current induced in the outer loops
at time .

90. A rectangular copper loop of mass 100 g and
resistance is in a region of uniform
magnetic field that is perpendicular to the area
enclosed by the ring and horizontal to Earth’s
surface (see below). The loop is let go from rest
when it is at the edge of the nonzero magnetic
field region. (a) Find an expression for the speed
when the loop just exits the region of uniform
magnetic field. (b) If it was let go at , what is
the time when it exits the region of magnetic
field for the following values:

, ?

91. A metal bar of mass m slides without friction over
two rails a distance D apart in the region that has
a uniform magnetic field of magnitude and
direction perpendicular to the rails (see below).
The two rails are connected at one end to a
resistor whose resistance is much larger than the
resistance of the rails and the bar. The bar is given
an initial speed of . It is found to slow down.
How far does the bar go before coming to rest?
Assume that the magnetic field of the induced
current is negligible compared to .

92. A time-dependent uniform magnetic field of
magnitude B(t) is confined in a cylindrical
region of radius R. A conducting rod of length
2D is placed in the region, as shown below.
Show that the emf between the ends of the rod
is given by . (Hint: To find the
emf between the ends, we need to integrate the
electric field from one end to the other. To find
the electric field, use Faraday’s law as “Ampère’s
law for E.”)
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INTRODUCTION

CHAPTER 16
Electromagnetic Waves

16.1 Maxwell’s Equations and Electromagnetic Waves

16.2 Plane Electromagnetic Waves

16.3 Energy Carried by Electromagnetic Waves

16.4 Momentum and Radiation Pressure

16.5 The Electromagnetic Spectrum

Our view of objects in the sky at night, the warm radiance of sunshine, the sting of sunburn,
our cell phone conversations, and the X-rays revealing a broken bone—all are brought to us by electromagnetic
waves. It would be hard to overstate the practical importance of electromagnetic waves, through their role in
vision, through countless technological applications, and through their ability to transport the energy from the
Sun through space to sustain life and almost all of its activities on Earth.

Theory predicted the general phenomenon of electromagnetic waves before anyone realized that light is a
form of an electromagnetic wave. In the mid-nineteenth century, James Clerk Maxwell formulated a single
theory combining all the electric and magnetic effects known at that time. Maxwell’s equations, summarizing
this theory, predicted the existence of electromagnetic waves that travel at the speed of light. His theory also
predicted how these waves behave, and how they carry both energy and momentum. The tails of comets, such

Figure 16.1 The pressure from sunlight predicted by Maxwell’s equations helped produce the tail of Comet
McNaught. (credit: modification of work by Sebastian Deiries—ESO)

Chapter Outline



as Comet McNaught in Figure 16.1, provide a spectacular example. Energy carried by light from the Sun
warms the comet to release dust and gas. The momentum carried by the light exerts a weak force that shapes
the dust into a tail of the kind seen here. The flux of particles emitted by the Sun, called the solar wind,
typically produces an additional, second tail, as described in detail in this chapter.

In this chapter, we explain Maxwell’s theory and show how it leads to his prediction of electromagnetic waves.
We use his theory to examine what electromagnetic waves are, how they are produced, and how they transport
energy and momentum. We conclude by summarizing some of the many practical applications of
electromagnetic waves.

16.1 Maxwell’s Equations and Electromagnetic Waves
Learning Objectives
By the end of this section, you will be able to:

• Explain Maxwell’s correction of Ampère’s law by including the displacement current
• State and apply Maxwell’s equations in integral form
• Describe how the symmetry between changing electric and changing magnetic fields explains Maxwell’s

prediction of electromagnetic waves
• Describe how Hertz confirmed Maxwell’s prediction of electromagnetic waves

James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century
(Figure 16.2). Although he died young, he made major contributions to the development of the kinetic theory of
gases, to the understanding of color vision, and to the nature of Saturn’s rings. He is probably best known for
having combined existing knowledge of the laws of electricity and of magnetism with insights of his own into a
complete overarching electromagnetic theory, represented by Maxwell’s equations.

Figure 16.2 James Clerk Maxwell, a nineteenth-century physicist, developed a theory that explained the relationship between electricity

and magnetism, and correctly predicted that visible light consists of electromagnetic waves.

Maxwell’s Correction to the Laws of Electricity and Magnetism
The four basic laws of electricity and magnetism had been discovered experimentally through the work of
physicists such as Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these
earlier results and identified the incompleteness of Ampère’s law as their cause.

Recall that according to Ampère’s law, the integral of the magnetic field around a closed loop C is proportional
to the current I passing through any surface whose boundary is loop C itself:
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There are infinitely many surfaces that can be attached to any loop, and Ampère’s law stated in Equation 16.1
is independent of the choice of surface.

Consider the set-up in Figure 16.3. A source of emf is abruptly connected across a parallel-plate capacitor so
that a time-dependent current I develops in the wire. Suppose we apply Ampère’s law to loop C shown at a time
before the capacitor is fully charged, so that . Surface gives a nonzero value for the enclosed current I,
whereas surface gives zero for the enclosed current because no current passes through it:

Clearly, Ampère’s law in its usual form does not work here. This is an internal contradiction in the theory
which requires a modification to the theory, Ampère’s law, itself.

Figure 16.3 The currents through surface and surface are unequal, despite having the same boundary loop C.

How can Ampère’s law be modified so that it works in all situations? Maxwell suggested including an additional
contribution, called the displacement current , to the real current I,

where the displacement current is defined to be

Here is the permittivity of free space and is the electric flux, defined as

The displacement current is analogous to a real current in Ampère’s law, entering into Ampère’s law in the
same way. It is produced, however, by a changing electric field. It accounts for a changing electric field
producing a magnetic field, just as a real current does, but the displacement current can produce a magnetic
field even where no real current is present. When this extra term is included, the modified Ampère’s law
equation becomes

16.1

16.2

16.3
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and is independent of the surface S through which the current I is measured.

We can now examine this modified version of Ampère’s law to confirm that it holds independent of whether the
surface or the surface in Figure 16.3 is chosen. The electric field corresponding to the flux in
Equation 16.3 is between the capacitor plates. Therefore, the field and the displacement current through the
surface are both zero, and Equation 16.2 takes the form

We must now show that for surface through which no actual current flows, the displacement current leads
to the same value for the right side of the Ampère’s law equation. For surface the equation becomes

Gauss’s law for electric charge requires a closed surface and cannot ordinarily be applied to a surface like
alone or alone. But the two surfaces and form a closed surface in Figure 16.3 and can be used in
Gauss’s law. Because the electric field is zero on , the flux contribution through is zero. This gives us

Therefore, we can replace the integral over in Equation 16.6 with the closed Gaussian surface and
apply Gauss’s law to obtain

Thus, the modified Ampère’s law equation is the same using surface where the right-hand side results
from the displacement current, as it is for the surface where the contribution comes from the actual flow of
electric charge.

EXAMPLE 16.1

Displacement current in a charging capacitor
A parallel-plate capacitor with capacitance C whose plates have area A and separation distance d is connected
to a resistor R and a battery of voltage V. The current starts to flow at . (a) Find the displacement current
between the capacitor plates at time t. (b) From the properties of the capacitor, find the corresponding real
current , and compare the answer to the expected current in the wires of the corresponding RC circuit.

Strategy
We can use the equations from the analysis of an RC circuit (Alternating-Current Circuits) plus Maxwell’s
version of Ampère’s law.

Solution

a. The voltage between the plates at time t is given by

16.4

16.5

16.6

16.7
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Let the z-axis point from the positive plate to the negative plate. Then the z-component of the electric field
between the plates as a function of time t is

Therefore, the z-component of the displacement current between the plates is

where we have used for the capacitance.
b. From the expression for the charge on the capacitor is

The current into the capacitor after the circuit is closed, is therefore

This current is the same as found in (a).

Maxwell’s Equations
With the correction for the displacement current, Maxwell’s equations take the form

Once the fields have been calculated using these four equations, the Lorentz force equation

gives the force that the fields exert on a particle with charge q moving with velocity . The Lorentz force
equation combines the force of the electric field and of the magnetic field on the moving charge. The magnetic
and electric forces have been examined in earlier modules. These four Maxwell’s equations are, respectively,

16.8

16.9

16.10

16.11

16.12

Maxwell’s Equations

1. Gauss’s law

The electric flux through any closed surface is equal to the electric charge enclosed by the surface.
Gauss’s law [Equation 16.7] describes the relation between an electric charge and the electric field it
produces. This is often pictured in terms of electric field lines originating from positive charges and
terminating on negative charges, and indicating the direction of the electric field at each point in space.

2. Gauss’s law for magnetism

The magnetic field flux through any closed surface is zero [Equation 16.8]. This is equivalent to the
statement that magnetic field lines are continuous, having no beginning or end. Any magnetic field line
entering the region enclosed by the surface must also leave it. No magnetic monopoles, where magnetic
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Maxwell’s equations and the Lorentz force law together encompass all the laws of electricity and magnetism.
The symmetry that Maxwell introduced into his mathematical framework may not be immediately apparent.
Faraday’s law describes how changing magnetic fields produce electric fields. The displacement current
introduced by Maxwell results instead from a changing electric field and accounts for a changing electric field
producing a magnetic field. The equations for the effects of both changing electric fields and changing
magnetic fields differ in form only where the absence of magnetic monopoles leads to missing terms. This
symmetry between the effects of changing magnetic and electric fields is essential in explaining the nature of
electromagnetic waves.

Later application of Einstein’s theory of relativity to Maxwell’s complete and symmetric theory showed that
electric and magnetic forces are not separate but are different manifestations of the same thing—the
electromagnetic force. The electromagnetic force and weak nuclear force are similarly unified as the
electroweak force. This unification of forces has been one motivation for attempts to unify all of the four basic
forces in nature—the gravitational, electrical, strong, and weak nuclear forces (see Particle Physics and
Cosmology).

The Mechanism of Electromagnetic Wave Propagation
To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic
waves that propagate through space, imagine a time-varying magnetic field produced by the high-
frequency alternating current seen in Figure 16.4. We represent in the diagram by one of its field lines.
From Faraday’s law, the changing magnetic field through a surface induces a time-varying electric field
at the boundary of that surface. The displacement current source for the electric field, like the Faraday’s law
source for the magnetic field, produces only closed loops of field lines, because of the mathematical symmetry
involved in the equations for the induced electric and induced magnetic fields. A field line representation of

is shown. In turn, the changing electric field creates a magnetic field according to the
modified Ampère’s law. This changing field induces which induces and so on. We then have a
self-continuing process that leads to the creation of time-varying electric and magnetic fields in regions
farther and farther away from O. This process may be visualized as the propagation of an electromagnetic
wave through space.

field lines would terminate, are known to exist (see Magnetic Fields and Lines).

3. Faraday’s law

A changing magnetic field induces an electromotive force (emf) and, hence, an electric field. The direction
of the emf opposes the change. This third of Maxwell’s equations, Equation 16.9, is Faraday’s law of
induction and includes Lenz’s law. The electric field from a changing magnetic field has field lines that
form closed loops, without any beginning or end.

4. Ampère-Maxwell law

Magnetic fields are generated by moving charges or by changing electric fields. This fourth of Maxwell’s
equations, Equation 16.10, encompasses Ampère’s law and adds another source of magnetic fields, namely
changing electric fields.
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Figure 16.4 How changing and fields propagate through space.

In the next section, we show in more precise mathematical terms how Maxwell’s equations lead to the
prediction of electromagnetic waves that can travel through space without a material medium, implying a
speed of electromagnetic waves equal to the speed of light.

Prior to Maxwell’s work, experiments had already indicated that light was a wave phenomenon, although the
nature of the waves was yet unknown. In 1801, Thomas Young (1773–1829) showed that when a light beam
was separated by two narrow slits and then recombined, a pattern made up of bright and dark fringes was
formed on a screen. Young explained this behavior by assuming that light was composed of waves that added
constructively at some points and destructively at others (see Interference). Subsequently, Jean Foucault
(1819–1868), with measurements of the speed of light in various media, and Augustin Fresnel (1788–1827),
with detailed experiments involving interference and diffraction of light, provided further conclusive evidence
that light was a wave. So, light was known to be a wave, and Maxwell had predicted the existence of
electromagnetic waves that traveled at the speed of light. The conclusion seemed inescapable: Light must be a
form of electromagnetic radiation. But Maxwell’s theory showed that other wavelengths and frequencies than
those of light were possible for electromagnetic waves. He showed that electromagnetic radiation with the
same fundamental properties as visible light should exist at any frequency. It remained for others to test, and
confirm, this prediction.

CHECK YOUR UNDERSTANDING 16.1

When the emf across a capacitor is turned on and the capacitor is allowed to charge, when does the magnetic
field induced by the displacement current have the greatest magnitude?

Hertz’s Observations
The German physicist Heinrich Hertz (1857–1894) was the first to generate and detect certain types of
electromagnetic waves in the laboratory. Starting in 1887, he performed a series of experiments that not only
confirmed the existence of electromagnetic waves but also verified that they travel at the speed of light.

Hertz used an alternating-current RLC (resistor-inductor-capacitor) circuit that resonates at a known
frequency and connected it to a loop of wire, as shown in Figure 16.5. High voltages induced

across the gap in the loop produced sparks that were visible evidence of the current in the circuit and helped
generate electromagnetic waves.

Across the laboratory, Hertz placed another loop attached to another RLC circuit, which could be tuned (as the
dial on a radio) to the same resonant frequency as the first and could thus be made to receive electromagnetic
waves. This loop also had a gap across which sparks were generated, giving solid evidence that
electromagnetic waves had been received.
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Figure 16.5 The apparatus used by Hertz in 1887 to generate and detect electromagnetic waves.

Hertz also studied the reflection, refraction, and interference patterns of the electromagnetic waves he
generated, confirming their wave character. He was able to determine the wavelengths from the interference
patterns, and knowing their frequencies, he could calculate the propagation speed using the equation ,
where v is the speed of a wave, f is its frequency, and is its wavelength. Hertz was thus able to prove that
electromagnetic waves travel at the speed of light. The SI unit for frequency, the hertz ( ), is
named in his honor.

CHECK YOUR UNDERSTANDING 16.2

Could a purely electric field propagate as a wave through a vacuum without a magnetic field? Justify your
answer.

16.2 Plane Electromagnetic Waves
Learning Objectives
By the end of this section, you will be able to:

• Describe how Maxwell’s equations predict the relative directions of the electric fields and magnetic fields,
and the direction of propagation of plane electromagnetic waves

• Explain how Maxwell’s equations predict that the speed of propagation of electromagnetic waves in free
space is exactly the speed of light

• Calculate the relative magnitude of the electric and magnetic fields in an electromagnetic plane wave
• Describe how electromagnetic waves are produced and detected

Mechanical waves travel through a medium such as a string, water, or air. Perhaps the most significant
prediction of Maxwell’s equations is the existence of combined electric and magnetic (or electromagnetic)
fields that propagate through space as electromagnetic waves. Because Maxwell’s equations hold in free space,
the predicted electromagnetic waves, unlike mechanical waves, do not require a medium for their
propagation.

A general treatment of the physics of electromagnetic waves is beyond the scope of this textbook. We can,
however, investigate the special case of an electromagnetic wave that propagates through free space along the
x-axis of a given coordinate system.

Electromagnetic Waves in One Direction
An electromagnetic wave consists of an electric field, defined as usual in terms of the force per charge on a
stationary charge, and a magnetic field, defined in terms of the force per charge on a moving charge. The
electromagnetic field is assumed to be a function of only the x-coordinate and time. The y-component of the
electric field is then written as the z-component of the magnetic field as , etc. Because we are
assuming free space, there are no free charges or currents, so we can set and in Maxwell’s
equations.
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The transverse nature of electromagnetic waves
We examine first what Gauss’s law for electric fields implies about the relative directions of the electric field
and the propagation direction in an electromagnetic wave. Assume the Gaussian surface to be the surface of a
rectangular box whose cross-section is a square of side l and whose third side has length , as shown in
Figure 16.6. Because the electric field is a function only of x and t, the y-component of the electric field is the
same on both the top (labeled Side 2) and bottom (labeled Side 1) of the box, so that these two contributions to
the flux cancel. The corresponding argument also holds for the net flux from the z-component of the electric
field through Sides 3 and 4. Any net flux through the surface therefore comes entirely from the x-component of
the electric field. Because the electric field has no y- or z-dependence, is constant over the face of the
box with area A and has a possibly different value that is constant over the opposite face of the
box. Applying Gauss’s law gives

where is the area of the front and back faces of the rectangular surface. But the charge enclosed is
, so this component’s net flux is also zero, and Equation 16.13 implies for

any . Therefore, if there is an x-component of the electric field, it cannot vary with x. A uniform field of that
kind would merely be superposed artificially on the traveling wave, for example, by having a pair of parallel-
charged plates. Such a component would not be part of an electromagnetic wave propagating along
the x-axis; so for this wave. Therefore, the only nonzero components of the electric field are

and perpendicular to the direction of propagation of the wave.

Figure 16.6 The surface of a rectangular box of dimensions is our Gaussian surface. The electric field shown is from an

electromagnetic wave propagating along the x-axis.

A similar argument holds by substituting E for B and using Gauss’s law for magnetism instead of Gauss’s law
for electric fields. This shows that the B field is also perpendicular to the direction of propagation of the wave.
The electromagnetic wave is therefore a transverse wave, with its oscillating electric and magnetic fields
perpendicular to its direction of propagation.

The speed of propagation of electromagnetic waves
We can next apply Maxwell’s equations to the description given in connection with Figure 16.4 in the previous
section to obtain an equation for the E field from the changing B field, and for the B field from a changing E
field. We then combine the two equations to show how the changing E and B fields propagate through space at

16.13
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a speed precisely equal to the speed of light.

First, we apply Faraday’s law over Side 3 of the Gaussian surface, using the path shown in Figure 16.7. Because
we have

Assuming is small and approximating by

we obtain

Figure 16.7 We apply Faraday’s law to the front of the rectangle by evaluating along the rectangular edge of Side 3 in the

direction indicated, taking the B field crossing the face to be approximately its value in the middle of the area traversed.

Because is small, the magnetic flux through the face can be approximated by its value in the center of the
area traversed, namely . The flux of the B field through Face 3 is then the B field times the area,

From Faraday’s law,

Therefore, from Equation 16.13 and Equation 16.14,

Canceling and taking the limit as , we are left with

16.14

16.15

688 16 • Electromagnetic Waves

Access for free at openstax.org.



We could have applied Faraday’s law instead to the top surface (numbered 2) in Figure 16.7, to obtain the
resulting equation

This is the equation describing the spatially dependent E field produced by the time-dependent B field.

Next we apply the Ampère-Maxwell law (with ) over the same two faces (Surface 3 and then Surface 2) of
the rectangular box of Figure 16.7. Applying Equation 16.10,

to Surface 3, and then to Surface 2, yields the two equations

These equations describe the spatially dependent B field produced by the time-dependent E field.

We next combine the equations showing the changing B field producing an E field with the equation showing
the changing E field producing a B field. Taking the derivative of Equation 16.16 with respect to x and using
Equation 16.26 gives

This is the form taken by the general wave equation for our plane wave. Because the equations describe a wave
traveling at some as-yet-unspecified speed c, we can assume the field components are each functions of x – ct
for the wave traveling in the +x-direction, that is,

It is left as a mathematical exercise to show, using the chain rule for differentiation, that Equation 16.17 and
Equation 16.18 imply

The speed of the electromagnetic wave in free space is therefore given in terms of the permeability and the
permittivity of free space by

We could just as easily have assumed an electromagnetic wave with field components and .
The same type of analysis with Equation 16.25 and Equation 16.24 would also show that the speed of an
electromagnetic wave is .

The physics of traveling electromagnetic fields was worked out by Maxwell in 1873. He showed in a more
general way than our derivation that electromagnetic waves always travel in free space with a speed given by

16.16

16.17

16.18

16.19

16.20

16.21

16.22
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Equation 16.18. If we evaluate the speed we find that

which is the speed of light. Imagine the excitement that Maxwell must have felt when he discovered this
equation! He had found a fundamental connection between two seemingly unrelated phenomena:
electromagnetic fields and light.

CHECK YOUR UNDERSTANDING 16.3

The wave equation was obtained by (1) finding the E field produced by the changing B field, (2) finding the B
field produced by the changing E field, and combining the two results. Which of Maxwell’s equations was the
basis of step (1) and which of step (2)?

How the E and B Fields Are Related
So far, we have seen that the rates of change of different components of the E and B fields are related, that the
electromagnetic wave is transverse, and that the wave propagates at speed c. We next show what Maxwell’s
equations imply about the ratio of the E and B field magnitudes and the relative directions of the E and B fields.

We now consider solutions to Equation 16.16 in the form of plane waves for the electric field:

We have arbitrarily taken the wave to be traveling in the +x-direction and chosen its phase so that the
maximum field strength occurs at the origin at time . We are justified in considering only sines and
cosines in this way, and generalizing the results, because Fourier’s theorem implies we can express any wave,
including even square step functions, as a superposition of sines and cosines.

At any one specific point in space, the E field oscillates sinusoidally at angular frequency between and
and similarly, the B field oscillates between and The amplitude of the wave is the maximum

value of The period of oscillation T is the time required for a complete oscillation. The frequency f is
the number of complete oscillations per unit of time, and is related to the angular frequency by .
The wavelength is the distance covered by one complete cycle of the wave, and the wavenumber k is the
number of wavelengths that fit into a distance of in the units being used. These quantities are related in the
same way as for a mechanical wave:

Given that the solution of has the form shown in Equation 16.20, we need to determine the B field that
accompanies it. From Equation 16.24, the magnetic field component must obey

Because the solution for the B-field pattern of the wave propagates in the +x-direction at the same speed c as
the E-field pattern, it must be a function of . Thus, we conclude from Equation 16.21 that

is

These results may be written as

16.23

16.24

16.25
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Therefore, the peaks of the E and B fields coincide, as do the troughs of the wave, and at each point, the E and B
fields are in the same ratio equal to the speed of light c. The plane wave has the form shown in Figure 16.8.

Figure 16.8 The plane wave solution of Maxwell’s equations has the B field directly proportional to the E field at each point, with the

relative directions shown.

EXAMPLE 16.2

Calculating B-Field Strength in an Electromagnetic Wave
What is the maximum strength of the B field in an electromagnetic wave that has a maximum E-field strength
of 1000 V/m?

Strategy
To find the B-field strength, we rearrange Equation 16.23 to solve for B, yielding

Solution
We are given E, and c is the speed of light. Entering these into the expression for B yields

Significance
The B-field strength is less than a tenth of Earth’s admittedly weak magnetic field. This means that a relatively
strong electric field of 1000 V/m is accompanied by a relatively weak magnetic field.

Changing electric fields create relatively weak magnetic fields. The combined electric and magnetic fields can
be detected in electromagnetic waves, however, by taking advantage of the phenomenon of resonance, as Hertz
did. A system with the same natural frequency as the electromagnetic wave can be made to oscillate. All radio
and TV receivers use this principle to pick up and then amplify weak electromagnetic waves, while rejecting all
others not at their resonant frequency.

CHECK YOUR UNDERSTANDING 16.4

What conclusions did our analysis of Maxwell’s equations lead to about these properties of a plane
electromagnetic wave:

16.26
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(a) the relative directions of wave propagation, of the E field, and of B field,
(b) the speed of travel of the wave and how the speed depends on frequency, and
(c) the relative magnitudes of the E and B fields.

Production and Detection of Electromagnetic Waves
A steady electric current produces a magnetic field that is constant in time and which does not propagate as a
wave. Accelerating charges, however, produce electromagnetic waves. An electric charge oscillating up and
down, or an alternating current or flow of charge in a conductor, emit radiation at the frequencies of their
oscillations. The electromagnetic field of a dipole antenna is shown in Figure 16.9. The positive and negative
charges on the two conductors are made to reverse at the desired frequency by the output of a transmitter as
the power source. The continually changing current accelerates charge in the antenna, and this results in an
oscillating electric field a distance away from the antenna. The changing electric fields produce changing
magnetic fields that in turn produce changing electric fields, which thereby propagate as electromagnetic
waves. The frequency of this radiation is the same as the frequency of the ac source that is accelerating the
electrons in the antenna. The two conducting elements of the dipole antenna are commonly straight wires. The
total length of the two wires is typically about one-half of the desired wavelength (hence, the alternative name
half-wave antenna), because this allows standing waves to be set up and enhances the effectiveness of the
radiation.

Figure 16.9 The oscillatory motion of the charges in a dipole antenna produces electromagnetic radiation.

The electric field lines in one plane are shown. The magnetic field is perpendicular to this plane. This radiation
field has cylindrical symmetry around the axis of the dipole. Field lines near the dipole are not shown. The
pattern is not at all uniform in all directions. The strongest signal is in directions perpendicular to the axis of
the antenna, which would be horizontal if the antenna is mounted vertically. There is zero intensity along the
axis of the antenna. The fields detected far from the antenna are from the changing electric and magnetic
fields inducing each other and traveling as electromagnetic waves. Far from the antenna, the wave fronts, or
surfaces of equal phase for the electromagnetic wave, are almost spherical. Even farther from the antenna, the
radiation propagates like electromagnetic plane waves.

The electromagnetic waves carry energy away from their source, similar to a sound wave carrying energy away
from a standing wave on a guitar string. An antenna for receiving electromagnetic signals works in reverse.
Incoming electromagnetic waves induce oscillating currents in the antenna, each at its own frequency. The
radio receiver includes a tuner circuit, whose resonant frequency can be adjusted. The tuner responds
strongly to the desired frequency but not others, allowing the user to tune to the desired broadcast. Electrical
components amplify the signal formed by the moving electrons. The signal is then converted into an audio
and/or video format.
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INTERACTIVE

Use this simulation (https://openstax.org/l/21radwavsim) to broadcast radio waves. Wiggle the transmitter
electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart
shows the electron positions at the transmitter and at the receiver.

16.3 Energy Carried by Electromagnetic Waves
Learning Objectives
By the end of this section, you will be able to:

• Express the time-averaged energy density of electromagnetic waves in terms of their electric and magnetic
field amplitudes

• Calculate the Poynting vector and the energy intensity of electromagnetic waves
• Explain how the energy of an electromagnetic wave depends on its amplitude, whereas the energy of a

photon is proportional to its frequency

Anyone who has used a microwave oven knows there is energy in electromagnetic waves. Sometimes this
energy is obvious, such as in the warmth of the summer Sun. Other times, it is subtle, such as the unfelt energy
of gamma rays, which can destroy living cells.

Electromagnetic waves bring energy into a system by virtue of their electric and magnetic fields. These fields
can exert forces and move charges in the system and, thus, do work on them. However, there is energy in an
electromagnetic wave itself, whether it is absorbed or not. Once created, the fields carry energy away from a
source. If some energy is later absorbed, the field strengths are diminished and anything left travels on.

Clearly, the larger the strength of the electric and magnetic fields, the more work they can do and the greater
the energy the electromagnetic wave carries. In electromagnetic waves, the amplitude is the maximum field
strength of the electric and magnetic fields (Figure 16.10). The wave energy is determined by the wave
amplitude.

Figure 16.10 Energy carried by a wave depends on its amplitude. With electromagnetic waves, doubling the E fields and B fields

quadruples the energy density u and the energy flux uc.

For a plane wave traveling in the direction of the positive x-axis with the phase of the wave chosen so that the
wave maximum is at the origin at , the electric and magnetic fields obey the equations

The energy in any part of the electromagnetic wave is the sum of the energies of the electric and magnetic
fields. This energy per unit volume, or energy density u, is the sum of the energy density from the electric field
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and the energy density from the magnetic field. Expressions for both field energy densities were discussed
earlier ( in Capacitance and in Inductance). Combining these the contributions, we obtain

The expression then shows that the magnetic energy density and electric energy

density are equal, despite the fact that changing electric fields generally produce only small magnetic
fields. The equality of the electric and magnetic energy densities leads to

The energy density moves with the electric and magnetic fields in a similar manner to the waves themselves.

We can find the rate of transport of energy by considering a small time interval . As shown in Figure 16.11,
the energy contained in a cylinder of length and cross-sectional area A passes through the cross-sectional
plane in the interval

Figure 16.11 The energy contained in the electric and magnetic fields of the electromagnetic wave in the volume passes

through the area A in time .

The energy passing through area A in time is

The energy per unit area per unit time passing through a plane perpendicular to the wave, called the energy
flux and denoted by S, can be calculated by dividing the energy by the area A and the time interval .

More generally, the flux of energy through any surface also depends on the orientation of the surface. To take
the direction into account, we introduce a vector , called the Poynting vector, with the following definition:

The cross-product of and points in the direction perpendicular to both vectors. To confirm that the
direction of is that of wave propagation, and not its negative, return to Figure 16.7. Note that Lenz’s and
Faraday’s laws imply that when the magnetic field shown is increasing in time, the electric field is greater at x
than at . The electric field is decreasing with increasing x at the given time and location. The
proportionality between electric and magnetic fields requires the electric field to increase in time along with
the magnetic field. This is possible only if the wave is propagating to the right in the diagram, in which case,
the relative orientations show that is specifically in the direction of propagation of the

electromagnetic wave.

The energy flux at any place also varies in time, as can be seen by substituting u from Equation 16.23 into
Equation 16.27.

16.27

16.28
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Because the frequency of visible light is very high, of the order of the energy flux for visible light
through any area is an extremely rapidly varying quantity. Most measuring devices, including our eyes, detect
only an average over many cycles. The time average of the energy flux is the intensity I of the electromagnetic
wave and is the power per unit area. It can be expressed by averaging the cosine function in Equation 16.29
over one complete cycle, which is the same as time-averaging over many cycles (here, T is one period):

We can either evaluate the integral, or else note that because the sine and cosine differ merely in phase, the
average over a complete cycle for is the same as for , to obtain

where the angle brackets stand for the time-averaging operation. The intensity of light moving at speed c
in vacuum is then found to be

in terms of the maximum electric field strength which is also the electric field amplitude. Algebraic
manipulation produces the relationship

where is the magnetic field amplitude, which is the same as the maximum magnetic field strength. One
more expression for in terms of both electric and magnetic field strengths is useful. Substituting the fact
that the previous expression becomes

We can use whichever of the three preceding equations is most convenient, because the three equations are
really just different versions of the same result: The energy in a wave is related to amplitude squared.
Furthermore, because these equations are based on the assumption that the electromagnetic waves are
sinusoidal, the peak intensity is twice the average intensity; that is,

EXAMPLE 16.3

A Laser Beam
The beam from a small laboratory laser typically has an intensity of about . Assuming that
the beam is composed of plane waves, calculate the amplitudes of the electric and magnetic fields in the beam.

Strategy
Use the equation expressing intensity in terms of electric field to calculate the electric field from the intensity.

Solution
From Equation 16.31, the intensity of the laser beam is

16.29

16.30

16.31

16.32

16.33
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The amplitude of the electric field is therefore

The amplitude of the magnetic field can be obtained from Equation 16.20:

EXAMPLE 16.4

Light Bulb Fields
A light bulb emits 5.00 W of power as visible light. What are the average electric and magnetic fields from the
light at a distance of 3.0 m?

Strategy
Assume the bulb’s power output P is distributed uniformly over a sphere of radius 3.0 m to calculate the
intensity, and from it, the electric field.

Solution
The power radiated as visible light is then

Significance
The intensity I falls off as the distance squared if the radiation is dispersed uniformly in all directions.
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EXAMPLE 16.5

Radio Range
A 60-kW radio transmitter on Earth sends its signal to a satellite 100 km away (Figure 16.12). At what distance
in the same direction would the signal have the same maximum field strength if the transmitter’s output power
were increased to 90 kW?

Figure 16.12 In three dimensions, a signal spreads over a solid angle as it travels outward from its source.

Strategy
The area over which the power in a particular direction is dispersed increases as distance squared, as
illustrated in the figure. Change the power output P by a factor of (90 kW/60 kW) and change the area by the

same factor to keep the same. Then use the proportion of area A in the diagram to distance
squared to find the distance that produces the calculated change in area.

Solution
Using the proportionality of the areas to the squares of the distances, and solving, we obtain from the diagram

Significance
The range of a radio signal is the maximum distance between the transmitter and receiver that allows for
normal operation. In the absence of complications such as reflections from obstacles, the intensity follows an
inverse square law, and doubling the range would require multiplying the power by four.

16.4 Momentum and Radiation Pressure
Learning Objectives
By the end of this section, you will be able to:

• Describe the relationship of the radiation pressure and the energy density of an electromagnetic wave
• Explain how the radiation pressure of light, while small, can produce observable astronomical effects
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Material objects consist of charged particles. An electromagnetic wave incident on the object exerts forces on
the charged particles, in accordance with the Lorentz force, Equation 16.11. These forces do work on the
particles of the object, increasing its energy, as discussed in the previous section. The energy that sunlight
carries is a familiar part of every warm sunny day. A much less familiar feature of electromagnetic radiation is
the extremely weak pressure that electromagnetic radiation produces by exerting a force in the direction of the
wave. This force occurs because electromagnetic waves contain and transport momentum.

To understand the direction of the force for a very specific case, consider a plane electromagnetic wave
incident on a metal in which electron motion, as part of a current, is damped by the resistance of the metal, so
that the average electron motion is in phase with the force causing it. This is comparable to an object moving
against friction and stopping as soon as the force pushing it stops (Figure 16.13). When the electric field is in
the direction of the positive y-axis, electrons move in the negative y-direction, with the magnetic field in the
direction of the positive z-axis. By applying the right-hand rule, and accounting for the negative charge of the
electron, we can see that the force on the electron from the magnetic field is in the direction of the positive
x-axis, which is the direction of wave propagation. When the E field reverses, the B field does too, and the force
is again in the same direction. Maxwell’s equations together with the Lorentz force equation imply the
existence of radiation pressure much more generally than this specific example, however.

Figure 16.13 Electric and magnetic fields of an electromagnetic wave can combine to produce a force in the direction of propagation, as

illustrated for the special case of electrons whose motion is highly damped by the resistance of a metal.

Maxwell predicted that an electromagnetic wave carries momentum. An object absorbing an electromagnetic
wave would experience a force in the direction of propagation of the wave. The force corresponds to radiation
pressure exerted on the object by the wave. The force would be twice as great if the radiation were reflected
rather than absorbed.

Maxwell’s prediction was confirmed in 1903 by Nichols and Hull by precisely measuring radiation pressures
with a torsion balance. The schematic arrangement is shown in Figure 16.14. The mirrors suspended from a
fiber were housed inside a glass container. Nichols and Hull were able to obtain a small measurable deflection
of the mirrors from shining light on one of them. From the measured deflection, they could calculate the
unbalanced force on the mirror, and obtained agreement with the predicted value of the force.
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Figure 16.14 Simplified diagram of the central part of the apparatus Nichols and Hull used to precisely measure radiation pressure and

confirm Maxwell’s prediction.

The radiation pressure applied by an electromagnetic wave on a perfectly absorbing surface turns out to
be equal to the energy density of the wave:

If the material is perfectly reflecting, such as a metal surface, and if the incidence is along the normal to the
surface, then the pressure exerted is twice as much because the momentum direction reverses upon
reflection:

We can confirm that the units are right:

Equation 16.34 and Equation 16.35 give the instantaneous pressure, but because the energy density oscillates
rapidly, we are usually interested in the time-averaged radiation pressure, which can be written in terms of
intensity:

Radiation pressure plays a role in explaining many observed astronomical phenomena, including the
appearance of comets. Comets are basically chunks of icy material in which frozen gases and particles of rock
and dust are embedded. When a comet approaches the Sun, it warms up and its surface begins to evaporate.
The coma of the comet is the hazy area around it from the gases and dust. Some of the gases and dust form
tails when they leave the comet. Notice in Figure 16.15 that a comet has two tails. The ion tail (or gas tail in
Figure 16.15) is composed mainly of ionized gases. These ions interact electromagnetically with the solar
wind, which is a continuous stream of charged particles emitted by the Sun. The force of the solar wind on the
ionized gases is strong enough that the ion tail almost always points directly away from the Sun. The second
tail is composed of dust particles. Because the dust tail is electrically neutral, it does not interact with the solar
wind. However, this tail is affected by the radiation pressure produced by the light from the Sun. Although
quite small, this pressure is strong enough to cause the dust tail to be displaced from the path of the comet.

16.34

16.35

16.36
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Figure 16.15 Evaporation of material being warmed by the Sun forms two tails, as shown in this photo of Comet Ison. (credit:

modification of work by E. Slawik—ESO)

EXAMPLE 16.6

Halley’s Comet
On February 9, 1986, Comet Halley was at its closest point to the Sun, about from the center of
the Sun. The average power output of the Sun is

(a) Calculate the radiation pressure on the comet at this point in its orbit. Assume that the comet reflects all the
incident light.

(b) Suppose that a 10-kg chunk of material of cross-sectional area breaks loose from the
comet. Calculate the force on this chunk due to the solar radiation. Compare this force with the gravitational
force of the Sun.

Strategy
Calculate the intensity of solar radiation at the given distance from the Sun and use that to calculate the
radiation pressure. From the pressure and area, calculate the force.

Solution

a. The intensity of the solar radiation is the average solar power per unit area. Hence, at from
the center of the Sun, we have

Assuming the comet reflects all the incident radiation, we obtain from Equation 16.36

b. The force on the chunk due to the radiation is

whereas the gravitational force of the Sun is
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Significance
The gravitational force of the Sun on the chunk is therefore much greater than the force of the radiation.

After Maxwell showed that light carried momentum as well as energy, a novel idea eventually emerged,
initially only as science fiction. Perhaps a spacecraft with a large reflecting light sail could use radiation
pressure for propulsion. Such a vehicle would not have to carry fuel. It would experience a constant but small
force from solar radiation, instead of the short bursts from rocket propulsion. It would accelerate slowly, but by
being accelerated continuously, it would eventually reach great speeds. A spacecraft with small total mass and
a sail with a large area would be necessary to obtain a usable acceleration.

When the space program began in the 1960s, the idea started to receive serious attention from NASA. The
most recent development in light propelled spacecraft has come from a citizen-funded group, the Planetary
Society. It is currently testing the use of light sails to propel a small vehicle built from CubeSats, tiny satellites
that NASA places in orbit for various research projects during space launches intended mainly for other
purposes.

The LightSail spacecraft shown below (Figure 16.16) consists of three CubeSats bundled together. It has a total
mass of only about 5 kg and is about the size as a loaf of bread. Its sails are made of very thin Mylar and open
after launch to have a surface area of

Figure 16.16 Two small CubeSat satellites deployed from the International Space Station in May, 2016. The solar sails open out when the

CubeSats are far enough away from the Station. (credit: modification of work by NASA)

INTERACTIVE

The first LightSail spacecraft was launched in 2015 to test the sail deployment system. It was placed in low-
earth orbit in 2015 by hitching a ride on an Atlas 5 rocket launched for an unrelated mission. The test was
successful, but the low-earth orbit allowed too much drag on the spacecraft to accelerate it by sunlight.
Eventually, it burned in the atmosphere, as expected. The next Planetary Society’s LightSail solar sailing
spacecraft is scheduled for 2016. An illustration (https://openstax.org/l/21lightsail) of the spacecraft, as it is
expected to appear in flight, can be seen on the Planetary Society’s website.
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EXAMPLE 16.7

LightSail Acceleration
The intensity of energy from sunlight at a distance of 1 AU from the Sun is . The LightSail
spacecraft has sails with total area of and a total mass of 5.0 kg. Calculate the maximum acceleration
LightSail spacecraft could achieve from radiation pressure when it is about 1 AU from the Sun.

Strategy
The maximum acceleration can be expected when the sail is opened directly facing the Sun. Use the light
intensity to calculate the radiation pressure and from it, the force on the sails. Then use Newton’s second law
to calculate the acceleration.

Solution
The radiation pressure is

The resulting acceleration is

Significance
If this small acceleration continued for a year, the craft would attain a speed of 1829 m/s, or 6600 km/h.

CHECK YOUR UNDERSTANDING 16.5

How would the speed and acceleration of a radiation-propelled spacecraft be affected as it moved farther from
the Sun on an interplanetary space flight?

16.5 The Electromagnetic Spectrum
Learning Objectives
By the end of this section, you will be able to:

• Explain how electromagnetic waves are divided into different ranges, depending on wavelength and
corresponding frequency

• Describe how electromagnetic waves in different categories are produced
• Describe some of the many practical everyday applications of electromagnetic waves

Electromagnetic waves have a vast range of practical everyday applications that includes such diverse uses as
communication by cell phone and radio broadcasting, WiFi, cooking, vision, medical imaging, and treating
cancer. In this module, we discuss how electromagnetic waves are classified into categories such as radio,
infrared, ultraviolet, and so on. We also summarize some of the main applications for each range.

The different categories of electromagnetic waves differ in their wavelength range, or equivalently, in their
corresponding frequency ranges. Their properties change smoothly from one frequency range to the next,
with different applications in each range. A brief overview of the production and utilization of electromagnetic
waves is found in Table 16.1.
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Type of
wave

Production Applications Issues

Radio Accelerating charges
Communications
Remote controls
MRI

Requires control for band
use

Microwaves
Accelerating charges and thermal
agitation

Communications
Ovens
Radar
Cell phone use

Infrared
Thermal agitation and electronic
transitions

Thermal imaging
Heating

Absorbed by atmosphere
Greenhouse effect

Visible
light

Thermal agitation and electronic
transitions

Photosynthesis
Human vision

Ultraviolet
Thermal agitation and electronic
transitions

Sterilization
Vitamin D
production

Ozone depletion
Cancer causing

X-rays
Inner electronic transitions and fast
collisions

Security
Medical diagnosis
Cancer therapy

Cancer causing

Gamma
rays

Nuclear decay

Nuclear medicine
Security
Medical diagnosis
Cancer therapy

Cancer causing
Radiation damage

Table 16.1 Electromagnetic Waves

The relationship between frequency f and wavelength applies to all waves and ensures that greater
frequency means smaller wavelength. Figure 16.17 shows how the various types of electromagnetic waves are
categorized according to their wavelengths and frequencies—that is, it shows the electromagnetic spectrum.
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Figure 16.17 The electromagnetic spectrum, showing the major categories of electromagnetic waves.

Radio Waves
The term radio waves refers to electromagnetic radiation with wavelengths greater than about 0.1 m. Radio
waves are commonly used for audio communications (i.e., for radios), but the term is used for electromagnetic
waves in this range regardless of their application. Radio waves typically result from an alternating current in
the wires of a broadcast antenna. They cover a very broad wavelength range and are divided into many
subranges, including microwaves, electromagnetic waves used for AM and FM radio, cellular telephones, and
TV signals.

There is no lowest frequency of radio waves, but ELF waves, or “extremely low frequency” are among the
lowest frequencies commonly encountered, from 3 Hz to 3 kHz. The accelerating charge in the ac currents of
electrical power lines produce electromagnetic waves in this range. ELF waves are able to penetrate sea water,
which strongly absorbs electromagnetic waves of higher frequency, and therefore are useful for submarine
communications.

In order to use an electromagnetic wave to transmit information, the amplitude, frequency, or phase of the
wave is modulated, or varied in a controlled way that encodes the intended information into the wave. In AM
radio transmission, the amplitude of the wave is modulated to mimic the vibrations of the sound being
conveyed. Fourier’s theorem implies that the modulated AM wave amounts to a superposition of waves
covering some narrow frequency range. Each AM station is assigned a specific carrier frequency that, by
international agreement, is allowed to vary by . In FM radio transmission, the frequency of the wave is
modulated to carry this information, as illustrated in Figure 16.18, and the frequency of each station is allowed
to use 100 kHz on each side of its carrier frequency. The electromagnetic wave produces a current in a
receiving antenna, and the radio or television processes the signal to produce the sound and any image. The
higher the frequency of the radio wave used to carry the data, the greater the detailed variation of the wave that
can be carried by modulating it over each time unit, and the more data that can be transmitted per unit of time.
The assigned frequencies for AM broadcasting are 540 to 1600 kHz, and for FM are 88 MHz to108 MHz.
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Figure 16.18 Electromagnetic waves are used to carry communications signals by varying the wave’s amplitude (AM), its frequency (FM),

or its phase.

Cell phone conversations, and television voice and video images are commonly transmitted as digital data, by
converting the signal into a sequence of binary ones and zeros. This allows clearer data transmission when the
signal is weak, and allows using computer algorithms to compress the digital data to transmit more data in
each frequency range. Computer data as well is transmitted as a sequence of binary ones and zeros, each one
or zero constituting one bit of data.

Microwaves
Microwaves are the highest-frequency electromagnetic waves that can be produced by currents in
macroscopic circuits and devices. Microwave frequencies range from about to nearly . Their
high frequencies correspond to short wavelengths compared with other radio waves—hence the name
“microwave.” Microwaves also occur naturally as the cosmic background radiation left over from the origin of
the universe. Along with other ranges of electromagnetic waves, they are part of the radiation that any object
above absolute zero emits and absorbs because of thermal agitation, that is, from the thermal motion of its
atoms and molecules.

Most satellite-transmitted information is carried on microwaves. Radar is a common application of
microwaves. By detecting and timing microwave echoes, radar systems can determine the distance to objects
as diverse as clouds, aircraft, or even the surface of Venus.

Microwaves of 2.45 GHz are commonly used in microwave ovens. The electrons in a water molecule tend to
remain closer to the oxygen nucleus than the hydrogen nuclei (Figure 16.19). This creates two separated
centers of equal and opposite charges, giving the molecule a dipole moment (see Electric Field). The oscillating
electric field of the microwaves inside the oven exerts a torque that tends to align each molecule first in one
direction and then in the other, with the motion of each molecule coupled to others around it. This pumps
energy into the continual thermal motion of the water to heat the food. The plate under the food contains no
water, and remains relatively unheated.

16.5 • The Electromagnetic Spectrum 705



Figure 16.19 The oscillating electric field in a microwave oven exerts a torque on water molecules because of their dipole moment, and

the torque reverses direction times per second. Interactions between the molecules distributes the energy being pumped into

them. The and denote the charge distribution on the molecules.

The microwaves in a microwave oven reflect off the walls of the oven, so that the superposition of waves
produces standing waves, similar to the standing waves of a vibrating guitar or violin string (see Normal Modes
of a Standing Sound Wave). A rotating fan acts as a stirrer by reflecting the microwaves in different directions,
and food turntables, help spread out the hot spots.

EXAMPLE 16.8

Why Microwave Ovens Heat Unevenly
How far apart are the hotspots in a 2.45-GHz microwave oven?

Strategy
Consider the waves along one direction in the oven, being reflected at the opposite wall from where they are
generated.

Solution
The antinodes, where maximum intensity occurs, are half the wavelength apart, with separation

Significance
The distance between the hot spots in a microwave oven are determined by the wavelength of the microwaves.

A cell phone has a radio receiver and a weak radio transmitter, both of which can quickly tune to hundreds of
specifically assigned microwave frequencies. The low intensity of the transmitted signal gives it an
intentionally limited range. A ground-based system links the phone to only to the broadcast tower assigned to
the specific small area, or cell, and smoothly transitions its connection to the next cell when the signal
reception there is the stronger one. This enables a cell phone to be used while changing location.

Microwaves also provide the WiFi that enables owners of cell phones, laptop computers, and similar devices to
connect wirelessly to the Internet at home and at coffee shops and airports. A wireless WiFi router is a device
that exchanges data over the Internet through the cable or another connection, and uses microwaves to
exchange the data wirelessly with devices such as cell phones and computers. The term WiFi itself refers to the
standards followed in modulating and analyzing the microwaves so that wireless routers and devices from
different manufacturers work compatibly with one another. The computer data in each direction consist of
sequences of binary zeros and ones, each corresponding to a binary bit. The microwaves are in the range of 2.4
GHz to 5.0 GHz range.
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Other wireless technologies also use microwaves to provide everyday communications between devices.
Bluetooth developed alongside WiFi as a standard for radio communication in the 2.4-GHz range between
nearby devices, for example, to link to headphones and audio earpieces to devices such as radios, or a driver’s
cell phone to a hands-free device to allow answering phone calls without fumbling directly with the cell phone.

Microwaves find use also in radio tagging, using RFID (radio frequency identification) technology. Examples
are RFID tags attached to store merchandize, transponder for toll booths use attached to the windshield of a
car, or even a chip embedded into a pet’s skin. The device responds to a microwave signal by emitting a signal
of its own with encoded information, allowing stores to quickly ring up items at their cash registers, drivers to
charge tolls to their account without stopping, and lost pets to be reunited with their owners. NFC (near field
communication) works similarly, except it is much shorter range. Its mechanism of interaction is the induced
magnetic field at microwave frequencies between two coils. Cell phones that have NFC capability and the right
software can supply information for purchases using the cell phone instead of a physical credit card. The very
short range of the data transfer is a desired security feature in this case.

Infrared Radiation
The boundary between the microwave and infrared regions of the electromagnetic spectrum is not well
defined (see Figure 16.17). Infrared radiation is generally produced by thermal motion, and the vibration and
rotation of atoms and molecules. Electronic transitions in atoms and molecules can also produce infrared
radiation. About half of the solar energy arriving at Earth is in the infrared region, with most of the rest in the
visible part of the spectrum. About 23% of the solar energy is absorbed in the atmosphere, about 48% is
absorbed at Earth’s surface, and about 29% is reflected back into space.1

The range of infrared frequencies extends up to the lower limit of visible light, just below red. In fact, infrared
means “below red.” Water molecules rotate and vibrate particularly well at infrared frequencies.
Reconnaissance satellites can detect buildings, vehicles, and even individual humans by their infrared
emissions, whose power radiation is proportional to the fourth power of the absolute temperature. More
mundanely, we use infrared lamps, including those called quartz heaters, to preferentially warm us because
we absorb infrared better than our surroundings.

The familiar handheld “remotes” for changing channels and settings on television sets often transmit their
signal by modulating an infrared beam. If you try to use a TV remote without the infrared emitter being in
direct line of sight with the infrared detector, you may find the television not responding. Some remotes use
Bluetooth instead and reduce this annoyance.

Visible Light
Visible light is the narrow segment of the electromagnetic spectrum between about 400 nm and about 750 nm
to which the normal human eye responds. Visible light is produced by vibrations and rotations of atoms and
molecules, as well as by electronic transitions within atoms and molecules. The receivers or detectors of light
largely utilize electronic transitions.

Red light has the lowest frequencies and longest wavelengths, whereas violet has the highest frequencies and
shortest wavelengths (Figure 16.20). Blackbody radiation from the Sun peaks in the visible part of the
spectrum but is more intense in the red than in the violet, making the sun yellowish in appearance.

Figure 16.20 A small part of the electromagnetic spectrum that includes its visible components. The divisions between infrared, visible,

and ultraviolet are not perfectly distinct, nor are those between the seven rainbow colors.

1 http://earthobservatory.nasa.gov/Features/EnergyBalance/page4.php
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Living things—plants and animals—have evolved to utilize and respond to parts of the electromagnetic
spectrum in which they are embedded. We enjoy the beauty of nature through visible light. Plants are more
selective. Photosynthesis uses parts of the visible spectrum to make sugars.

Ultraviolet Radiation
Ultraviolet means “above violet.” The electromagnetic frequencies of ultraviolet radiation (UV) extend
upward from violet, the highest-frequency visible light. The highest-frequency ultraviolet overlaps with the
lowest-frequency X-rays. The wavelengths of ultraviolet extend from 400 nm down to about 10 nm at its
highest frequencies. Ultraviolet is produced by atomic and molecular motions and electronic transitions.

UV radiation from the Sun is broadly subdivided into three wavelength ranges: UV-A (320–400 nm) is the
lowest frequency, then UV-B (290–320 nm) and UV-C (220–290 nm). Most UV-B and all UV-C are absorbed by
ozone ( ) molecules in the upper atmosphere. Consequently, 99% of the solar UV radiation reaching Earth’s
surface is UV-A.

Sunburn is caused by large exposures to UV-B and UV-C, and repeated exposure can increase the likelihood of
skin cancer. The tanning response is a defense mechanism in which the body produces pigments in inert skin
layers to reduce exposure of the living cells below.

As examined in a later chapter, the shorter the wavelength of light, the greater the energy change of an atom or
molecule that absorbs the light in an electronic transition. This makes short-wavelength ultraviolet light
damaging to living cells. It also explains why ultraviolet radiation is better able than visible light to cause some
materials to glow, or fluoresce.

Besides the adverse effects of ultraviolet radiation, there are also benefits of exposure in nature and uses in
technology. Vitamin D production in the skin results from exposure to UV-B radiation, generally from sunlight.
Several studies suggest vitamin D deficiency is associated with the development of a range of cancers
(prostate, breast, colon), as well as osteoporosis. Low-intensity ultraviolet has applications such as providing
the energy to cause certain dyes to fluoresce and emit visible light, for example, in printed money to display
hidden watermarks as counterfeit protection.

X-Rays
X-rays have wavelengths from about . They have shorter wavelengths, and higher
frequencies, than ultraviolet, so that the energy they transfer at an atomic level is greater. As a result, X-rays
have adverse effects on living cells similar to those of ultraviolet radiation, but they are more penetrating.
Cancer and genetic defects can be induced by X-rays. Because of their effect on rapidly dividing cells, X-rays
can also be used to treat and even cure cancer.

The widest use of X-rays is for imaging objects that are opaque to visible light, such as the human body or
aircraft parts. In humans, the risk of cell damage is weighed carefully against the benefit of the diagnostic
information obtained.

Gamma Rays
Soon after nuclear radioactivity was first detected in 1896, it was found that at least three distinct types of
radiation were being emitted, and these were designated as alpha, beta, and gamma rays. The most
penetrating nuclear radiation, the gamma ray ( ray), was later found to be an extremely high-frequency
electromagnetic wave.

The lower end of the ray frequency range overlaps the upper end of the X-ray range. Gamma rays have
characteristics identical to X-rays of the same frequency—they differ only in source. The name “gamma rays” is
generally used for electromagnetic radiation emitted by a nucleus, while X-rays are generally produced by
bombarding a target with energetic electrons in an X-ray tube. At higher frequencies, rays are more
penetrating and more damaging to living tissue. They have many of the same uses as X-rays, including cancer
therapy. Gamma radiation from radioactive materials is used in nuclear medicine.
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INTERACTIVE

Use this simulation (https://openstax.org/l/21simlightmol) to explore how light interacts with molecules in our
atmosphere.

Explore how light interacts with molecules in our atmosphere.

Identify that absorption of light depends on the molecule and the type of light.

Relate the energy of the light to the resulting motion.

Identify that energy increases from microwave to ultraviolet.

Predict the motion of a molecule based on the type of light it absorbs.

CHECK YOUR UNDERSTANDING 16.6

How do the electromagnetic waves for the different kinds of electromagnetic radiation differ?
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CHAPTER REVIEW
Key Terms
displacement current extra term in Maxwell’s

equations that is analogous to a real current but
accounts for a changing electric field producing a
magnetic field, even when the real current is
present

gamma ray ( ray) extremely high frequency
electromagnetic radiation emitted by the nucleus
of an atom, either from natural nuclear decay or
induced nuclear processes in nuclear reactors
and weapons; the lower end of the -ray
frequency range overlaps the upper end of the X-
ray range, but rays can have the highest
frequency of any electromagnetic radiation

infrared radiation region of the electromagnetic
spectrum with a frequency range that extends
from just below the red region of the visible light
spectrum up to the microwave region, or from

Maxwell’s equations set of four equations that
comprise a complete, overarching theory of
electromagnetism

microwaves electromagnetic waves with
wavelengths in the range from 1 mm to 1 m; they
can be produced by currents in macroscopic
circuits and devices

Poynting vector vector equal to the cross product
of the electric-and magnetic fields, that describes

the flow of electromagnetic energy through a
surface

radar common application of microwaves; radar
can determine the distance to objects as diverse
as clouds and aircraft, as well as determine the
speed of a car or the intensity of a rainstorm

radiation pressure force divided by area applied
by an electromagnetic wave on a surface

radio waves electromagnetic waves with
wavelengths in the range from 1 mm to 100 km;
they are produced by currents in wires and
circuits and by astronomical phenomena

thermal agitation thermal motion of atoms and
molecules in any object at a temperature above
absolute zero, which causes them to emit and
absorb radiation

ultraviolet radiation electromagnetic radiation in
the range extending upward in frequency from
violet light and overlapping with the lowest X-ray
frequencies, with wavelengths from 400 nm down
to about 10 nm

visible light narrow segment of the
electromagnetic spectrum to which the normal
human eye responds, from about 400 to 750 nm

X-ray invisible, penetrating form of very high
frequency electromagnetic radiation, overlapping
both the ultraviolet range and the -ray range

Key Equations

Displacement current

Gauss’s law

Gauss’s law for magnetism

Faraday’s law

Ampère-Maxwell law

Wave equation for plane EM wave

Speed of EM waves
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Ratio of E field to B field in electromagnetic wave

Energy flux (Poynting) vector

Average intensity of an electromagnetic wave

Radiation pressure

Summary
16.1 Maxwell’s Equations and
Electromagnetic Waves

• Maxwell’s prediction of electromagnetic waves
resulted from his formulation of a complete and
symmetric theory of electricity and magnetism,
known as Maxwell’s equations.

• The four Maxwell’s equations together with the
Lorentz force law encompass the major laws of
electricity and magnetism. The first of these is
Gauss’s law for electricity; the second is Gauss’s
law for magnetism; the third is Faraday’s law of
induction (including Lenz’s law); and the fourth
is Ampère’s law in a symmetric formulation that
adds another source of magnetism, namely
changing electric fields.

• The symmetry introduced between electric and
magnetic fields through Maxwell’s displacement
current explains the mechanism of
electromagnetic wave propagation, in which
changing magnetic fields produce changing
electric fields and vice versa.

• Although light was already known to be a wave,
the nature of the wave was not understood
before Maxwell. Maxwell’s equations also
predicted electromagnetic waves with
wavelengths and frequencies outside the range
of light. These theoretical predictions were first
confirmed experimentally by Heinrich Hertz.

16.2 Plane Electromagnetic Waves

• Maxwell’s equations predict that the directions
of the electric and magnetic fields of the wave,
and the wave’s direction of propagation, are all
mutually perpendicular. The electromagnetic
wave is a transverse wave.

• The strengths of the electric and magnetic parts
of the wave are related by which
implies that the magnetic field B is very weak

relative to the electric field E.
• Accelerating charges create electromagnetic

waves (for example, an oscillating current in a
wire produces electromagnetic waves with the
same frequency as the oscillation).

16.3 Energy Carried by Electromagnetic
Waves

• The energy carried by any wave is proportional
to its amplitude squared. For electromagnetic
waves, this means intensity can be expressed as

where I is the average intensity in and is
the maximum electric field strength of a continuous
sinusoidal wave. This can also be expressed in terms
of the maximum magnetic field strength as

and in terms of both electric and magnetic fields as

The three expressions for are all equivalent.

16.4 Momentum and Radiation Pressure

• Electromagnetic waves carry momentum and
exert radiation pressure.

• The radiation pressure of an electromagnetic
wave is directly proportional to its energy
density.

• The pressure is equal to twice the
electromagnetic energy intensity if the wave is
reflected and equal to the incident energy
intensity if the wave is absorbed.
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16.5 The Electromagnetic Spectrum

• The relationship among the speed of
propagation, wavelength, and frequency for any
wave is given by so that for
electromagnetic waves, where f is the
frequency, is the wavelength, and c is the

speed of light.
• The electromagnetic spectrum is separated into

many categories and subcategories, based on
the frequency and wavelength, source, and uses
of the electromagnetic waves.

Conceptual Questions
16.1 Maxwell’s Equations and
Electromagnetic Waves

1. Explain how the displacement current maintains
the continuity of current in a circuit containing a
capacitor.

2. Describe the field lines of the induced magnetic field
along the edge of the imaginary horizontal cylinder
shown below if the cylinder is in a spatially uniform
electric field that is horizontal, pointing to the right,
and increasing in magnitude.

3. Why is it much easier to demonstrate in a
student lab that a changing magnetic field
induces an electric field than it is to demonstrate
that a changing electric field produces a
magnetic field?

16.2 Plane Electromagnetic Waves

4. If the electric field of an electromagnetic wave is
oscillating along the z-axis and the magnetic field
is oscillating along the x-axis, in what possible
direction is the wave traveling?

5. In which situation shown below will the
electromagnetic wave be more successful in
inducing a current in the wire? Explain.

6. In which situation shown below will the
electromagnetic wave be more successful in
inducing a current in the loop? Explain.
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7. Under what conditions might wires in a circuit
where the current flows in only one direction
emit electromagnetic waves?

8. Shown below is the interference pattern of two
radio antennas broadcasting the same signal.
Explain how this is analogous to the interference
pattern for sound produced by two speakers.
Could this be used to make a directional antenna
system that broadcasts preferentially in certain
directions? Explain.

16.3 Energy Carried by Electromagnetic
Waves

9. When you stand outdoors in the sunlight, why
can you feel the energy that the sunlight carries,
but not the momentum it carries?

10. How does the intensity of an electromagnetic
wave depend on its electric field? How does it
depend on its magnetic field?

11. What is the physical significance of the Poynting
vector?

12. A 2.0-mW helium-neon laser transmits a
continuous beam of red light of cross-sectional
area . If the beam does not diverge
appreciably, how would its rms electric field
vary with distance from the laser? Explain.

16.4 Momentum and Radiation Pressure

13. Why is the radiation pressure of an
electromagnetic wave on a perfectly reflecting
surface twice as large as the pressure on a
perfectly absorbing surface?

14. Why did the early Hubble Telescope photos of
Comet Ison approaching Earth show it to have
merely a fuzzy coma around it, and not the
pronounced double tail that developed later (see
below)?

Figure 16.21 (credit: modification of work by NASA, ESA,

J.-Y. Li (Planetary Science Institute), and the Hubble Comet

ISON Imaging Science Team)

15. (a) If the electric field and magnetic field in a
sinusoidal plane wave were interchanged, in
which direction relative to before would the
energy propagate?
(b) What if the electric and the magnetic fields
were both changed to their negatives?
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16.5 The Electromagnetic Spectrum

16. Compare the speed, wavelength, and frequency
of radio waves and X-rays traveling in a vacuum.

17. Accelerating electric charge emits
electromagnetic radiation. How does this apply
in each case: (a) radio waves, (b) infrared
radiation.

18. Compare and contrast the meaning of the prefix
“micro” in the names of SI units in the term
microwaves.

19. Part of the light passing through the air is
scattered in all directions by the molecules
comprising the atmosphere. The wavelengths of
visible light are larger than molecular sizes, and
the scattering is strongest for wavelengths of
light closest to sizes of molecules.
(a) Which of the main colors of light is scattered
the most? (b) Explain why this would give the
sky its familiar background color at midday.

20. When a bowl of soup is removed from a
microwave oven, the soup is found to be
steaming hot, whereas the bowl is only warm to
the touch. Discuss the temperature changes
that have occurred in terms of energy transfer.

21. Certain orientations of a broadcast television
antenna give better reception than others for a
particular station. Explain.

22. What property of light corresponds to loudness
in sound?

23. Is the visible region a major portion of the
electromagnetic spectrum?

24. Can the human body detect electromagnetic
radiation that is outside the visible region of the
spectrum?

25. Radio waves normally have their E and B fields
in specific directions, whereas visible light
usually has its E and B fields in random and
rapidly changing directions that are
perpendicular to each other and to the
propagation direction. Can you explain why?

26. Give an example of resonance in the reception
of electromagnetic waves.

27. Illustrate that the size of details of an object that
can be detected with electromagnetic waves is
related to their wavelength, by comparing
details observable with two different types (for
example, radar and visible light).

28. In which part of the electromagnetic spectrum
are each of these waves:
(a) f = 10.0 kHz, (b) ,
(c) , (d) 0.30 nm

29. In what range of electromagnetic radiation are
the electromagnetic waves emitted by power
lines in a country that uses 50-Hz ac current?

30. If a microwave oven could be modified to
merely tune the waves generated to be in the
infrared range instead of using microwaves,
how would this affect the uneven heating of the
oven?

31. A leaky microwave oven in a home can
sometimes cause interference with the
homeowner’s WiFi system. Why?

32. When a television news anchor in a studio
speaks to a reporter in a distant country, there
is sometimes a noticeable lag between when the
anchor speaks in the studio and when the
remote reporter hears it and replies. Explain
what causes this delay.

Problems
16.1 Maxwell’s Equations and
Electromagnetic Waves

33. Show that the magnetic field at a distance r from
the axis of two circular parallel plates, produced
by placing charge Q(t) on the plates is

.
34. Express the displacement current in a capacitor

in terms of the capacitance and the rate of
change of the voltage across the capacitor.

35. A potential difference is
maintained across a parallel-plate capacitor
with capacitance C consisting of two circular
parallel plates. A thin wire with resistance R
connects the centers of the two plates, allowing
charge to leak between plates while they are

charging.
(a) Obtain expressions for the leakage current

in the thin wire. Use these results to
obtain an expression for the current in
the wires connected to the capacitor.
(b) Find the displacement current in the space
between the plates from the changing electric
field between the plates.
(c) Compare with the sum of the
displacement current and resistor current

between the plates, and explain why the
relationship you observe would be expected.

36. Suppose the parallel-plate capacitor shown below
is accumulating charge at a rate of 0.010 C/s.
What is the induced magnetic field at a distance of
10 cm from the capacitator?
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37. The potential difference V(t) between parallel
plates shown above is instantaneously
increasing at a rate of What is the
displacement current between the plates if the
separation of the plates is 1.00 cm and they
have an area of ?

38. A parallel-plate capacitor has a plate area of
and a separation of 0.0100 m.

What must be must be the angular frequency
for a voltage with
to produce a maximum displacement induced
current of 1.00 A between the plates?

39. The voltage across a parallel-plate capacitor
with area and separation

varies sinusoidally as
, where t is in seconds.

Find the displacement current between the
plates.

40. The voltage across a parallel-plate capacitor
with area A and separation d varies with time t
as , where a is a constant. Find the
displacement current between the plates.

16.2 Plane Electromagnetic Waves

41. If the Sun suddenly turned off, we would not
know it until its light stopped coming. How long
would that be, given that the Sun is

away?
42. What is the maximum electric field strength in

an electromagnetic wave that has a maximum
magnetic field strength of (about
10 times Earth’s magnetic field)?

43. An electromagnetic wave has a frequency of 12
MHz. What is its wavelength in vacuum?

44. If electric and magnetic field strengths vary
sinusoidally in time at frequency 1.00 GHz,
being zero at , then and

. (a) When are the field
strengths next equal to zero? (b) When do they
reach their most negative value? (c) How much
time is needed for them to complete one cycle?

45. The electric field of an electromagnetic wave traveling
in vacuum is described by the following wave function:

where k is the wavenumber in rad/m, x is in m, t is in s.
Find the following quantities:
(a) amplitude
(b) frequency
(c) wavelength
(d) the direction of the travel of the wave
(e) the associated magnetic field wave

46. A plane electromagnetic wave of frequency 20
GHz moves in the positive y-axis direction such
that its electric field is pointed along the z-axis.
The amplitude of the electric field is 10 V/m.
The start of time is chosen so that at , the
electric field has a value 10 V/m at the origin. (a)
Write the wave function that will describe the
electric field wave. (b) Find the wave function
that will describe the associated magnetic field
wave.

47. The following represents an electromagnetic
wave traveling in the direction of the positive
y-axis:

.

The wave is passing through a wide tube of
circular cross-section of radius R whose axis is
along the y-axis. Find the expression for the
displacement current through the tube.

16.3 Energy Carried by Electromagnetic
Waves

48. While outdoors on a sunny day, a student holds
a large convex lens of radius 4.0 cm above a
sheet of paper to produce a bright spot on the
paper that is 1.0 cm in radius, rather than a
sharp focus. By what factor is the electric field
in the bright spot of light related to the electric
field of sunlight leaving the side of the lens
facing the paper?

49. A plane electromagnetic wave travels
northward. At one instant, its electric field has a
magnitude of 6.0 V/m and points eastward.
What are the magnitude and direction of the
magnetic field at this instant?

50. The electric field of an electromagnetic wave is given
by E =

Write the equations for the associated magnetic field
and Poynting vector.

51. A radio station broadcasts at a frequency of 760
kHz. At a receiver some distance from the
antenna, the maximum magnetic field of the
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electromagnetic wave detected is
.

(a) What is the maximum electric field? (b) What
is the wavelength of the electromagnetic wave?

52. The filament in a clear incandescent light bulb
radiates visible light at a power of 5.00 W. Model
the glass part of the bulb as a sphere of radius

and calculate the amount of
electromagnetic energy from visible light inside
the bulb.

53. At what distance does a 100-W lightbulb
produce the same intensity of light as a 75-W
lightbulb produces 10 m away? (Assume both
have the same efficiency for converting
electrical energy in the circuit into emitted
electromagnetic energy.)

54. An incandescent light bulb emits only 2.6 W of
its power as visible light. What is the rms
electric field of the emitted light at a distance of
3.0 m from the bulb?

55. A 150-W lightbulb emits 5% of its energy as
electromagnetic radiation. What is the
magnitude of the average Poynting vector 10 m
from the bulb?

56. A small helium-neon laser has a power output
of 2.5 mW. What is the electromagnetic energy
in a 1.0-m length of the beam?

57. At the top of Earth’s atmosphere, the time-
averaged Poynting vector associated with
sunlight has a magnitude of about
(a) What are the maximum values of the electric
and magnetic fields for a wave of this intensity?
(b) What is the total power radiated by the sun?
Assume that the Earth is from the
Sun and that sunlight is composed of
electromagnetic plane waves.

58. The magnetic field of a plane electromagnetic
wave moving along the z axis is given by

, where
and

(a) Write an expression for the electric field
associated with the wave. (b) What are the
frequency and the wavelength of the wave? (c)
What is its average Poynting vector?

59. What is the intensity of an electromagnetic
wave with a peak electric field strength of 125 V/
m?

60. Assume the helium-neon lasers commonly used
in student physics laboratories have power
outputs of 0.500 mW. (a) If such a laser beam is
projected onto a circular spot 1.00 mm in
diameter, what is its intensity? (b) Find the peak

magnetic field strength. (c) Find the peak
electric field strength.

61. An AM radio transmitter broadcasts 50.0 kW of
power uniformly in all directions. (a) Assuming
all of the radio waves that strike the ground are
completely absorbed, and that there is no
absorption by the atmosphere or other objects,
what is the intensity 30.0 km away? (Hint: Half
the power will be spread over the area of a
hemisphere.) (b) What is the maximum electric
field strength at this distance?

62. Suppose the maximum safe intensity of
microwaves for human exposure is taken to be

. (a) If a radar unit leaks 10.0 W of
microwaves (other than those sent by its
antenna) uniformly in all directions, how far
away must you be to be exposed to an intensity
considered to be safe? Assume that the power
spreads uniformly over the area of a sphere
with no complications from absorption or
reflection. (b) What is the maximum electric
field strength at the safe intensity? (Note that
early radar units leaked more than modern
ones do. This caused identifiable health
problems, such as cataracts, for people who
worked near them.)

63. A 2.50-m-diameter university communications
satellite dish receives TV signals that have a
maximum electric field strength (for one channel) of

(see below). (a) What is the intensity of
this wave? (b) What is the power received by the
antenna? (c) If the orbiting satellite broadcasts
uniformly over an area of (a large
fraction of North America), how much power does it
radiate?
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64. Lasers can be constructed that produce an
extremely high intensity electromagnetic wave
for a brief time—called pulsed lasers. They are
used to initiate nuclear fusion, for example.
Such a laser may produce an electromagnetic
wave with a maximum electric field strength of

for a time of 1.00 ns. (a) What
is the maximum magnetic field strength in the
wave? (b) What is the intensity of the beam? (c)
What energy does it deliver on an
area?

16.4 Momentum and Radiation Pressure

65. A 150-W lightbulb emits 5% of its energy as
electromagnetic radiation. What is the radiation
pressure on an absorbing sphere of radius 10 m
that surrounds the bulb?

66. What pressure does light emitted uniformly in
all directions from a 100-W incandescent light
bulb exert on a mirror at a distance of 3.0 m, if
2.6 W of the power is emitted as visible light?

67. A microscopic spherical dust particle of radius
and mass is moving in outer space

at a constant speed of 30 cm/sec. A wave of light
strikes it from the opposite direction of its
motion and gets absorbed. Assuming the
particle accelerates opposite to the motion
uniformly to zero speed in one second, what is
the average electric field amplitude in the light?

68. A Styrofoam spherical ball of radius 2 mm and
mass is to be suspended by the radiation
pressure in a vacuum tube in a lab. How much
intensity will be required if the light is

completely absorbed the ball?
69. Suppose that for sunlight at a point on the

surface of Earth is . (a) If sunlight falls
perpendicularly on a kite with a reflecting
surface of area , what is the average
force on the kite due to radiation pressure? (b)
How is your answer affected if the kite material
is black and absorbs all sunlight?

70. Sunlight reaches the ground with an intensity of
about . A sunbather has a body
surface area of facing the sun while
reclining on a beach chair on a clear day. (a)
how much energy from direct sunlight reaches
the sunbather’s skin per second? (b) What
pressure does the sunlight exert if it is
absorbed?

71. Suppose a spherical particle of mass m and
radius R in space absorbs light of intensity I for
time t. (a) How much work does the radiation
pressure do to accelerate the particle from rest
in the given time it absorbs the light? (b) How
much energy carried by the electromagnetic
waves is absorbed by the particle over this time
based on the radiant energy incident on the
particle?

16.5 The Electromagnetic Spectrum

72. How many helium atoms, each with a radius of
about 31 pm, must be placed end to end to have
a length equal to one wavelength of 470 nm blue
light?

73. If you wish to detect details of the size of atoms
(about 0.2 nm) with electromagnetic radiation,
it must have a wavelength of about this size. (a)
What is its frequency? (b) What type of
electromagnetic radiation might this be?

74. Find the frequency range of visible light, given
that it encompasses wavelengths from 380 to
760 nm.

75. (a) Calculate the wavelength range for AM radio
given its frequency range is 540 to 1600 kHz. (b)
Do the same for the FM frequency range of 88.0
to 108 MHz.

76. Radio station WWVB, operated by the National
Institute of Standards and Technology (NIST)
from Fort Collins, Colorado, at a low frequency
of 60 kHz, broadcasts a time synchronization
signal whose range covers the entire
continental US. The timing of the
synchronization signal is controlled by a set of
atomic clocks to an accuracy of
and repeats every 1 minute. The signal is used
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for devices, such as radio-controlled watches,
that automatically synchronize with it at preset
local times. WWVB’s long wavelength signal
tends to propagate close to the ground.
(a) Calculate the wavelength of the radio waves
from WWVB.
(b) Estimate the error that the travel time of the
signal causes in synchronizing a radio
controlled watch in Norfolk, Virginia, which is
1570 mi (2527 km) from Fort Collins, Colorado.

77. An outdoor WiFi unit for a picnic area has a
100-mW output and a range of about 30 m.
What output power would reduce its range to 12
m for use with the same devices as before?
Assume there are no obstacles in the way and
that microwaves into the ground are simply
absorbed.

78. 7. The prefix “mega” (M) and “kilo” (k), when
referring to amounts of computer data, refer to
factors of 1024 or rather than 1000 for the
prefix kilo, and rather than
1,000,000 for the prefix Mega (M). If a wireless
(WiFi) router transfers 150 Mbps of data, how
many bits per second is that in decimal
arithmetic?

79. A computer user finds that his wireless router
transmits data at a rate of 75 Mbps (megabits
per second). Compare the average time to
transmit one bit of data with the time difference
between the wifi signal reaching an observer’s
cell phone directly and by bouncing back to the
observer from a wall 8.00 m past the observer.

80. (a) The ideal size (most efficient) for a broadcast
antenna with one end on the ground is one-
fourth the wavelength ( ) of the
electromagnetic radiation being sent out. If a
new radio station has such an antenna that is
50.0 m high, what frequency does it broadcast
most efficiently? Is this in the AM or FM band?
(b) Discuss the analogy of the fundamental
resonant mode of an air column closed at one
end to the resonance of currents on an antenna
that is one-fourth their wavelength.

81. What are the wavelengths of (a) X-rays of
frequency (b) Yellow light of
frequency (c) Gamma rays of

frequency
82. For red light of , what are f, , and

k?
83. A radio transmitter broadcasts plane

electromagnetic waves whose maximum
electric field at a particular location is

What is the maximum
magnitude of the oscillating magnetic field at
that location? How does it compare with Earth’s
magnetic field?

84. (a) Two microwave frequencies authorized for
use in microwave ovens are: 915 and 2450 MHz.
Calculate the wavelength of each. (b) Which
frequency would produce smaller hot spots in
foods due to interference effects?

85. During normal beating, the heart creates a
maximum 4.00-mV potential across 0.300 m of
a person’s chest, creating a 1.00-Hz
electromagnetic wave. (a) What is the maximum
electric field strength created? (b) What is the
corresponding maximum magnetic field
strength in the electromagnetic wave? (c) What
is the wavelength of the electromagnetic wave?

86. Distances in space are often quoted in units of
light-years, the distance light travels in 1 year.
(a) How many meters is a light-year? (b) How
many meters is it to Andromeda, the nearest
large galaxy, given that it is ly away?
(c) The most distant galaxy yet discovered is

ly away. How far is this in meters?
87. A certain 60.0-Hz ac power line radiates an

electromagnetic wave having a maximum
electric field strength of 13.0 kV/m. (a) What is
the wavelength of this very-low-frequency
electromagnetic wave? (b) What type of
electromagnetic radiation is this wave (b) What
is its maximum magnetic field strength?

88. (a) What is the frequency of the 193-nm
ultraviolet radiation used in laser eye surgery?
(b) Assuming the accuracy with which this
electromagnetic radiation can ablate (reshape)
the cornea is directly proportional to
wavelength, how much more accurate can this
UV radiation be than the shortest visible
wavelength of light?
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Additional Problems
89. In a region of space, the electric field is pointed

along the x-axis, but its magnitude changes as
described by

where t is in nanoseconds and x is in cm. Find
the displacement current through a circle of
radius 3 cm in the plane at .

90. A microwave oven uses electromagnetic waves
of frequency to heat foods.
The waves reflect from the inside walls of the
oven to produce an interference pattern of
standing waves whose antinodes are hot spots
that can leave observable pit marks in some
foods. The pit marks are measured to be 6.0 cm
apart. Use the method employed by Heinrich
Hertz to calculate the speed of electromagnetic
waves this implies.

Use the Appendix D for the next two exercises

91. Galileo proposed measuring the speed of light
by uncovering a lantern and having an assistant
a known distance away uncover his lantern
when he saw the light from Galileo’s lantern,
and timing the delay. How far away must the
assistant be for the delay to equal the human
reaction time of about 0.25 s?

92. Show that the wave equation in one dimension

is satisfied by any doubly differentiable function
of either the form or .

93. On its highest power setting, a microwave oven
increases the temperature of 0.400 kg of
spaghetti by in 120 s. (a) What was the
rate of energy absorption by the spaghetti, given
that its specific heat is ?
Assume the spaghetti is perfectly absorbing. (b)
Find the average intensity of the microwaves,
given that they are absorbed over a circular area
20.0 cm in diameter. (c) What is the peak
electric field strength of the microwave? (d)
What is its peak magnetic field strength?

94. A certain microwave oven projects 1.00 kW of
microwaves onto a 30-cm-by-40-cm area. (a)
What is its intensity in ? (b) Calculate the
maximum electric field strength in these
waves. (c) What is the maximum magnetic field
strength ?

95. Electromagnetic radiation from a 5.00-mW
laser is concentrated on a area. (a)
What is the intensity in ? (b) Suppose a
2.00-nC electric charge is in the beam. What is
the maximum electric force it experiences? (c) If
the electric charge moves at 400 m/s, what
maximum magnetic force can it feel?

96. A 200-turn flat coil of wire 30.0 cm in diameter
acts as an antenna for FM radio at a frequency
of 100 MHz. The magnetic field of the incoming
electromagnetic wave is perpendicular to the
coil and has a maximum strength of

. (a) What power is incident on
the coil? (b) What average emf is induced in the
coil over one-fourth of a cycle? (c) If the radio
receiver has an inductance of , what
capacitance must it have to resonate at 100
MHz?

97. Suppose a source of electromagnetic waves
radiates uniformly in all directions in empty
space where there are no absorption or
interference effects. (a) Show that the intensity
is inversely proportional to , the distance
from the source squared. (b) Show that the
magnitudes of the electric and magnetic fields
are inversely proportional to r.

98. A radio station broadcasts its radio waves with a
power of 50,000 W. What would be the intensity
of this signal if it is received on a planet orbiting
Proxima Centuri, the closest star to our Sun, at
4.243 ly away?

99. The Poynting vector describes a flow of energy
whenever electric and magnetic fields are
present. Consider a long cylindrical wire of
radius r with a current I in the wire, with
resistance R and voltage V. From the
expressions for the electric field along the wire
and the magnetic field around the wire, obtain
the magnitude and direction of the Poynting
vector at the surface. Show that it accounts for
an energy flow into the wire from the fields
around it that accounts for the Ohmic heating of
the wire.
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100. The Sun’s energy strikes Earth at an intensity
of . Assume as a model
approximation that all of the light is absorbed.
(Actually, about 30% of the light intensity is
reflected out into space.)
(a) Calculate the total force that the Sun’s
radiation exerts on Earth.
(b) Compare this to the force of gravity
between the Sun and Earth.
Earth’s mass is

101. If a Lightsail spacecraft were sent on a Mars
mission, by what ratio of the final force to the
initial force would its propulsion be reduced
when it reached Mars?

102. Lunar astronauts placed a reflector on the
Moon’s surface, off which a laser beam is
periodically reflected. The distance to the
Moon is calculated from the round-trip time.
(a) To what accuracy in meters can the
distance to the Moon be determined, if this
time can be measured to 0.100 ns? (b) What
percent accuracy is this, given the average
distance to the Moon is 384,400 km?

103. Radar is used to determine distances to
various objects by measuring the round-trip
time for an echo from the object. (a) How far
away is the planet Venus if the echo time is
1000 s? (b) What is the echo time for a car 75.0
m from a highway police radar unit? (c) How
accurately (in nanoseconds) must you be able
to measure the echo time to an airplane 12.0
km away to determine its distance within 10.0
m?

104. Calculate the ratio of the highest to lowest
frequencies of electromagnetic waves the eye
can see, given the wavelength range of visible
light is from 380 to 760 nm. (Note that the
ratio of highest to lowest frequencies the ear
can hear is 1000.)

105. How does the wavelength of radio waves for an
AM radio station broadcasting at 1030 KHz
compare with the wavelength of the lowest
audible sound waves (of 20 Hz). The speed of
sound in air at is about 343 m/s.
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Challenge Problems
106. A parallel-plate capacitor with plate separation d

is connected to a source of emf that places a time-
dependent voltage V(t) across its circular plates of
radius and area (see below).

(a) Write an expression for the time rate of change
of energy inside the capacitor in terms of V(t) and
dV(t)/dt.
(b) Assuming that V(t) is increasing with time,
identify the directions of the electric field lines
inside the capacitor and of the magnetic field
lines at the edge of the region between the plates,
and then the direction of the Poynting vector at
this location.
(c) Obtain expressions for the time dependence of
E(t), for B(t) from the displacement current, and
for the magnitude of the Poynting vector at the
edge of the region between the plates.
(d) From , obtain an expression in terms of V(t)
and dV(t)/dt for the rate at which electromagnetic
field energy enters the region between the plates.
(e) Compare the results of parts (a) and (d) and
explain the relationship between them.

107. A particle of cosmic dust has a density
(a) Assuming the dust particles

are spherical and light absorbing, and are at
the same distance as Earth from the Sun,
determine the particle size for which radiation
pressure from sunlight is equal to the Sun’s
force of gravity on the dust particle. (b) Explain
how the forces compare if the particle radius is
smaller. (c) Explain what this implies about the
sizes of dust particle likely to be present in the
inner solar system compared with outside the
Oort cloud.
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INTRODUCTION

CHAPTER 1
The Nature of Light

1.1 The Propagation of Light

1.2 The Law of Reflection

1.3 Refraction

1.4 Total Internal Reflection

1.5 Dispersion

1.6 Huygens’s Principle

1.7 Polarization

Our investigation of light revolves around two questions of fundamental importance: (1)
What is the nature of light, and (2) how does light behave under various circumstances? Answers to these
questions can be found in Maxwell’s equations (in Electromagnetic Waves), which predict the existence of
electromagnetic waves and their behavior. Examples of light include radio and infrared waves, visible light,
ultraviolet radiation, and X-rays. Interestingly, not all light phenomena can be explained by Maxwell’s theory.

Figure 1.1 Due to total internal reflection, an underwater swimmer’s image is reflected back into the water where
the camera is located. The circular ripple in the image center is actually on the water surface. Due to the viewing
angle, total internal reflection is not occurring at the top edge of this image, and we can see a view of activities on
the pool deck. (credit: modification of work by “jayhem”/Flickr)

Chapter Outline



Experiments performed early in the twentieth century showed that light has corpuscular, or particle-like,
properties. The idea that light can display both wave and particle characteristics is called wave-particle
duality, which is examined in Photons and Matter Waves.

In this chapter, we study the basic properties of light. In the next few chapters, we investigate the behavior of
light when it interacts with optical devices such as mirrors, lenses, and apertures.

1.1 The Propagation of Light
Learning Objectives
By the end of this section, you will be able to:

• Determine the index of refraction, given the speed of light in a medium
• List the ways in which light travels from a source to another location

The speed of light in a vacuum c is one of the fundamental constants of physics. As you will see when you reach
Relativity, it is a central concept in Einstein’s theory of relativity. As the accuracy of the measurements of the
speed of light improved, it was found that different observers, even those moving at large velocities with
respect to each other, measure the same value for the speed of light. However, the speed of light does vary in a
precise manner with the material it traverses. These facts have far-reaching implications, as we will see in
later chapters.

The Speed of Light: Early Measurements
The first measurement of the speed of light was made by the Danish astronomer Ole Roemer (1644–1710) in
1675. He studied the orbit of Io, one of the four large moons of Jupiter, and found that it had a period of
revolution of 42.5 h around Jupiter. He also discovered that this value fluctuated by a few seconds, depending
on the position of Earth in its orbit around the Sun. Roemer realized that this fluctuation was due to the finite
speed of light and could be used to determine c.

Roemer found the period of revolution of Io by measuring the time interval between successive eclipses by
Jupiter. Figure 1.2(a) shows the planetary configurations when such a measurement is made from Earth in the
part of its orbit where it is receding from Jupiter. When Earth is at point A, Earth, Jupiter, and Io are aligned.
The next time this alignment occurs, Earth is at point B, and the light carrying that information to Earth must
travel to that point. Since B is farther from Jupiter than A, light takes more time to reach Earth when Earth is at
B. Now imagine it is about 6 months later, and the planets are arranged as in part (b) of the figure. The
measurement of Io’s period begins with Earth at point and Io eclipsed by Jupiter. The next eclipse then
occurs when Earth is at point , to which the light carrying the information of this eclipse must travel. Since

is closer to Jupiter than , light takes less time to reach Earth when it is at . This time interval between
the successive eclipses of Io seen at and is therefore less than the time interval between the eclipses seen
at A and B. By measuring the difference in these time intervals and with appropriate knowledge of the distance
between Jupiter and Earth, Roemer calculated that the speed of light was which is 33% below
the value accepted today.

Figure 1.2 Roemer’s astronomical method for determining the speed of light. Measurements of Io’s period done with the configurations

of parts (a) and (b) differ, because the light path length and associated travel time increase from A to B (a) but decrease from to (b).
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The first successful terrestrial measurement of the speed of light was made by Armand Fizeau (1819–1896) in
1849. He placed a toothed wheel that could be rotated very rapidly on one hilltop and a mirror on a second
hilltop 8 km away (Figure 1.3). An intense light source was placed behind the wheel, so that when the wheel
rotated, it chopped the light beam into a succession of pulses. The speed of the wheel was then adjusted until
no light returned to the observer located behind the wheel. This could only happen if the wheel rotated
through an angle corresponding to a displacement of teeth, while the pulses traveled down to the
mirror and back. Knowing the rotational speed of the wheel, the number of teeth on the wheel, and the
distance to the mirror, Fizeau determined the speed of light to be which is only 5% too high.

Figure 1.3 Fizeau’s method for measuring the speed of light. The teeth of the wheel block the reflected light upon return when the wheel

is rotated at a rate that matches the light travel time to and from the mirror.

The French physicist Jean Bernard Léon Foucault (1819–1868) modified Fizeau’s apparatus by replacing the
toothed wheel with a rotating mirror. In 1862, he measured the speed of light to be which is
within 0.6% of the presently accepted value. Albert Michelson (1852–1931) also used Foucault’s method on
several occasions to measure the speed of light. His first experiments were performed in 1878; by 1926, he
had refined the technique so well that he found c to be

Today, the speed of light is known to great precision. In fact, the speed of light in a vacuum c is so important
that it is accepted as one of the basic physical quantities and has the value

where the approximate value of is used whenever three-digit accuracy is sufficient.

Speed of Light in Matter
The speed of light through matter is less than it is in a vacuum, because light interacts with atoms in a
material. The speed of light depends strongly on the type of material, since its interaction varies with different
atoms, crystal lattices, and other substructures. We can define a constant of a material that describes the speed
of light in it, called the index of refraction n:

where v is the observed speed of light in the material.

Since the speed of light is always less than c in matter and equals c only in a vacuum, the index of refraction is
always greater than or equal to one; that is, . Table 1.1 gives the indices of refraction for some
representative substances. The values are listed for a particular wavelength of light, because they vary slightly
with wavelength. (This can have important effects, such as colors separated by a prism, as we will see in

1.1

1.2
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Dispersion.) Note that for gases, n is close to 1.0. This seems reasonable, since atoms in gases are widely
separated, and light travels at c in the vacuum between atoms. It is common to take for gases unless
great precision is needed. Although the speed of light v in a medium varies considerably from its value c in a
vacuum, it is still a large speed.

Medium n

Gases at , 1 atm

Air 1.000293

Carbon dioxide 1.00045

Hydrogen 1.000139

Oxygen 1.000271

Liquids at

Benzene 1.501

Carbon disulfide 1.628

Carbon tetrachloride 1.461

Ethanol 1.361

Glycerine 1.473

Water, fresh 1.333

Solids at

Diamond 2.419

Fluorite 1.434

Glass, crown 1.52

Glass, flint 1.66

Ice (at 1.309

Polystyrene 1.49

Plexiglas 1.51

Quartz, crystalline 1.544

Quartz, fused 1.458

Sodium chloride 1.544
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Medium n

Zircon 1.923

Table 1.1 Index of Refraction in Various Media For light with a wavelength of 589 nm in a vacuum

EXAMPLE 1.1

Speed of Light in Jewelry
Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.

Strategy
We can calculate the speed of light in a material v from the index of refraction n of the material, using the
equation

Solution
Rearranging the equation for v gives us

The index of refraction for zircon is given as 1.923 in Table 1.1, and c is given in Equation 1.1. Entering these
values in the equation gives

Significance
This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we
normally experience. The only substance listed in Table 1.1 that has a greater index of refraction than zircon is
diamond. We shall see later that the large index of refraction for zircon makes it sparkle more than glass, but
less than diamond.

CHECK YOUR UNDERSTANDING 1.1

Table 1.1 shows that ethanol and fresh water have very similar indices of refraction. By what percentage do the
speeds of light in these liquids differ?

The Ray Model of Light
You have already studied some of the wave characteristics of light in the previous chapter on Electromagnetic
Waves. In this chapter, we start mainly with the ray characteristics. There are three ways in which light can
travel from a source to another location (Figure 1.4). It can come directly from the source through empty space,
such as from the Sun to Earth. Or light can travel through various media, such as air and glass, to the observer.
Light can also arrive after being reflected, such as by a mirror. In all of these cases, we can model the path of
light as a straight line called a ray.

1.1 • The Propagation of Light 9



Figure 1.4 Three methods for light to travel from a source to another location. (a) Light reaches the upper atmosphere of Earth, traveling

through empty space directly from the source. (b) Light can reach a person by traveling through media like air and glass. (c) Light can also

reflect from an object like a mirror. In the situations shown here, light interacts with objects large enough that it travels in straight lines, like

a ray.

Experiments show that when light interacts with an object several times larger than its wavelength, it travels in
straight lines and acts like a ray. Its wave characteristics are not pronounced in such situations. Since the
wavelength of visible light is less than a micron (a thousandth of a millimeter), it acts like a ray in the many
common situations in which it encounters objects larger than a micron. For example, when visible light
encounters anything large enough that we can observe it with unaided eyes, such as a coin, it acts like a ray,
with generally negligible wave characteristics.

In all of these cases, we can model the path of light as straight lines. Light may change direction when it
encounters objects (such as a mirror) or in passing from one material to another (such as in passing from air to
glass), but it then continues in a straight line or as a ray. The word “ray” comes from mathematics and here
means a straight line that originates at some point. It is acceptable to visualize light rays as laser rays. The ray
model of light describes the path of light as straight lines.

Since light moves in straight lines, changing directions when it interacts with materials, its path is described
by geometry and simple trigonometry. This part of optics, where the ray aspect of light dominates, is therefore
called geometric optics. Two laws govern how light changes direction when it interacts with matter. These are
the law of reflection, for situations in which light bounces off matter, and the law of refraction, for situations in
which light passes through matter. We will examine more about each of these laws in upcoming sections of this
chapter.

1.2 The Law of Reflection
Learning Objectives
By the end of this section, you will be able to:

• Explain the reflection of light from polished and rough surfaces
• Describe the principle and applications of corner reflectors

Whenever we look into a mirror, or squint at sunlight glinting from a lake, we are seeing a reflection. When you
look at a piece of white paper, you are seeing light scattered from it. Large telescopes use reflection to form an
image of stars and other astronomical objects.

The law of reflection states that the angle of reflection equals the angle of incidence, or

The law of reflection is illustrated in Figure 1.5, which also shows how the angle of incidence and angle of
reflection are measured relative to the perpendicular to the surface at the point where the light ray strikes.

1.3
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Figure 1.5 The law of reflection states that the angle of reflection equals the angle of incidence— The angles are measured

relative to the perpendicular to the surface at the point where the ray strikes the surface.

We expect to see reflections from smooth surfaces, but Figure 1.6 illustrates how a rough surface reflects light.
Since the light strikes different parts of the surface at different angles, it is reflected in many different
directions, or diffused. Diffused light is what allows us to see a sheet of paper from any angle, as shown in
Figure 1.7(a). People, clothing, leaves, and walls all have rough surfaces and can be seen from all sides. A
mirror, on the other hand, has a smooth surface (compared with the wavelength of light) and reflects light at
specific angles, as illustrated in Figure 1.7(b). When the Moon reflects from a lake, as shown in Figure 1.7(c), a
combination of these effects takes place.

Figure 1.6 Light is diffused when it reflects from a rough surface. Here, many parallel rays are incident, but they are reflected at many

different angles, because the surface is rough.

Figure 1.7 (a) When a sheet of paper is illuminated with many parallel incident rays, it can be seen at many different angles, because its

surface is rough and diffuses the light. (b) A mirror illuminated by many parallel rays reflects them in only one direction, because its surface

is very smooth. Only the observer at a particular angle sees the reflected light. (c) Moonlight is spread out when it is reflected by the lake,

because the surface is shiny but uneven. (credit c: modification of work by Diego Torres Silvestre)
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When you see yourself in a mirror, it appears that the image is actually behind the mirror (Figure 1.8). We see
the light coming from a direction determined by the law of reflection. The angles are such that the image is
exactly the same distance behind the mirror as you stand in front of the mirror. If the mirror is on the wall of a
room, the images in it are all behind the mirror, which can make the room seem bigger. Although these mirror
images make objects appear to be where they cannot be (like behind a solid wall), the images are not figments
of your imagination. Mirror images can be photographed and videotaped by instruments and look just as they
do with our eyes (which are optical instruments themselves). The precise manner in which images are formed
by mirrors and lenses is discussed in an upcoming chapter on Geometric Optics and Image Formation.

Figure 1.8 (a) Your image in a mirror is behind the mirror. The two rays shown are those that strike the mirror at just the correct angles to

be reflected into the eyes of the person. The image appears to be behind the mirror at the same distance away as (b) if you were looking at

your twin directly, with no mirror.

Corner Reflectors (Retroreflectors)
A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back
exactly parallel to the direction from which it came (Figure 1.9). This is true whenever the reflecting surfaces
are perpendicular, and it is independent of the angle of incidence. (For proof, see Exercise 1.34 at the end of
this section.) Such an object is called a corner reflector, since the light bounces from its inside corner. Corner
reflectors are a subclass of retroreflectors, which all reflect rays back in the directions from which they came.
Although the geometry of the proof is much more complex, corner reflectors can also be built with three
mutually perpendicular reflecting surfaces and are useful in three-dimensional applications.

Figure 1.9 A light ray that strikes two mutually perpendicular reflecting surfaces is reflected back exactly parallel to the direction from

which it came.

Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to

12 1 • The Nature of Light

Access for free at openstax.org.



return light in the direction from which it originated. Rather than simply reflecting light over a wide angle,
retroreflection ensures high visibility if the observer and the light source are located together, such as a car’s
driver and headlights. The Apollo astronauts placed a true corner reflector on the Moon (Figure 1.10). Laser
signals from Earth can be bounced from that corner reflector to measure the gradually increasing distance to
the Moon of a few centimeters per year.

Figure 1.10 (a) Astronauts placed a corner reflector on the Moon to measure its gradually increasing orbital distance. (b) The bright spots

on these bicycle safety reflectors are reflections of the flash of the camera that took this picture on a dark night. (credit a: modification of

work by NASA; credit b: modification of work by “Julo”/Wikimedia Commons)

Working on the same principle as these optical reflectors, corner reflectors are routinely used as radar
reflectors (Figure 1.11) for radio-frequency applications. Under most circumstances, small boats made of
fiberglass or wood do not strongly reflect radio waves emitted by radar systems. To make these boats visible to
radar (to avoid collisions, for example), radar reflectors are attached to boats, usually in high places.

Figure 1.11 A radar reflector hoisted on a sailboat is a type of corner reflector. (credit: Tim Sheerman-Chase)

As a counterexample, if you are interested in building a stealth airplane, radar reflections should be minimized
to evade detection. One of the design considerations would then be to avoid building corners into the
airframe.

1.3 Refraction
Learning Objectives
By the end of this section, you will be able to:

• Describe how rays change direction upon entering a medium
• Apply the law of refraction in problem solving

You may often notice some odd things when looking into a fish tank. For example, you may see the same fish
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appearing to be in two different places (Figure 1.12). This happens because light coming from the fish to you
changes direction when it leaves the tank, and in this case, it can travel two different paths to get to your eyes.
The changing of a light ray’s direction (loosely called bending) when it passes through substances of different
refractive indices is called refraction and is related to changes in the speed of light, . Refraction is
responsible for a tremendous range of optical phenomena, from the action of lenses to data transmission
through optical fibers.

Figure 1.12 (a) Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions

when it passes from water to air. In this case, the light can reach the observer by two different paths, so the fish seems to be in two

different places. This bending of light is called refraction and is responsible for many optical phenomena. (b) This image shows refraction of

light from a fish near the top of a fish tank.

Figure 1.13 shows how a ray of light changes direction when it passes from one medium to another. As before,
the angles are measured relative to a perpendicular to the surface at the point where the light ray crosses it.
(Some of the incident light is reflected from the surface, but for now we concentrate on the light that is
transmitted.) The change in direction of the light ray depends on the relative values of the indices of refraction
(The Propagation of Light) of the two media involved. In the situations shown, medium 2 has a greater index of
refraction than medium 1. Note that as shown in Figure 1.13(a), the direction of the ray moves closer to the
perpendicular when it progresses from a medium with a lower index of refraction to one with a higher index of
refraction. Conversely, as shown in Figure 1.13(b), the direction of the ray moves away from the perpendicular
when it progresses from a medium with a higher index of refraction to one with a lower index of refraction.
The path is exactly reversible.
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Figure 1.13 The change in direction of a light ray depends on how the index of refraction changes when it crosses from one medium to

another. In the situations shown here, the index of refraction is greater in medium 2 than in medium 1. (a) A ray of light moves closer to the

perpendicular when entering a medium with a higher index of refraction. (b) A ray of light moves away from the perpendicular when

entering a medium with a lower index of refraction.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the
speed changes. For a ray at a given incident angle, a large change in speed causes a large change in direction
and thus a large change in angle. The exact mathematical relationship is the law of refraction, or Snell’s law,
after the Dutch mathematician Willebrord Snell (1591–1626), who discovered it in 1621. While the law has
been named after Snell, the Arabian physicist Ibn Sahl found the law of refraction in 984 and used it in his
work On Burning Mirrors and Lenses. The law of refraction is stated in equation form as

Here and are the indices of refraction for media 1 and 2, and and are the angles between the rays
and the perpendicular in media 1 and 2. The incoming ray is called the incident ray, the outgoing ray is called
the refracted ray, and the associated angles are the incident angle and the refracted angle, respectively.

Snell’s experiments showed that the law of refraction is obeyed and that a characteristic index of refraction n
could be assigned to a given medium and its value measured. Snell was not aware that the speed of light varied
in different media, a key fact used when we derive the law of refraction theoretically using Huygens’s principle
in Huygens’s Principle.

EXAMPLE 1.2

Determining the Index of Refraction
Find the index of refraction for medium 2 in Figure 1.13(a), assuming medium 1 is air and given that the
incident angle is and the angle of refraction is .

Strategy
The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000).
Thus, here. From the given information, and With this information, the only
unknown in Snell’s law is so we can use Snell’s law to find it.

Solution
From Snell’s law we have

1.4

1.3 • Refraction 15



Entering known values,

Significance
This is the index of refraction for water, and Snell could have determined it by measuring the angles and
performing this calculation. He would then have found 1.33 to be the appropriate index of refraction for water
in all other situations, such as when a ray passes from water to glass. Today, we can verify that the index of
refraction is related to the speed of light in a medium by measuring that speed directly.

INTERACTIVE

Explore bending of light (https://openstax.org/l/21bendoflight) between two media with different indices of
refraction. Use the “Intro” simulation and see how changing from air to water to glass changes the bending
angle. Use the protractor tool to measure the angles and see if you can recreate the configuration in Example
1.2. Also by measurement, confirm that the angle of reflection equals the angle of incidence.

EXAMPLE 1.3

A Larger Change in Direction
Suppose that in a situation like that in Example 1.2, light goes from air to diamond and that the incident angle
is . Calculate the angle of refraction in the diamond.

Strategy
Again, the index of refraction for air is taken to be , and we are given . We can look up the
index of refraction for diamond in Table 1.1, finding . The only unknown in Snell’s law is , which
we wish to determine.

Solution
Solving Snell’s law for yields

Entering known values,

The angle is thus

Significance
For the same angle of incidence, the angle of refraction in diamond is significantly smaller than in water

rather than —see Example 1.2). This means there is a larger change in direction in diamond. The
cause of a large change in direction is a large change in the index of refraction (or speed). In general, the larger
the change in speed, the greater the effect on the direction of the ray.

CHECK YOUR UNDERSTANDING 1.2

In Table 1.1, the solid with the next highest index of refraction after diamond is zircon. If the diamond in
Example 1.3 were replaced with a piece of zircon, what would be the new angle of refraction?
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1.4 Total Internal Reflection
Learning Objectives
By the end of this section, you will be able to:

• Explain the phenomenon of total internal reflection
• Describe the workings and uses of optical fibers
• Analyze the reason for the sparkle of diamonds

A good-quality mirror may reflect more than of the light that falls on it, absorbing the rest. But it would be
useful to have a mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection
using an aspect of refraction.

Consider what happens when a ray of light strikes the surface between two materials, as shown in Figure
1.14(a). Part of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure,
the index of refraction for the second medium is less than for the first, the ray bends away from the
perpendicular. (Since the angle of refraction is greater than the angle of incidence—that is,
Now imagine what happens as the incident angle increases. This causes to increase also. The largest the
angle of refraction can be is , as shown in part (b). The critical angle for a combination of materials is
defined to be the incident angle that produces an angle of refraction of . That is, is the incident angle
for which . If the incident angle is greater than the critical angle, as shown in Figure 1.14(c), then
all of the light is reflected back into medium 1, a condition called total internal reflection. (As the figure
shows, the reflected rays obey the law of reflection so that the angle of reflection is equal to the angle of
incidence in all three cases.)

Figure 1.14 (a) A ray of light crosses a boundary where the index of refraction decreases. That is, The ray bends away from the

perpendicular. (b) The critical angle is the angle of incidence for which the angle of refraction is (c) Total internal reflection occurs

when the incident angle is greater than the critical angle.

Snell’s law states the relationship between angles and indices of refraction. It is given by

When the incident angle equals the critical angle , the angle of refraction is . Noting
that Snell’s law in this case becomes

The critical angle for a given combination of materials is thus

Total internal reflection occurs for any incident angle greater than the critical angle , and it can only occur
when the second medium has an index of refraction less than the first. Note that this equation is written for a
light ray that travels in medium 1 and reflects from medium 2, as shown in Figure 1.14.

1.5
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EXAMPLE 1.4

Determining a Critical Angle
What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air? The
index of refraction for polystyrene is 1.49.

Strategy
The index of refraction of air can be taken to be 1.00, as before. Thus, the condition that the second medium
(air) has an index of refraction less than the first (plastic) is satisfied, and we can use the equation

to find the critical angle where and

Solution
Substituting the identified values gives

Significance
This result means that any ray of light inside the plastic that strikes the surface at an angle greater than
is totally reflected. This makes the inside surface of the clear plastic a perfect mirror for such rays, without any
need for the silvering used on common mirrors. Different combinations of materials have different critical
angles, but any combination with can produce total internal reflection. The same calculation as made
here shows that the critical angle for a ray going from water to air is , whereas that from diamond to air is

, and that from flint glass to crown glass is .

CHECK YOUR UNDERSTANDING 1.3

At the surface between air and water, light rays can go from air to water and from water to air. For which ray is
there no possibility of total internal reflection?

In the photo that opens this chapter, the image of a swimmer underwater is captured by a camera that is also
underwater. The swimmer in the upper half of the photograph, apparently facing upward, is, in fact, a reflected
image of the swimmer below. The circular ripple near the photograph’s center is actually on the water surface.
The undisturbed water surrounding it makes a good reflecting surface when viewed from below, thanks to total
internal reflection. However, at the very top edge of this photograph, rays from below strike the surface with
incident angles less than the critical angle, allowing the camera to capture a view of activities on the pool deck
above water.

Fiber Optics: Endoscopes to Telephones
Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to
transmit telephone, internet, and cable TV signals. Fiber optics employs the transmission of light down fibers
of plastic or glass. Because the fibers are thin, light entering one is likely to strike the inside surface at an angle
greater than the critical angle and, thus, be totally reflected (Figure 1.15). The index of refraction outside the
fiber must be smaller than inside. In fact, most fibers have a varying refractive index to allow more light to be
guided along the fiber through total internal refraction. Rays are reflected around corners as shown, making
the fibers into tiny light pipes.
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Figure 1.15 Light entering a thin optic fiber may strike the inside surface at large or grazing angles and is completely reflected if these

angles exceed the critical angle. Such rays continue down the fiber, even following it around corners, since the angles of reflection and

incidence remain large.

Bundles of fibers can be used to transmit an image without a lens, as illustrated in Figure 1.16. The output of a
device called an endoscope is shown in Figure 1.16(b). Endoscopes are used to explore the interior of the body
through its natural orifices or minor incisions. Light is transmitted down one fiber bundle to illuminate
internal parts, and the reflected light is transmitted back out through another bundle to be observed.

Figure 1.16 (a) An image “A” is transmitted by a bundle of optical fibers. (b) An endoscope is used to probe the body, both transmitting

light to the interior and returning an image such as the one shown of a human epiglottis (a structure at the base of the tongue). (credit b:

modification of work by “Med_Chaos”/Wikimedia Commons)

Fiber optics has revolutionized surgical techniques and observations within the body, with a host of medical
diagnostic and therapeutic uses. Surgery can be performed, such as arthroscopic surgery on a knee or
shoulder joint, employing cutting tools attached to and observed with the endoscope. Samples can also be
obtained, such as by lassoing an intestinal polyp for external examination. The flexibility of the fiber optic
bundle allows doctors to navigate it around small and difficult-to-reach regions in the body, such as the
intestines, the heart, blood vessels, and joints. Transmission of an intense laser beam to burn away obstructing
plaques in major arteries, as well as delivering light to activate chemotherapy drugs, are becoming
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commonplace. Optical fibers have in fact enabled microsurgery and remote surgery where the incisions are
small and the surgeon’s fingers do not need to touch the diseased tissue.

Optical fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the
core (Figure 1.17). The cladding prevents light from being transmitted between fibers in a bundle. Without
cladding, light could pass between fibers in contact, since their indices of refraction are identical. Since no
light gets into the cladding (there is total internal reflection back into the core), none can be transmitted
between clad fibers that are in contact with one another. Instead, the light is propagated along the length of the
fiber, minimizing the loss of signal and ensuring that a quality image is formed at the other end. The cladding
and an additional protective layer make optical fibers durable as well as flexible.

Figure 1.17 Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal reflection,

even when fibers are in contact with one another.

Special tiny lenses that can be attached to the ends of bundles of fibers have been designed and fabricated.
Light emerging from a fiber bundle can be focused through such a lens, imaging a tiny spot. In some cases, the
spot can be scanned, allowing quality imaging of a region inside the body. Special minute optical filters
inserted at the end of the fiber bundle have the capacity to image the interior of organs located tens of microns
below the surface without cutting the surface—an area known as nonintrusive diagnostics. This is particularly
useful for determining the extent of cancers in the stomach and bowel.

In another type of application, optical fibers are commonly used to carry signals for telephone conversations
and internet communications. Extensive optical fiber cables have been placed on the ocean floor and
underground to enable optical communications. Optical fiber communication systems offer several
advantages over electrical (copper)-based systems, particularly for long distances. The fibers can be made so
transparent that light can travel many kilometers before it becomes dim enough to require
amplification—much superior to copper conductors. This property of optical fibers is called low loss. Lasers
emit light with characteristics that allow far more conversations in one fiber than are possible with electric
signals on a single conductor. This property of optical fibers is called high bandwidth. Optical signals in one
fiber do not produce undesirable effects in other adjacent fibers. This property of optical fibers is called
reduced crosstalk. We shall explore the unique characteristics of laser radiation in a later chapter.

Corner Reflectors and Diamonds
Corner reflectors (The Law of Reflection) are perfectly efficient when the conditions for total internal reflection
are satisfied. With common materials, it is easy to obtain a critical angle that is less than One use of these
perfect mirrors is in binoculars, as shown in Figure 1.18. Another use is in periscopes found in submarines.
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Figure 1.18 These binoculars employ corner reflectors (prisms) with total internal reflection to get light to the observer’s eyes.

Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than
other materials. The critical angle for a diamond-to-air surface is only , so when light enters a diamond, it
has trouble getting back out (Figure 1.19). Although light freely enters the diamond, it can exit only if it makes
an angle less than . Facets on diamonds are specifically intended to make this unlikely. Good diamonds
are very clear, so that the light makes many internal reflections and is concentrated before exiting—hence the
bright sparkle. (Zircon is a natural gemstone that has an exceptionally large index of refraction, but it is not as
large as diamond, so it is not as highly prized. Cubic zirconia is manufactured and has an even higher index of
refraction , but it is still less than that of diamond.) The colors you see emerging from a clear diamond
are not due to the diamond’s color, which is usually nearly colorless. The colors result from dispersion, which
we discuss in Dispersion. Colored diamonds get their color from structural defects of the crystal lattice and the
inclusion of minute quantities of graphite and other materials. The Argyle Mine in Western Australia produces
around 90% of the world’s pink, red, champagne, and cognac diamonds, whereas around 50% of the world’s
clear diamonds come from central and southern Africa.

Figure 1.19 Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and the facets

are placed so that light can exit only in particular ways—thus concentrating the light and making the diamond sparkle brightly.

INTERACTIVE

Explore refraction and reflection of light (https://openstax.org/l/21bendoflight) between two media with

1.4 • Total Internal Reflection 21



different indices of refraction. Try to make the refracted ray disappear with total internal reflection. Use the
protractor tool to measure the critical angle and compare with the prediction from Equation 1.5.

1.5 Dispersion
Learning Objectives
By the end of this section, you will be able to:

• Explain the cause of dispersion in a prism
• Describe the effects of dispersion in producing rainbows
• Summarize the advantages and disadvantages of dispersion

Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on
clear drops of rain get broken into the rainbow of colors we see? The same process causes white light to be
broken into colors by a clear glass prism or a diamond (Figure 1.20).

Figure 1.20 The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit a: modification of work by

“Alfredo55”/Wikimedia Commons; credit b: modification of work by NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed,
too. These colors are associated with different wavelengths of light, as shown in Figure 1.21. When our eye
receives pure-wavelength light, we tend to see only one of the six colors, depending on wavelength. The
thousands of other hues we can sense in other situations are our eye’s response to various mixtures of
wavelengths. White light, in particular, is a fairly uniform mixture of all visible wavelengths. Sunlight,
considered to be white, actually appears to be a bit yellow, because of its mixture of wavelengths, but it does
contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors shown
in the figure. This implies that white light is spread out in a rainbow according to wavelength. Dispersion is
defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion
occurs whenever the propagation of light depends on wavelength.

Figure 1.21 Even though rainbows are associated with six colors, the rainbow is a continuous distribution of colors according to

wavelengths.

Any type of wave can exhibit dispersion. For example, sound waves, all types of electromagnetic waves, and
water waves can be dispersed according to wavelength. Dispersion may require special circumstances and can
result in spectacular displays such as in the production of a rainbow. This is also true for sound, since all
frequencies ordinarily travel at the same speed. If you listen to sound through a long tube, such as a vacuum
cleaner hose, you can easily hear it dispersed by interaction with the tube. Dispersion, in fact, can reveal a
great deal about what the wave has encountered that disperses its wavelengths. The dispersion of
electromagnetic radiation from outer space, for example, has revealed much about what exists between the
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stars—the so-called interstellar medium.

INTERACTIVE

Nick Moore’s video (https://openstax.org/l/21nickmoorevid) discusses dispersion of a pulse as he taps a long
spring. Follow his explanation as Moore replays the high-speed footage showing high frequency waves
outrunning the lower frequency waves.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction
depends on the index of refraction, as we know from Snell’s law. We know that the index of refraction n
depends on the medium. But for a given medium, n also depends on wavelength (Table 1.2). Note that for a
given medium, n increases as wavelength decreases and is greatest for violet light. Thus, violet light is bent
more than red light, as shown for a prism in Figure 1.22(b). White light is dispersed into the same sequence of
wavelengths as seen in Figure 1.20 and Figure 1.21.

Medium
Red

(660 nm)
Orange

(610 nm)
Yellow

(580 nm)
Green

(550 nm)
Blue

(470 nm)
Violet

(410 nm)

Water 1.331 1.332 1.333 1.335 1.338 1.342

Diamond 2.410 2.415 2.417 2.426 2.444 2.458

Glass, crown 1.512 1.514 1.518 1.519 1.524 1.530

Glass, flint 1.662 1.665 1.667 1.674 1.684 1.698

Polystyrene 1.488 1.490 1.492 1.493 1.499 1.506

Quartz, fused 1.455 1.456 1.458 1.459 1.462 1.468

Table 1.2 Index of Refraction n in Selected Media at Various Wavelengths

Figure 1.22 (a) A pure wavelength of light falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the prism

(shown exaggerated). Since the index of refraction varies with wavelength, the angles of refraction vary with wavelength. A sequence of red

to violet is produced, because the index of refraction increases steadily with decreasing wavelength.

EXAMPLE 1.5

Dispersion of White Light by Crown Glass
A beam of white light goes from air into crown glass at an incidence angle of . What is the angle between
the red (660 nm) and violet (410 nm) parts of the refracted light?
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Strategy
Values for the indices of refraction for crown glass at various wavelengths are listed in Table 1.2. Use these
values for calculate the angle of refraction for each color and then take the difference to find the dispersion
angle.

Solution
Applying the law of refraction for the red part of the beam

we can solve for the angle of refraction as

Similarly, the angle of incidence for the violet part of the beam is

The difference between these two angles is

Significance
Although may seem like a negligibly small angle, if this beam is allowed to propagate a long enough
distance, the dispersion of colors becomes quite noticeable.

CHECK YOUR UNDERSTANDING 1.4

In the preceding example, how much distance inside the block of crown glass would the red and the violet rays
have to progress before they are separated by 1.0 mm?

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a
rainbow only when you look away from the Sun. Light enters a drop of water and is reflected from the back of
the drop (Figure 1.23). The light is refracted both as it enters and as it leaves the drop. Since the index of
refraction of water varies with wavelength, the light is dispersed, and a rainbow is observed (Figure 1.24(a)).
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(No dispersion occurs at the back surface, because the law of reflection does not depend on wavelength.) The
actual rainbow of colors seen by an observer depends on the myriad rays being refracted and reflected toward
the observer’s eyes from numerous drops of water. The effect is most spectacular when the background is
dark, as in stormy weather, but can also be observed in waterfalls and lawn sprinklers. The arc of a rainbow
comes from the need to be looking at a specific angle relative to the direction of the Sun, as illustrated in part
(b). If two reflections of light occur within the water drop, another “secondary” rainbow is produced. This rare
event produces an arc that lies above the primary rainbow arc, as in part (c), and produces colors in the
reverse order of the primary rainbow, with red at the lowest angle and violet at the largest angle.

Figure 1.23 A ray of light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and dispersed

both as it enters and as it leaves the drop.

Figure 1.24 (a) Different colors emerge in different directions, and so you must look at different locations to see the various colors of a

rainbow. (b) The arc of a rainbow results from the fact that a line between the observer and any point on the arc must make the correct

angle with the parallel rays of sunlight for the observer to receive the refracted rays. (c) Double rainbow. (credit c: modification of work by

“Nicholas”/Wikimedia Commons)

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to
transmit messages in a fiber is dispersed, spreading out in time and eventually overlapping with other
messages. Since a laser produces a nearly pure wavelength, its light experiences little dispersion, an advantage
over white light for transmission of information. In contrast, dispersion of electromagnetic waves coming to us
from outer space can be used to determine the amount of matter they pass through.
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1.6 Huygens’s Principle
Learning Objectives
By the end of this section, you will be able to:

• Describe Huygens’s principle
• Use Huygens’s principle to explain the law of reflection
• Use Huygens’s principle to explain the law of refraction
• Use Huygens’s principle to explain diffraction

So far in this chapter, we have been discussing optical phenomena using the ray model of light. However, some
phenomena require analysis and explanations based on the wave characteristics of light. This is particularly
true when the wavelength is not negligible compared to the dimensions of an optical device, such as a slit in
the case of diffraction. Huygens’s principle is an indispensable tool for this analysis.

Figure 1.25 shows how a transverse wave looks as viewed from above and from the side. A light wave can be
imagined to propagate like this, although we do not actually see it wiggling through space. From above, we view
the wave fronts (or wave crests) as if we were looking down on ocean waves. The side view would be a graph of
the electric or magnetic field. The view from above is perhaps more useful in developing concepts about wave
optics.

Figure 1.25 A transverse wave, such as an electromagnetic light wave, as viewed from above and from the side. The direction of

propagation is perpendicular to the wave fronts (or wave crests) and is represented by a ray.

The Dutch scientist Christiaan Huygens (1629–1695) developed a useful technique for determining in detail
how and where waves propagate. Starting from some known position, Huygens’s principle states that every
point on a wave front is a source of wavelets that spread out in the forward direction at the same speed as the
wave itself. The new wave front is tangent to all of the wavelets.

Figure 1.26 shows how Huygens’s principle is applied. A wave front is the long edge that moves, for example,
with the crest or the trough. Each point on the wave front emits a semicircular wave that moves at the
propagation speed v. We can draw these wavelets at a time t later, so that they have moved a distance
The new wave front is a plane tangent to the wavelets and is where we would expect the wave to be a time t
later. Huygens’s principle works for all types of waves, including water waves, sound waves, and light waves. It
is useful not only in describing how light waves propagate but also in explaining the laws of reflection and
refraction. In addition, we will see that Huygens’s principle tells us how and where light rays interfere.
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Figure 1.26 Huygens’s principle applied to a straight wave front. Each point on the wave front emits a semicircular wavelet that moves a

distance The new wave front is a line tangent to the wavelets.

Reflection
Figure 1.27 shows how a mirror reflects an incoming wave at an angle equal to the incident angle, verifying the
law of reflection. As the wave front strikes the mirror, wavelets are first emitted from the left part of the mirror
and then from the right. The wavelets closer to the left have had time to travel farther, producing a wave front
traveling in the direction shown.

Figure 1.27 Huygens’s principle applied to a plane wave front striking a mirror. The wavelets shown were emitted as each point on the

wave front struck the mirror. The tangent to these wavelets shows that the new wave front has been reflected at an angle equal to the

incident angle. The direction of propagation is perpendicular to the wave front, as shown by the downward-pointing arrows.

Refraction
The law of refraction can be explained by applying Huygens’s principle to a wave front passing from one
medium to another (Figure 1.28). Each wavelet in the figure was emitted when the wave front crossed the
interface between the media. Since the speed of light is smaller in the second medium, the waves do not travel
as far in a given time, and the new wave front changes direction as shown. This explains why a ray changes
direction to become closer to the perpendicular when light slows down. Snell’s law can be derived from the
geometry in Figure 1.28 (Example 1.6).
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Figure 1.28 Huygens’s principle applied to a plane wave front traveling from one medium to another, where its speed is less. The ray

bends toward the perpendicular, since the wavelets have a lower speed in the second medium.

EXAMPLE 1.6

Deriving the Law of Refraction
By examining the geometry of the wave fronts, derive the law of refraction.

Strategy
Consider Figure 1.29, which expands upon Figure 1.28. It shows the incident wave front just reaching the
surface at point A, while point B is still well within medium 1. In the time it takes for a wavelet from B to
reach on the surface at speed a wavelet from A travels into medium 2 a distance of
where Note that in this example, is slower than because

Figure 1.29 Geometry of the law of refraction from medium 1 to medium 2.

Solution
The segment on the surface is shared by both the triangle inside medium 1 and the triangle
inside medium 2. Note that from the geometry, the angle is equal to the angle of incidence, .
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Similarly, is .

The length of is given in two ways as

Inverting the equation and substituting from above and similarly , we obtain

Cancellation of allows us to simplify this equation into the familiar form

Significance
Although the law of refraction was established experimentally by Snell and stated in Refraction, its derivation
here requires Huygens’s principle and the understanding that the speed of light is different in different media.

CHECK YOUR UNDERSTANDING 1.5

In Example 1.6, we had . If were decreased such that and the speed of light in medium 2 is
faster than in medium 1, what would happen to the length of ? What would happen to the wave front
and the direction of the refracted ray?

INTERACTIVE

This applet (https://openstax.org/l/21walfedaniref) by Walter Fendt shows an animation of reflection and
refraction using Huygens’s wavelets while you control the parameters. Be sure to click on “Next step” to
display the wavelets. You can see the reflected and refracted wave fronts forming.

Diffraction
What happens when a wave passes through an opening, such as light shining through an open door into a dark
room? For light, we observe a sharp shadow of the doorway on the floor of the room, and no visible light bends
around corners into other parts of the room. When sound passes through a door, we hear it everywhere in the
room and thus observe that sound spreads out when passing through such an opening (Figure 1.30). What is
the difference between the behavior of sound waves and light waves in this case? The answer is that light has
very short wavelengths and acts like a ray. Sound has wavelengths on the order of the size of the door and
bends around corners (for frequency of 1000 Hz,

about three times smaller than the width of the doorway).
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Figure 1.30 (a) Light passing through a doorway makes a sharp outline on the floor. Since light’s wavelength is very small compared with

the size of the door, it acts like a ray. (b) Sound waves bend into all parts of the room, a wave effect, because their wavelength is similar to

the size of the door.

If we pass light through smaller openings such as slits, we can use Huygens’s principle to see that light bends
as sound does (Figure 1.31). The bending of a wave around the edges of an opening or an obstacle is called
diffraction. Diffraction is a wave characteristic and occurs for all types of waves. If diffraction is observed for
some phenomenon, it is evidence that the phenomenon is a wave. Thus, the horizontal diffraction of the laser
beam after it passes through the slits in Figure 1.31 is evidence that light is a wave. You will learn about
diffraction in much more detail in the chapter on Diffraction.

Figure 1.31 Huygens’s principle applied to a plane wave front striking an opening. The edges of the wave front bend after passing through

the opening, a process called diffraction. The amount of bending is more extreme for a small opening, consistent with the fact that wave

characteristics are most noticeable for interactions with objects about the same size as the wavelength.

1.7 Polarization
Learning Objectives
By the end of this section, you will be able to:

• Explain the change in intensity as polarized light passes through a polarizing filter
• Calculate the effect of polarization by reflection and Brewster’s angle
• Describe the effect of polarization by scattering
• Explain the use of polarizing materials in devices such as LCDs

Polarizing sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected
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from water or glass (Figure 1.32). They have this ability because of a wave characteristic of light called
polarization. What is polarization? How is it produced? What are some of its uses? The answers to these
questions are related to the wave character of light.

Figure 1.32 These two photographs of a river show the effect of a polarizing filter in reducing glare in light reflected from the surface of

water. Part (b) of this figure was taken with a polarizing filter and part (a) was not. As a result, the reflection of clouds and sky observed in

part (a) is not observed in part (b). Polarizing sunglasses are particularly useful on snow and water. (credit a and credit b: modifications of

work by “Amithshs”/Wikimedia Commons)

Malus’s Law
Light is one type of electromagnetic (EM) wave. As noted in the previous chapter on Electromagnetic Waves,
EM waves are transverse waves consisting of varying electric and magnetic fields that oscillate perpendicular
to the direction of propagation (Figure 1.33). However, in general, there are no specific directions for the
oscillations of the electric and magnetic fields; they vibrate in any randomly oriented plane perpendicular to
the direction of propagation. Polarization is the attribute that a wave’s oscillations do have a definite direction
relative to the direction of propagation of the wave. (This is not the same type of polarization as that discussed
for the separation of charges.) Waves having such a direction are said to be polarized. For an EM wave, we
define the direction of polarization to be the direction parallel to the electric field. Thus, we can think of the
electric field arrows as showing the direction of polarization, as in Figure 1.33.

Figure 1.33 An EM wave, such as light, is a transverse wave. The electric and magnetic fields are perpendicular to the direction of

propagation. The direction of polarization of the wave is the direction of the electric field.

To examine this further, consider the transverse waves in the ropes shown in Figure 1.34. The oscillations in
one rope are in a vertical plane and are said to be vertically polarized. Those in the other rope are in a
horizontal plane and are horizontally polarized. If a vertical slit is placed on the first rope, the waves pass
through. However, a vertical slit blocks the horizontally polarized waves. For EM waves, the direction of the
electric field is analogous to the disturbances on the ropes.
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Figure 1.34 The transverse oscillations in one rope (a) are in a vertical plane, and those in the other rope (b) are in a horizontal plane. The

first is said to be vertically polarized, and the other is said to be horizontally polarized. Vertical slits pass vertically polarized waves and

block horizontally polarized waves.

The Sun and many other light sources produce waves that have the electric fields in random directions (Figure
1.35(a)). Such light is said to be unpolarized, because it is composed of many waves with all possible
directions of polarization. Polaroid materials—which were invented by the founder of the Polaroid Corporation,
Edwin Land—act as a polarizing slit for light, allowing only polarization in one direction to pass through.
Polarizing filters are composed of long molecules aligned in one direction. If we think of the molecules as
many slits, analogous to those for the oscillating ropes, we can understand why only light with a specific
polarization can get through. The axis of a polarizing filter is the direction along which the filter passes the
electric field of an EM wave.

Figure 1.35 The slender arrow represents a ray of unpolarized light. The bold arrows represent the direction of polarization of the

individual waves composing the ray. (a) If the light is unpolarized, the arrows point in all directions. (b) A polarizing filter has a polarization

axis that acts as a slit passing through electric fields parallel to its direction. The direction of polarization of an EM wave is defined to be the

direction of its electric field.

Figure 1.36 shows the effect of two polarizing filters on originally unpolarized light. The first filter polarizes the
light along its axis. When the axes of the first and second filters are aligned (parallel), then all of the polarized
light passed by the first filter is also passed by the second filter. If the second polarizing filter is rotated, only
the component of the light parallel to the second filter’s axis is passed. When the axes are perpendicular, no
light is passed by the second filter.
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Figure 1.36 The effect of rotating two polarizing filters, where the first polarizes the light. (a) All of the polarized light is passed by the

second polarizing filter, because its axis is parallel to the first. (b) As the second filter is rotated, only part of the light is passed. (c) When the

second filter is perpendicular to the first, no light is passed. (d) In this photograph, a polarizing filter is placed above two others. Its axis is

perpendicular to the filter on the right (dark area) and parallel to the filter on the left (lighter area). (credit d: modification of work by P.P.

Urone)

Only the component of the EM wave parallel to the axis of a filter is passed. Let us call the angle between the
direction of polarization and the axis of a filter . If the electric field has an amplitude E, then the transmitted
part of the wave has an amplitude (Figure 1.37). Since the intensity of a wave is proportional to its
amplitude squared, the intensity I of the transmitted wave is related to the incident wave by

where is the intensity of the polarized wave before passing through the filter. This equation is known as
Malus’s law.

Figure 1.37 A polarizing filter transmits only the component of the wave parallel to its axis, reducing the intensity of any light not

1.6
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polarized parallel to its axis.

INTERACTIVE

This Open Source Physics animation (https://openstax.org/l/21phyanielefie) helps you visualize the electric
field vectors as light encounters a polarizing filter. You can rotate the filter—note that the angle displayed is in
radians. You can also rotate the animation for 3D visualization.

EXAMPLE 1.7

Calculating Intensity Reduction by a Polarizing Filter
What angle is needed between the direction of polarized light and the axis of a polarizing filter to reduce its
intensity by ?

Strategy
When the intensity is reduced by , it is or 0.100 times its original value. That is,
Using this information, the equation can be used to solve for the needed angle.

Solution
Solving the equation for and substituting with the relationship between I and gives

Solving for yields

Significance
A fairly large angle between the direction of polarization and the filter axis is needed to reduce the intensity to

of its original value. This seems reasonable based on experimenting with polarizing films. It is
interesting that at an angle of , the intensity is reduced to of its original value. Note that is
from reducing the intensity to zero, and that at an angle of , the intensity is reduced to of its
original value, giving evidence of symmetry.

CHECK YOUR UNDERSTANDING 1.6

Although we did not specify the direction in Example 1.7, let’s say the polarizing filter was rotated clockwise by
to reduce the light intensity by . What would be the intensity reduction if the polarizing filter were

rotated counterclockwise by ?

Polarization by Reflection
By now, you can probably guess that polarizing sunglasses cut the glare in reflected light, because that light is
polarized. You can check this for yourself by holding polarizing sunglasses in front of you and rotating them
while looking at light reflected from water or glass. As you rotate the sunglasses, you will notice the light gets
bright and dim, but not completely black. This implies the reflected light is partially polarized and cannot be
completely blocked by a polarizing filter.

Figure 1.38 illustrates what happens when unpolarized light is reflected from a surface. Vertically polarized
light is preferentially refracted at the surface, so the reflected light is left more horizontally polarized. The
reasons for this phenomenon are beyond the scope of this text, but a convenient mnemonic for remembering
this is to imagine the polarization direction to be like an arrow. Vertical polarization is like an arrow
perpendicular to the surface and is more likely to stick and not be reflected. Horizontal polarization is like an
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arrow bouncing on its side and is more likely to be reflected. Sunglasses with vertical axes thus block more
reflected light than unpolarized light from other sources.

Figure 1.38 Polarization by reflection. Unpolarized light has equal amounts of vertical and horizontal polarization. After interaction with a

surface, the vertical components are preferentially absorbed or refracted, leaving the reflected light more horizontally polarized. This is akin

to arrows striking on their sides and bouncing off, whereas arrows striking on their tips go into the surface.

Since the part of the light that is not reflected is refracted, the amount of polarization depends on the indices of
refraction of the media involved. It can be shown that reflected light is completely polarized at an angle of
reflection given by

where is the medium in which the incident and reflected light travel and is the index of refraction of the
medium that forms the interface that reflects the light. This equation is known as Brewster’s law and is
known as Brewster’s angle, named after the nineteenth-century Scottish physicist who discovered them.

INTERACTIVE

This Open Source Physics animation (https://openstax.org/l/21phyaniincref) shows incident, reflected, and
refracted light as rays and EM waves. Try rotating the animation for 3D visualization and also change the angle
of incidence. Near Brewster’s angle, the reflected light becomes highly polarized.

EXAMPLE 1.8

Calculating Polarization by Reflection
(a) At what angle will light traveling in air be completely polarized horizontally when reflected from water? (b)
From glass?

Strategy
All we need to solve these problems are the indices of refraction. Air has water has and
crown glass has The equation can be directly applied to find in each case.

1.7

1.7 • Polarization 35



Solution

a. Putting the known quantities into the equation

gives

Solving for the angle yields

b. Similarly, for crown glass and air,

Thus,

Significance
Light reflected at these angles could be completely blocked by a good polarizing filter held with its axis vertical.
Brewster’s angle for water and air are similar to those for glass and air, so that sunglasses are equally effective
for light reflected from either water or glass under similar circumstances. Light that is not reflected is
refracted into these media. Therefore, at an incident angle equal to Brewster’s angle, the refracted light is
slightly polarized vertically. It is not completely polarized vertically, because only a small fraction of the
incident light is reflected, so a significant amount of horizontally polarized light is refracted.

CHECK YOUR UNDERSTANDING 1.7

What happens at Brewster’s angle if the original incident light is already vertically polarized?

Atomic Explanation of Polarizing Filters
Polarizing filters have a polarization axis that acts as a slit. This slit passes EM waves (often visible light) that
have an electric field parallel to the axis. This is accomplished with long molecules aligned perpendicular to
the axis, as shown in Figure 1.39.

Figure 1.39 Long molecules are aligned perpendicular to the axis of a polarizing filter. In an EM wave, the component of the electric field

perpendicular to these molecules passes through the filter, whereas the component parallel to the molecules is absorbed.
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Figure 1.40 illustrates how the component of the electric field parallel to the long molecules is absorbed. An
EM wave is composed of oscillating electric and magnetic fields. The electric field is strong compared with the
magnetic field and is more effective in exerting force on charges in the molecules. The most affected charged
particles are the electrons, since electron masses are small. If an electron is forced to oscillate, it can absorb
energy from the EM wave. This reduces the field in the wave and, hence, reduces its intensity. In long
molecules, electrons can more easily oscillate parallel to the molecule than in the perpendicular direction. The
electrons are bound to the molecule and are more restricted in their movement perpendicular to the molecule.
Thus, the electrons can absorb EM waves that have a component of their electric field parallel to the molecule.
The electrons are much less responsive to electric fields perpendicular to the molecule and allow these fields
to pass. Thus, the axis of the polarizing filter is perpendicular to the length of the molecule.

Figure 1.40 Diagram of an electron in a long molecule oscillating parallel to the molecule. The oscillation of the electron absorbs energy

and reduces the intensity of the component of the EM wave that is parallel to the molecule.

Polarization by Scattering
If you hold your polarizing sunglasses in front of you and rotate them while looking at blue sky, you will see the
sky get bright and dim. This is a clear indication that light scattered by air is partially polarized. Figure 1.41
helps illustrate how this happens. Since light is a transverse EM wave, it vibrates the electrons of air molecules
perpendicular to the direction that it is traveling. The electrons then radiate like small antennae. Since they
are oscillating perpendicular to the direction of the light ray, they produce EM radiation that is polarized
perpendicular to the direction of the ray. When viewing the light along a line perpendicular to the original ray,
as in the figure, there can be no polarization in the scattered light parallel to the original ray, because that
would require the original ray to be a longitudinal wave. Along other directions, a component of the other
polarization can be projected along the line of sight, and the scattered light is only partially polarized.
Furthermore, multiple scattering can bring light to your eyes from other directions and can contain different
polarizations.
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Figure 1.41 Polarization by scattering. Unpolarized light scattering from air molecules shakes their electrons perpendicular to the

direction of the original ray. The scattered light therefore has a polarization perpendicular to the original direction and none parallel to the

original direction.

Photographs of the sky can be darkened by polarizing filters, a trick used by many photographers to make
clouds brighter by contrast. Scattering from other particles, such as smoke or dust, can also polarize light.
Detecting polarization in scattered EM waves can be a useful analytical tool in determining the scattering
source.

A range of optical effects are used in sunglasses. Besides being polarizing, sunglasses may have colored
pigments embedded in them, whereas others use either a nonreflective or reflective coating. A recent
development is photochromic lenses, which darken in the sunlight and become clear indoors. Photochromic
lenses are embedded with organic microcrystalline molecules that change their properties when exposed to
UV in sunlight, but become clear in artificial lighting with no UV.

Liquid Crystals and Other Polarization Effects in Materials
Although you are undoubtedly aware of liquid crystal displays (LCDs) found in watches, calculators, computer
screens, cellphones, flat screen televisions, and many other places, you may not be aware that they are based
on polarization. Liquid crystals are so named because their molecules can be aligned even though they are in a
liquid. Liquid crystals have the property that they can rotate the polarization of light passing through them by

. Furthermore, this property can be turned off by the application of a voltage, as illustrated in Figure 1.42. It
is possible to manipulate this characteristic quickly and in small, well-defined regions to create the contrast
patterns we see in so many LCD devices.

In flat screen LCD televisions, a large light is generated at the back of the TV. The light travels to the front
screen through millions of tiny units called pixels (picture elements). One of these is shown in Figure 1.42(a)
and (b). Each unit has three cells, with red, blue, or green filters, each controlled independently. When the
voltage across a liquid crystal is switched off, the liquid crystal passes the light through the particular filter. We
can vary the picture contrast by varying the strength of the voltage applied to the liquid crystal.

38 1 • The Nature of Light

Access for free at openstax.org.



Figure 1.42 (a) Polarized light is rotated by a liquid crystal and then passed by a polarizing filter that has its axis perpendicular to the

direction of the original polarization. (b) When a voltage is applied to the liquid crystal, the polarized light is not rotated and is blocked by

the filter, making the region dark in comparison with its surroundings. (c) LCDs can be made color specific, small, and fast enough to use in

laptop computers and TVs. (credit c: modification of work by Jane Whitney)

Many crystals and solutions rotate the plane of polarization of light passing through them. Such substances are
said to be optically active. Examples include sugar water, insulin, and collagen (Figure 1.43). In addition to
depending on the type of substance, the amount and direction of rotation depend on several other factors.
Among these is the concentration of the substance, the distance the light travels through it, and the wavelength
of light. Optical activity is due to the asymmetrical shape of molecules in the substance, such as being helical.
Measurements of the rotation of polarized light passing through substances can thus be used to measure
concentrations, a standard technique for sugars. It can also give information on the shapes of molecules, such
as proteins, and factors that affect their shapes, such as temperature and pH.

Figure 1.43 Optical activity is the ability of some substances to rotate the plane of polarization of light passing through them. The rotation

is detected with a polarizing filter or analyzer.

Glass and plastic become optically active when stressed: the greater the stress, the greater the effect. Optical
stress analysis on complicated shapes can be performed by making plastic models of them and observing
them through crossed filters, as seen in Figure 1.44. It is apparent that the effect depends on wavelength as
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well as stress. The wavelength dependence is sometimes also used for artistic purposes.

Figure 1.44 Optical stress analysis of a plastic lens placed between crossed polarizers. (credit: “Infopro”/Wikimedia Commons)

Another interesting phenomenon associated with polarized light is the ability of some crystals to split an
unpolarized beam of light into two polarized beams. This occurs because the crystal has one value for the
index of refraction of polarized light but a different value for the index of refraction of light polarized in the
perpendicular direction, so that each component has its own angle of refraction. Such crystals are said to be
birefringent, and, when aligned properly, two perpendicularly polarized beams will emerge from the crystal
(Figure 1.45). Birefringent crystals can be used to produce polarized beams from unpolarized light. Some
birefringent materials preferentially absorb one of the polarizations. These materials are called dichroic and
can produce polarization by this preferential absorption. This is fundamentally how polarizing filters and
other polarizers work.

Figure 1.45 Birefringent materials, such as the common mineral calcite, split unpolarized beams of light into two with two different values

of index of refraction.
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CHAPTER REVIEW
Key Terms
birefringent refers to crystals that split an

unpolarized beam of light into two beams
Brewster’s angle angle of incidence at which the

reflected light is completely polarized
Brewster’s law , where is the

medium in which the incident and reflected light
travel and is the index of refraction of the
medium that forms the interface that reflects the
light

corner reflector object consisting of two (or three)
mutually perpendicular reflecting surfaces, so
that the light that enters is reflected back exactly
parallel to the direction from which it came

critical angle incident angle that produces an
angle of refraction of

direction of polarization direction parallel to the
electric field for EM waves

dispersion spreading of light into its spectrum of
wavelengths

fiber optics field of study of the transmission of
light down fibers of plastic or glass, applying the
principle of total internal reflection

geometric optics part of optics dealing with the ray
aspect of light

horizontally polarized oscillations are in a
horizontal plane

Huygens’s principle every point on a wave front is
a source of wavelets that spread out in the
forward direction at the same speed as the wave
itself; the new wave front is a plane tangent to all
of the wavelets

index of refraction for a material, the ratio of the
speed of light in a vacuum to that in a material

law of reflection angle of reflection equals the
angle of incidence

law of refraction when a light ray crosses from
one medium to another, it changes direction by
an amount that depends on the index of
refraction of each medium and the sines of the
angle of incidence and angle of refraction

Malus’s law where is the intensity of the
polarized wave before passing through the filter

optically active substances that rotate the plane of
polarization of light passing through them

polarization attribute that wave oscillations have a
definite direction relative to the direction of
propagation of the wave

polarized refers to waves having the electric and
magnetic field oscillations in a definite direction

ray straight line that originates at some point
refraction changing of a light ray’s direction when

it passes through variations in matter
total internal reflection phenomenon at the

boundary between two media such that all the
light is reflected and no refraction occurs

unpolarized refers to waves that are randomly
polarized

vertically polarized oscillations are in a vertical
plane

wave optics part of optics dealing with the wave
aspect of light

Key Equations

Speed of light

Index of refraction

Law of reflection

Law of refraction (Snell’s law)

Critical angle

Malus’s law

Brewster’s law
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Summary
1.1 The Propagation of Light

• The speed of light in a vacuum is
.

• The index of refraction of a material is
where v is the speed of light in a material and c
is the speed of light in a vacuum.

• The ray model of light describes the path of light
as straight lines. The part of optics dealing with
the ray aspect of light is called geometric optics.

• Light can travel in three ways from a source to
another location: (1) directly from the source
through empty space; (2) through various
media; and (3) after being reflected from a
mirror.

1.2 The Law of Reflection

• When a light ray strikes a smooth surface, the
angle of reflection equals the angle of incidence.

• A mirror has a smooth surface and reflects light
at specific angles.

• Light is diffused when it reflects from a rough
surface.

1.3 Refraction

• The change of a light ray’s direction when it
passes through variations in matter is called
refraction.

• The law of refraction, also called Snell’s law,
relates the indices of refraction for two media at
an interface to the change in angle of a light ray
passing through that interface.

1.4 Total Internal Reflection

• The incident angle that produces an angle of
refraction of is called the critical angle.

• Total internal reflection is a phenomenon that
occurs at the boundary between two media,
such that if the incident angle in the first
medium is greater than the critical angle, then
all the light is reflected back into that medium.

• Fiber optics involves the transmission of light
down fibers of plastic or glass, applying the
principle of total internal reflection.

• Cladding prevents light from being transmitted
between fibers in a bundle.

• Diamonds sparkle due to total internal
reflection coupled with a large index of
refraction.

1.5 Dispersion

• The spreading of white light into its full

spectrum of wavelengths is called dispersion.
• Rainbows are produced by a combination of

refraction and reflection, and involve the
dispersion of sunlight into a continuous
distribution of colors.

• Dispersion produces beautiful rainbows but also
causes problems in certain optical systems.

1.6 Huygens’s Principle

• According to Huygens’s principle, every point on
a wave front is a source of wavelets that spread
out in the forward direction at the same speed
as the wave itself. The new wave front is tangent
to all of the wavelets.

• A mirror reflects an incoming wave at an angle
equal to the incident angle, verifying the law of
reflection.

• The law of refraction can be explained by
applying Huygens’s principle to a wave front
passing from one medium to another.

• The bending of a wave around the edges of an
opening or an obstacle is called diffraction.

1.7 Polarization

• Polarization is the attribute that wave
oscillations have a definite direction relative to
the direction of propagation of the wave. The
direction of polarization is defined to be the
direction parallel to the electric field of the EM
wave.

• Unpolarized light is composed of many rays
having random polarization directions.

• Unpolarized light can be polarized by passing it
through a polarizing filter or other polarizing
material. The process of polarizing light
decreases its intensity by a factor of 2.

• The intensity, I, of polarized light after passing
through a polarizing filter is ,
where is the incident intensity and is the
angle between the direction of polarization and
the axis of the filter.

• Polarization is also produced by reflection.
• Brewster’s law states that reflected light is

completely polarized at the angle of reflection
, known as Brewster’s angle.

• Polarization can also be produced by scattering.
• Several types of optically active substances

rotate the direction of polarization of light
passing through them.
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Conceptual Questions
1.1 The Propagation of Light

1. Under what conditions can light be modeled like
a ray? Like a wave?

2. Why is the index of refraction always greater than
or equal to 1?

3. Does the fact that the light flash from lightning
reaches you before its sound prove that the speed
of light is extremely large or simply that it is
greater than the speed of sound? Discuss how
you could use this effect to get an estimate of the
speed of light.

4. Speculate as to what physical process might be
responsible for light traveling more slowly in a
medium than in a vacuum.

1.2 The Law of Reflection

5. Using the law of reflection, explain how powder
takes the shine off of a person’s nose. What is the
name of the optical effect?

1.3 Refraction

6. Diffusion by reflection from a rough surface is
described in this chapter. Light can also be
diffused by refraction. Describe how this occurs
in a specific situation, such as light interacting
with crushed ice.

7. Will light change direction toward or away from
the perpendicular when it goes from air to water?
Water to glass? Glass to air?

8. Explain why an object in water always appears to
be at a depth shallower than it actually is?

9. Explain why a person’s legs appear very short
when wading in a pool. Justify your explanation
with a ray diagram showing the path of rays from
the feet to the eye of an observer who is out of the
water.

10. Explain why an oar that is partially submerged
in water appears bent.

1.4 Total Internal Reflection

11. A ring with a colorless gemstone is dropped into
water. The gemstone becomes invisible when
submerged. Can it be a diamond? Explain.

12. The most common type of mirage is an illusion
that light from faraway objects is reflected by a
pool of water that is not really there. Mirages are
generally observed in deserts, when there is a
hot layer of air near the ground. Given that the
refractive index of air is lower for air at higher

temperatures, explain how mirages can be
formed.

13. How can you use total internal reflection to
estimate the index of refraction of a medium?

1.5 Dispersion

14. Is it possible that total internal reflection plays a role
in rainbows? Explain in terms of indices of
refraction and angles, perhaps referring to that
shown below. Some of us have seen the formation of
a double rainbow; is it physically possible to observe
a triple rainbow?
(credit: "Chad"/Flickr)

15. A high-quality diamond may be quite clear and
colorless, transmitting all visible wavelengths
with little absorption. Explain how it can
sparkle with flashes of brilliant color when
illuminated by white light.

1.6 Huygens’s Principle

16. How do wave effects depend on the size of the
object with which the wave interacts? For
example, why does sound bend around the
corner of a building while light does not?

17. Does Huygens’s principle apply to all types of
waves?

18. If diffraction is observed for some
phenomenon, it is evidence that the
phenomenon is a wave. Does the reverse hold
true? That is, if diffraction is not observed, does
that mean the phenomenon is not a wave?

1.7 Polarization

19. Can a sound wave in air be polarized? Explain.
20. No light passes through two perfect polarizing

filters with perpendicular axes. However, if a
third polarizing filter is placed between the
original two, some light can pass. Why is this?
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Under what circumstances does most of the
light pass?

21. Explain what happens to the energy carried by
light that it is dimmed by passing it through two
crossed polarizing filters.

22. When particles scattering light are much
smaller than its wavelength, the amount of
scattering is proportional to . Does this mean
there is more scattering for small than large

? How does this relate to the fact that the sky is
blue?

23. Using the information given in the preceding
question, explain why sunsets are red.

24. When light is reflected at Brewster’s angle from
a smooth surface, it is polarized parallel
to the surface. Part of the light will be refracted
into the surface. Describe how you would do an
experiment to determine the polarization of the
refracted light. What direction would you expect
the polarization to have and would you expect it
to be ?

25. If you lie on a beach looking at the water with
your head tipped slightly sideways, your
polarized sunglasses do not work very well. Why
not?

Problems
1.1 The Propagation of Light

26. What is the speed of light in water? In glycerine?
27. What is the speed of light in air? In crown glass?
28. Calculate the index of refraction for a medium

in which the speed of light is
and identify the most likely substance based on
Table 1.1.

29. In what substance in Table 1.1 is the speed of
light

30. There was a major collision of an asteroid with
the Moon in medieval times. It was described by
monks at Canterbury Cathedral in England as a
red glow on and around the Moon. How long
after the asteroid hit the Moon, which is

away, would the light first arrive
on Earth?

31. Components of some computers communicate
with each other through optical fibers having an
index of refraction What time in
nanoseconds is required for a signal to travel
0.200 m through such a fiber?

32. Compare the time it takes for light to travel
1000 m on the surface of Earth and in outer
space.

33. How far does light travel underwater during a
time interval of ?

1.2 The Law of Reflection

34. Suppose a man stands in front of a mirror as
shown below. His eyes are 1.65 m above the
floor and the top of his head is 0.13 m higher.
Find the height above the floor of the top and
bottom of the smallest mirror in which he can
see both the top of his head and his feet. How is
this distance related to the man’s height?

35. Show that when light reflects from two mirrors
that meet each other at a right angle, the
outgoing ray is parallel to the incoming ray, as
illustrated below.

36. On the Moon’s surface, lunar astronauts placed
a corner reflector, off which a laser beam is
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periodically reflected. The distance to the Moon
is calculated from the round-trip time. What
percent correction is needed to account for the
delay in time due to the slowing of light in
Earth’s atmosphere? Assume the distance to the
Moon is precisely and Earth’s
atmosphere (which varies in density with
altitude) is equivalent to a layer 30.0 km thick
with a constant index of refraction

37. A flat mirror is neither converging nor diverging. To
prove this, consider two rays originating from the
same point and diverging at an angle (see below).
Show that after striking a plane mirror, the angle
between their directions remains

1.3 Refraction

Unless otherwise specified, for problems 1 through
10, the indices of refraction of glass and water
should be taken to be 1.50 and 1.333, respectively.

38. A light beam in air has an angle of incidence of
at the surface of a glass plate. What are the

angles of reflection and refraction?
39. A light beam in air is incident on the surface of

a pond, making an angle of with respect to
the surface. What are the angles of reflection
and refraction?

40. When a light ray crosses from water into glass, it
emerges at an angle of with respect to the
normal of the interface. What is its angle of
incidence?

41. A pencil flashlight submerged in water sends a
light beam toward the surface at an angle of
incidence of . What is the angle of refraction
in air?

42. Light rays from the Sun make a angle to the
vertical when seen from below the surface of a
body of water. At what angle above the horizon
is the Sun?

43. The path of a light beam in air goes from an

angle of incidence of to an angle of
refraction of when it enters a rectangular
block of plastic. What is the index of refraction
of the plastic?

44. A scuba diver training in a pool looks at his
instructor as shown below. What angle does the ray
from the instructor’s face make with the
perpendicular to the water at the point where the ray
enters? The angle between the ray in the water and
the perpendicular to the water is .

45. (a) Using information in the preceding problem,
find the height of the instructor’s head above
the water, noting that you will first have to
calculate the angle of incidence. (b) Find the
apparent depth of the diver’s head below water
as seen by the instructor.

1.4 Total Internal Reflection

46. Verify that the critical angle for light going from
water to air is , as discussed at the end of
Example 1.4, regarding the critical angle for
light traveling in a polystyrene (a type of plastic)
pipe surrounded by air.

47. (a) At the end of Example 1.4, it was stated that
the critical angle for light going from diamond
to air is Verify this. (b) What is the critical
angle for light going from zircon to air?

48. An optical fiber uses flint glass clad with crown
glass. What is the critical angle?

49. At what minimum angle will you get total
internal reflection of light traveling in water and
reflected from ice?

50. Suppose you are using total internal reflection
to make an efficient corner reflector. If there is
air outside and the incident angle is , what
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must be the minimum index of refraction of the
material from which the reflector is made?

51. You can determine the index of refraction of a
substance by determining its critical angle. (a)
What is the index of refraction of a substance
that has a critical angle of when
submerged in water? What is the substance,
based on Table 1.1? (b) What would the critical
angle be for this substance in air?

52. A ray of light, emitted beneath the surface of an
unknown liquid with air above it, undergoes total
internal reflection as shown below. What is the
index of refraction for the liquid and its likely
identification?

53. Light rays fall normally on the vertical surface
of the glass prism shown below. (a)
What is the largest value for such that the ray
is totally reflected at the slanted face? (b) Repeat
the calculation of part (a) if the prism is
immersed in water.

1.5 Dispersion

54. (a) What is the ratio of the speed of red light to
violet light in diamond, based on Table 1.2? (b)
What is this ratio in polystyrene? (c) Which is

more dispersive?
55. A beam of white light goes from air into water at

an incident angle of . At what angles are
the red (660 nm) and violet (410 nm) parts of
the light refracted?

56. By how much do the critical angles for red (660
nm) and violet (410 nm) light differ in a
diamond surrounded by air?

57. (a) A narrow beam of light containing yellow
(580 nm) and green (550 nm) wavelengths goes
from polystyrene to air, striking the surface at a

incident angle. What is the angle between
the colors when they emerge? (b) How far would
they have to travel to be separated by 1.00 mm?

58. A parallel beam of light containing orange (610
nm) and violet (410 nm) wavelengths goes from
fused quartz to water, striking the surface
between them at a incident angle. What is
the angle between the two colors in water?

59. A ray of 610-nm light goes from air into fused
quartz at an incident angle of . At what
incident angle must 470 nm light enter flint
glass to have the same angle of refraction?

60. A narrow beam of light containing red (660 nm)
and blue (470 nm) wavelengths travels from air
through a 1.00-cm-thick flat piece of crown
glass and back to air again. The beam strikes at
a incident angle. (a) At what angles do the
two colors emerge? (b) By what distance are the
red and blue separated when they emerge?

61. A narrow beam of white light enters a prism
made of crown glass at a incident angle, as
shown below. At what angles, and , do the
red (660 nm) and violet (410 nm) components
of the light emerge from the prism?

1.7 Polarization

62. What angle is needed between the direction of
polarized light and the axis of a polarizing filter
to cut its intensity in half?

63. The angle between the axes of two polarizing
filters is . By how much does the second
filter reduce the intensity of the light coming
through the first?
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64. Two polarizing sheets and are placed
together with their transmission axes oriented
at an angle to each other. What is when only

of the maximum transmitted light intensity
passes through them?

65. Suppose that in the preceding problem the light
incident on is unpolarized. At the
determined value of , what fraction of the
incident light passes through the combination?

66. If you have completely polarized light of
intensity , what will its intensity be
after passing through a polarizing filter with its
axis at an angle to the light’s polarization
direction?

67. What angle would the axis of a polarizing filter
need to make with the direction of polarized
light of intensity to reduce the
intensity to ?

68. At the end of Example 1.7, it was stated that the
intensity of polarized light is reduced to
of its original value by passing through a
polarizing filter with its axis at an angle of
to the direction of polarization. Verify this
statement.

69. Show that if you have three polarizing filters,
with the second at an angle of to the first
and the third at an angle of to the first, the
intensity of light passed by the first will be
reduced to of its value. (This is in
contrast to having only the first and third, which
reduces the intensity to zero, so that placing the

second between them increases the intensity of
the transmitted light.)

70. Three polarizing sheets are placed together
such that the transmission axis of the second
sheet is oriented at to the axis of the first,
whereas the transmission axis of the third sheet
is oriented at (in the same sense) to the
axis of the first. What fraction of the intensity of
an incident unpolarized beam is transmitted by
the combination?

71. In order to rotate the polarization axis of a beam
of linearly polarized light by , a student
places sheets and with their transmission
axes at and , respectively, to the
beam’s axis of polarization. (a) What fraction of
the incident light passes through and (b)
through the combination? (c) Repeat your
calculations for part (b) for transmission-axis
angles of and , respectively.

72. It is found that when light traveling in water
falls on a plastic block, Brewster’s angle is .
What is the refractive index of the plastic?

73. At what angle will light reflected from diamond
be completely polarized?

74. What is Brewster’s angle for light traveling in
water that is reflected from crown glass?

75. A scuba diver sees light reflected from the
water’s surface. At what angle relative to the
water’s surface will this light be completely
polarized?

Additional Problems
76. From his measurements, Roemer estimated

that it took 22 min for light to travel a distance
equal to the diameter of Earth’s orbit around the
Sun. (a) Use this estimate along with the known
diameter of Earth’s orbit to obtain a rough value
of the speed of light. (b) Light actually takes 16.5
min to travel this distance. Use this time to
calculate the speed of light.

77. Cornu performed Fizeau’s measurement of the
speed of light using a wheel of diameter 4.00 cm
that contained 180 teeth. The distance from the
wheel to the mirror was 22.9 km. Assuming he
measured the speed of light accurately, what
was the angular velocity of the wheel?

78. Suppose you have an unknown clear substance
immersed in water, and you wish to identify it
by finding its index of refraction. You arrange to
have a beam of light enter it at an angle of ,
and you observe the angle of refraction to be

. What is the index of refraction of the
substance and its likely identity?
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79. Shown below is a ray of light going from air through
crown glass into water, such as going into a fish tank.
Calculate the amount the ray is displaced by the
glass given that the incident angle is and
the glass is 1.00 cm thick.

80. Considering the previous problem, show that
is the same as it would be if the second medium
were not present.

81. At what angle is light inside crown glass
completely polarized when reflected from water,
as in a fish tank?

82. Light reflected at from a window is
completely polarized. What is the window’s
index of refraction and the likely substance of
which it is made?

83. (a) Light reflected at from a gemstone in a
ring is completely polarized. Can the gem be a
diamond? (b) At what angle would the light be
completely polarized if the gem was in water?

84. If is Brewster’s angle for light reflected from
the top of an interface between two substances,
and is Brewster’s angle for light reflected
from below, prove that .

85. Unreasonable results Suppose light travels
from water to another substance, with an angle
of incidence of and an angle of refraction
of . (a) What is the index of refraction of the
other substance? (b) What is unreasonable
about this result? (c) Which assumptions are
unreasonable or inconsistent?

86. Unreasonable results Light traveling from
water to a gemstone strikes the surface at an
angle of and has an angle of refraction of

. (a) What is the speed of light in the
gemstone? (b) What is unreasonable about this
result? (c) Which assumptions are unreasonable
or inconsistent?

87. If a polarizing filter reduces the intensity of
polarized light to of its original value, by
how much are the electric and magnetic fields
reduced?

88. Suppose you put on two pairs of polarizing
sunglasses with their axes at an angle of .
How much longer will it take the light to deposit
a given amount of energy in your eye compared
with a single pair of sunglasses? Assume the
lenses are clear except for their polarizing
characteristics.

89. (a) On a day when the intensity of sunlight is
, a circular lens 0.200 m in

diameter focuses light onto water in a black
beaker. Two polarizing sheets of plastic are
placed in front of the lens with their axes at an
angle of . Assuming the sunlight is
unpolarized and the polarizers are
efficient, what is the initial rate of heating of the
water in , assuming it is absorbed?
The aluminum beaker has a mass of 30.0 grams
and contains 250 grams of water. (b) Do the
polarizing filters get hot? Explain.

Challenge Problems
90. Light shows staged with lasers use moving

mirrors to swing beams and create colorful
effects. Show that a light ray reflected from a
mirror changes direction by when the mirror
is rotated by an angle .
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91. Consider sunlight entering Earth’s atmosphere
at sunrise and sunset—that is, at a
incident angle. Taking the boundary between
nearly empty space and the atmosphere to be
sudden, calculate the angle of refraction for
sunlight. This lengthens the time the Sun
appears to be above the horizon, both at sunrise
and sunset. Now construct a problem in which
you determine the angle of refraction for
different models of the atmosphere, such as
various layers of varying density. Your
instructor may wish to guide you on the level of
complexity to consider and on how the index of
refraction varies with air density.

92. A light ray entering an optical fiber surrounded by
air is first refracted and then reflected as shown
below. Show that if the fiber is made from crown
glass, any incident ray will be totally internally
reflected.

93. A light ray falls on the left face of a prism (see below)
at the angle of incidence for which the emerging
beam has an angle of refraction at the right face.
Show that the index of refraction n of the glass prism
is given by

where is the vertex angle of the prism and is the
angle through which the beam has been deviated. If

and the base angles of the prism are each
what is n?

94. If the apex angle in the previous problem is
and , what is the value of ?

95. The light incident on polarizing sheet is
linearly polarized at an angle of with
respect to the transmission axis of . Sheet
is placed so that its axis is parallel to the
polarization axis of the incident light, that is,
also at with respect to . (a) What
fraction of the incident light passes through ?
(b) What fraction of the incident light is passed
by the combination? (c) By rotating , a
maximum in transmitted intensity is obtained.
What is the ratio of this maximum intensity to
the intensity of transmitted light when is at

with respect to ?
96. Prove that if I is the intensity of light

transmitted by two polarizing filters with axes at
an angle and is the intensity when the axes
are at an angle then the
original intensity. (Hint: Use the trigonometric
identities and
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INTRODUCTION

CHAPTER 2
Geometric Optics and Image
Formation

2.1 Images Formed by Plane Mirrors

2.2 Spherical Mirrors

2.3 Images Formed by Refraction

2.4 Thin Lenses

2.5 The Eye

2.6 The Camera

2.7 The Simple Magnifier

2.8 Microscopes and Telescopes

This chapter introduces the major ideas of geometric optics, which describe the formation

Figure 2.1 Cloud Gate is a public sculpture by Anish Kapoor located in Millennium Park in Chicago. Its stainless
steel plates reflect and distort images around it, including the Chicago skyline. Dedicated in 2006, it has become a
popular tourist attraction, illustrating how art can use the principles of physical optics to startle and entertain.
(credit: modification of work by Dhilung Kirat)
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of images due to reflection and refraction. It is called “geometric” optics because the images can be
characterized using geometric constructions, such as ray diagrams. We have seen that visible light is an
electromagnetic wave; however, its wave nature becomes evident only when light interacts with objects with
dimensions comparable to the wavelength (about 500 nm for visible light). Therefore, the laws of geometric
optics only apply to light interacting with objects much larger than the wavelength of the light.

2.1 Images Formed by Plane Mirrors
Learning Objectives
By the end of this section, you will be able to:

• Describe how an image is formed by a plane mirror.
• Distinguish between real and virtual images.
• Find the location and characterize the orientation of an image created by a plane mirror.

You only have to look as far as the nearest bathroom to find an example of an image formed by a mirror. Images
in a plane mirror are the same size as the object, are located behind the mirror, and are oriented in the same
direction as the object (i.e., “upright”).

To understand how this happens, consider Figure 2.2. Two rays emerge from point P, strike the mirror, and
reflect into the observer’s eye. Note that we use the law of reflection to construct the reflected rays. If the
reflected rays are extended backward behind the mirror (see dashed lines in Figure 2.2), they seem to
originate from point Q. This is where the image of point P is located. If we repeat this process for point , we
obtain its image at point . You should convince yourself by using basic geometry that the image height (the
distance from Q to ) is the same as the object height (the distance from P to ). By forming images of all
points of the object, we obtain an upright image of the object behind the mirror.

Figure 2.2 Two light rays originating from point P on an object are reflected by a flat mirror into the eye of an observer. The reflected rays

are obtained by using the law of reflection. Extending these reflected rays backward, they seem to come from point Q behind the mirror,

which is where the virtual image is located. Repeating this process for point gives the image point . The image height is thus the same

as the object height, the image is upright, and the object distance is the same as the image distance . (credit: modification of work by

Kevin Dufendach)

Notice that the reflected rays appear to the observer to come directly from the image behind the mirror. In
reality, these rays come from the points on the mirror where they are reflected. The image behind the mirror is
called a virtual image because it cannot be projected onto a screen—the rays only appear to originate from a
common point behind the mirror. If you walk behind the mirror, you cannot see the image, because the rays do
not go there. However, in front of the mirror, the rays behave exactly as if they come from behind the mirror, so
that is where the virtual image is located.
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Later in this chapter, we discuss real images; a real image can be projected onto a screen because the rays
physically go through the image. You can certainly see both real and virtual images. The difference is that a
virtual image cannot be projected onto a screen, whereas a real image can.

Locating an Image in a Plane Mirror
The law of reflection tells us that the angle of incidence is the same as the angle of reflection. Applying this to
triangles PAB and QAB in Figure 2.2 and using basic geometry shows that they are congruent triangles. This
means that the distance PB from the object to the mirror is the same as the distance BQ from the mirror to the
image. The object distance (denoted ) is the distance from the mirror to the object (or, more generally, from
the center of the optical element that creates its image). Similarly, the image distance (denoted ) is the
distance from the mirror to the image (or, more generally, from the center of the optical element that creates
it). If we measure distances from the mirror, then the object and image are in opposite directions, so for a plane
mirror, the object and image distances should have the opposite signs:

An extended object such as the container in Figure 2.2 can be treated as a collection of points, and we can
apply the method above to locate the image of each point on the extended object, thus forming the extended
image.

Multiple Images
If an object is situated in front of two mirrors, you may see images in both mirrors. In addition, the image in the
first mirror may act as an object for the second mirror, so the second mirror may form an image of the image. If
the mirrors are placed parallel to each other and the object is placed at a point other than the midpoint
between them, then this process of image-of-an-image continues without end, as you may have noticed when
standing in a hallway with mirrors on each side. This is shown in Figure 2.3, which shows three images
produced by the blue object. Notice that each reflection reverses front and back, just like pulling a right-hand
glove inside out produces a left-hand glove (this is why a reflection of your right hand is a left hand). Thus, the
fronts and backs of images 1 and 2 are both inverted with respect to the object, and the front and back of image
3 is inverted with respect to image 2, which is the object for image 3.

Figure 2.3 Two parallel mirrors can produce, in theory, an infinite number of images of an object placed off center between the mirrors.

Three of these images are shown here. The front and back of each image is inverted with respect to its object. Note that the colors are only

to identify the images. For normal mirrors, the color of an image is essentially the same as that of its object.

You may have noticed that image 3 is smaller than the object, whereas images 1 and 2 are the same size as the
object. The ratio of the image height with respect to the object height is called magnification. More will be said
about magnification in the next section.

Infinite reflections may terminate. For instance, two mirrors at right angles form three images, as shown in
part (a) of Figure 2.4. Images 1 and 2 result from rays that reflect from only a single mirror, but image 1,2 is
formed by rays that reflect from both mirrors. This is shown in the ray-tracing diagram in part (b) of Figure 2.4.
To find image 1,2, you have to look behind the corner of the two mirrors.

2.1
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Figure 2.4 Two mirrors can produce multiple images. (a) Three images of a plastic head are visible in the two mirrors at a right angle. (b) A

single object reflecting from two mirrors at a right angle can produce three images, as shown by the green, purple, and red images.

2.2 Spherical Mirrors
Learning Objectives
By the end of this section, you will be able to:

• Describe image formation by spherical mirrors.
• Use ray diagrams and the mirror equation to calculate the properties of an image in a spherical mirror.

The image in a plane mirror has the same size as the object, is upright, and is the same distance behind the
mirror as the object is in front of the mirror. A curved mirror, on the other hand, can form images that may be
larger or smaller than the object and may form either in front of the mirror or behind it. In general, any curved
surface will form an image, although some images make be so distorted as to be unrecognizable (think of fun
house mirrors).

Because curved mirrors can create such a rich variety of images, they are used in many optical devices that
find many uses. We will concentrate on spherical mirrors for the most part, because they are easier to
manufacture than mirrors such as parabolic mirrors and so are more common.

Curved Mirrors
We can define two general types of spherical mirrors. If the reflecting surface is the outer side of the sphere,
the mirror is called a convex mirror. If the inside surface is the reflecting surface, it is called a concave
mirror.

Symmetry is one of the major hallmarks of many optical devices, including mirrors and lenses. The symmetry
axis of such optical elements is often called the principal axis or optical axis. For a spherical mirror, the optical
axis passes through the mirror’s center of curvature and the mirror’s vertex, as shown in Figure 2.5.
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Figure 2.5 A spherical mirror is formed by cutting out a piece of a sphere and silvering either the inside or outside surface. A concave

mirror has silvering on the interior surface (think “cave”), and a convex mirror has silvering on the exterior surface.

Consider rays that are parallel to the optical axis of a parabolic mirror, as shown in part (a) of Figure 2.6.
Following the law of reflection, these rays are reflected so that they converge at a point, called the focal point.
Part (b) of this figure shows a spherical mirror that is large compared with its radius of curvature. For this
mirror, the reflected rays do not cross at the same point, so the mirror does not have a well-defined focal point.
This is called spherical aberration and results in a blurred image of an extended object. Part (c) shows a
spherical mirror that is small compared to its radius of curvature. This mirror is a good approximation of a
parabolic mirror, so rays that arrive parallel to the optical axis are reflected to a well-defined focal point. The
distance along the optical axis from the mirror to the focal point is called the focal length of the mirror.

Figure 2.6 (a) Parallel rays reflected from a parabolic mirror cross at a single point called the focal point F. (b) Parallel rays reflected from

a large spherical mirror do not cross at a common point. (c) If a spherical mirror is small compared with its radius of curvature, it better

approximates the central part of a parabolic mirror, so parallel rays essentially cross at a common point. The distance along the optical axis

from the mirror to the focal point is the focal length f of the mirror.

A convex spherical mirror also has a focal point, as shown in Figure 2.7. Incident rays parallel to the optical
axis are reflected from the mirror and seem to originate from point F at focal length f behind the mirror. Thus,
the focal point is virtual because no real rays actually pass through it; they only appear to originate from it.
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Figure 2.7 (a) Rays reflected by a convex spherical mirror: Incident rays of light parallel to the optical axis are reflected from a convex

spherical mirror and seem to originate from a well-defined focal point at focal distance f on the opposite side of the mirror. The focal point is

virtual because no real rays pass through it. (b) Photograph of a virtual image formed by a convex mirror. (credit b: modification of work by

Jenny Downing)

How does the focal length of a mirror relate to the mirror’s radius of curvature? Figure 2.8 shows a single ray
that is reflected by a spherical concave mirror. The incident ray is parallel to the optical axis. The point at
which the reflected ray crosses the optical axis is the focal point. Note that all incident rays that are parallel to
the optical axis are reflected through the focal point—we only show one ray for simplicity. We want to find how
the focal length FP (denoted by f) relates to the radius of curvature of the mirror, R, whose length is

. The law of reflection tells us that angles OXC and CXF are the same, and because the incident
ray is parallel to the optical axis, angles OXC and XCP are also the same. Thus, triangle CXF is an isosceles
triangle with . If the angle is small (so that ; this is called the “small-angle
approximation”), then or . Inserting this into the equation for the radius R, we get

Figure 2.8 Reflection in a concave mirror. In the small-angle approximation, a ray that is parallel to the optical axis CP is reflected through

the focal point F of the mirror.

In other words, in the small-angle approximation, the focal length f of a concave spherical mirror is half of its
radius of curvature, R:

2.2
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In this chapter, we assume that the small-angle approximation (also called the paraxial approximation) is
always valid. In this approximation, all rays are paraxial rays, which means that they make a small angle with
the optical axis and are at a distance much less than the radius of curvature from the optical axis. In this case,
their angles of reflection are small angles, so .

Using Ray Tracing to Locate Images
To find the location of an image formed by a spherical mirror, we first use ray tracing, which is the technique of
drawing rays and using the law of reflection to determine the reflected rays (later, for lenses, we use the law of
refraction to determine refracted rays). Combined with some basic geometry, we can use ray tracing to find the
focal point, the image location, and other information about how a mirror manipulates light. In fact, we already
used ray tracing above to locate the focal point of spherical mirrors, or the image distance of flat mirrors. To
locate the image of an object, you must locate at least two points of the image. Locating each point requires
drawing at least two rays from a point on the object and constructing their reflected rays. The point at which
the reflected rays intersect, either in real space or in virtual space, is where the corresponding point of the
image is located. To make ray tracing easier, we concentrate on four “principal” rays whose reflections are easy
to construct.

Figure 2.9 shows a concave mirror and a convex mirror, each with an arrow-shaped object in front of it. These
are the objects whose images we want to locate by ray tracing. To do so, we draw rays from point Q that is on
the object but not on the optical axis. We choose to draw our ray from the tip of the object. Principal ray 1 goes
from point Q and travels parallel to the optical axis. The reflection of this ray must pass through the focal point,
as discussed above. Thus, for the concave mirror, the reflection of principal ray 1 goes through focal point F, as
shown in part (b) of the figure. For the convex mirror, the backward extension of the reflection of principal ray
1 goes through the focal point (i.e., a virtual focus). Principal ray 2 travels first on the line going through the
focal point and then is reflected back along a line parallel to the optical axis. Principal ray 3 travels toward the
center of curvature of the mirror, so it strikes the mirror at normal incidence and is reflected back along the
line from which it came. Finally, principal ray 4 strikes the vertex of the mirror and is reflected symmetrically
about the optical axis.
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Figure 2.9 The four principal rays shown for both (a) a concave mirror and (b) a convex mirror. The image forms where the rays intersect

(for real images) or where their backward extensions intersect (for virtual images).

The four principal rays intersect at point , which is where the image of point Q is located. To locate point ,
drawing any two of these principle rays would suffice. We are thus free to choose whichever of the principal
rays we desire to locate the image. Drawing more than two principal rays is sometimes useful to verify that the
ray tracing is correct.

To completely locate the extended image, we need to locate a second point in the image, so that we know how
the image is oriented. To do this, we trace the principal rays from the base of the object. In this case, all four
principal rays run along the optical axis, reflect from the mirror, and then run back along the optical axis. The
difficulty is that, because these rays are collinear, we cannot determine a unique point where they intersect. All
we know is that the base of the image is on the optical axis. However, because the mirror is symmetrical from
top to bottom, it does not change the vertical orientation of the object. Thus, because the object is vertical, the
image must be vertical. Therefore, the image of the base of the object is on the optical axis directly above the
image of the tip, as drawn in the figure.

For the concave mirror, the extended image in this case forms between the focal point and the center of
curvature of the mirror. It is inverted with respect to the object, is a real image, and is smaller than the object.
Were we to move the object closer to or farther from the mirror, the characteristics of the image would change.
For example, we show, as a later exercise, that an object placed between a concave mirror and its focal point
leads to a virtual image that is upright and larger than the object. For the convex mirror, the extended image
forms between the focal point and the mirror. It is upright with respect to the object, is a virtual image, and is
smaller than the object.
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Summary of Ray-Tracing Rules
Ray tracing is very useful for mirrors. The rules for ray tracing are summarized here for reference:

• A ray travelling parallel to the optical axis of a spherical mirror is reflected along a line that goes through
the focal point of the mirror (ray 1 in Figure 2.9).

• A ray travelling along a line that goes through the focal point of a spherical mirror is reflected along a line
parallel to the optical axis of the mirror (ray 2 in Figure 2.9).

• A ray travelling along a line that goes through the center of curvature of a spherical mirror is reflected
back along the same line (ray 3 in Figure 2.9).

• A ray that strikes the vertex of a spherical mirror is reflected symmetrically about the optical axis of the
mirror (ray 4 in Figure 2.9).

We use ray tracing to illustrate how images are formed by mirrors and to obtain numerical information about
optical properties of the mirror. If we assume that a mirror is small compared with its radius of curvature, we
can also use algebra and geometry to derive a mirror equation, which we do in the next section. Combining ray
tracing with the mirror equation is a good way to analyze mirror systems.

Image Formation by Reflection—The Mirror Equation
For a plane mirror, we showed that the image formed has the same height and orientation as the object, and it
is located at the same distance behind the mirror as the object is in front of the mirror. Although the situation
is a bit more complicated for curved mirrors, using geometry leads to simple formulas relating the object and
image distances to the focal lengths of concave and convex mirrors.

Consider the object OP shown in Figure 2.10. The center of curvature of the mirror is labeled C and is a
distance R from the vertex of the mirror, as marked in the figure. The object and image distances are labeled
and , and the object and image heights are labeled and , respectively. Because the angles and are
alternate interior angles, we know that they have the same magnitude. However, they must differ in sign if we
measure angles from the optical axis, so . An analogous scenario holds for the angles and . The law
of reflection tells us that they have the same magnitude, but their signs must differ if we measure angles from
the optical axis. Thus, . Taking the tangent of the angles and , and using the property that

, gives us

Figure 2.10 Image formed by a concave mirror.

Similarly, taking the tangent of and gives

2.3
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Combining these two results gives

After a little algebra, this becomes

No approximation is required for this result, so it is exact. However, as discussed above, in the small-angle
approximation, the focal length of a spherical mirror is one-half the radius of curvature of the mirror, or

. Inserting this into Equation 2.3 gives the mirror equation:

The mirror equation relates the image and object distances to the focal distance and is valid only in the small-
angle approximation. Although it was derived for a concave mirror, it also holds for convex mirrors (proving
this is left as an exercise). We can extend the mirror equation to the case of a plane mirror by noting that a
plane mirror has an infinite radius of curvature. This means the focal point is at infinity, so the mirror
equation simplifies to

which is the same as Equation 2.1 obtained earlier.

Notice that we have been very careful with the signs in deriving the mirror equation. For a plane mirror, the
image distance has the opposite sign of the object distance. Also, the real image formed by the concave mirror
in Figure 2.10 is on the opposite side of the optical axis with respect to the object. In this case, the image height
should have the opposite sign of the object height. To keep track of the signs of the various quantities in the
mirror equation, we now introduce a sign convention.

Sign convention for spherical mirrors
Using a consistent sign convention is very important in geometric optics. It assigns positive or negative values
for the quantities that characterize an optical system. Understanding the sign convention allows you to
describe an image without constructing a ray diagram. This text uses the following sign convention:

1. The focal length f is positive for concave mirrors and negative for convex mirrors.
2. The image distance is positive for real images and negative for virtual images.

Notice that rule 1 means that the radius of curvature of a spherical mirror can be positive or negative. What
does it mean to have a negative radius of curvature? This means simply that the radius of curvature for a
convex mirror is defined to be negative.

Image magnification
Let’s use the sign convention to further interpret the derivation of the mirror equation. In deriving this
equation, we found that the object and image heights are related by

See Equation 2.3. Both the object and the image formed by the mirror in Figure 2.10 are real, so the object and
image distances are both positive. The highest point of the object is above the optical axis, so the object height
is positive. The image, however, is below the optical axis, so the image height is negative. Thus, this sign
convention is consistent with our derivation of the mirror equation.

Equation 2.7 in fact describes the linear magnification (often simply called “magnification”) of the image in
terms of the object and image distances. We thus define the dimensionless magnification m as follows:

2.4

2.5

2.6

2.7
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If m is positive, the image is upright, and if m is negative, the image is inverted. If , the image is larger
than the object, and if , the image is smaller than the object. With this definition of magnification, we
get the following relation between the vertical and horizontal object and image distances:

This is a very useful relation because it lets you obtain the magnification of the image from the object and
image distances, which you can obtain from the mirror equation.

EXAMPLE 2.1

Solar Electric Generating System
One of the solar technologies used today for generating electricity involves a device (called a parabolic trough
or concentrating collector) that concentrates sunlight onto a blackened pipe that contains a fluid. This heated
fluid is pumped to a heat exchanger, where the thermal energy is transferred to another system that is used to
generate steam and eventually generates electricity through a conventional steam cycle. Figure 2.11 shows
such a working system in southern California. The real mirror is a parabolic cylinder with its focus located at
the pipe; however, we can approximate the mirror as exactly one-quarter of a circular cylinder.

Figure 2.11 Parabolic trough collectors are used to generate electricity in southern California. (credit: “kjkolb”/Wikimedia Commons)

a. If we want the rays from the sun to focus at 40.0 cm from the mirror, what is the radius of the mirror?
b. What is the amount of sunlight concentrated onto the pipe, per meter of pipe length, assuming the

insolation (incident solar radiation) is 900 ?
c. If the fluid-carrying pipe has a 2.00-cm diameter, what is the temperature increase of the fluid per meter

of pipe over a period of 1 minute? Assume that all solar radiation incident on the reflector is absorbed by
the pipe, and that the fluid is mineral oil.

Strategy
First identify the physical principles involved. Part (a) is related to the optics of spherical mirrors. Part (b)
involves a little math, primarily geometry. Part (c) requires an understanding of heat and density.

Solution

a. The sun is the object, so the object distance is essentially infinity: . The desired image distance is
. We use the mirror equation to find the focal length of the mirror:

2.8

2.9
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Thus, the radius of the mirror is .
b. The insolation is 900 . You must find the cross-sectional area A of the concave mirror, since the

power delivered is 900 . The mirror in this case is estimated as a quarter-section of a cylinder,
so the area for a length L of the mirror is . The area for a length of 1.00 m is then

The insolation on the 1.00-m length of pipe is then

c. The increase in temperature is given by . The mass m of the mineral oil in the one-meter
section of pipe is

Therefore, the increase in temperature in one minute is

Significance
An array of such pipes in the California desert can provide a thermal output of 250 MW on a sunny day, with
fluids reaching temperatures as high as . We are considering only one meter of pipe here and ignoring
heat losses along the pipe.

EXAMPLE 2.2

Image in a Convex Mirror
A keratometer is a device used to measure the curvature of the cornea of the eye, particularly for fitting contact
lenses. Light is reflected from the cornea, which acts like a convex mirror, and the keratometer measures the
magnification of the image. The smaller the magnification, the smaller the radius of curvature of the cornea. If
the light source is 12 cm from the cornea and the image magnification is 0.032, what is the radius of curvature
of the cornea?

Strategy
If you find the focal length of the convex mirror formed by the cornea, then you know its radius of curvature
(it’s twice the focal length). The object distance is and the magnification is . First find the
image distance and then solve for the focal length f.

Solution
Start with the equation for magnification, . Solving for and inserting the given values yields
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where we retained an extra significant figure because this is an intermediate step in the calculation. Solve the
mirror equation for the focal length f and insert the known values for the object and image distances. The
result is

The radius of curvature is twice the focal length, so

Significance
The focal length is negative, so the focus is virtual, as expected for a concave mirror and a real object. The
radius of curvature found here is reasonable for a cornea. The distance from cornea to retina in an adult eye is
about 2.0 cm. In practice, corneas may not be spherical, which complicates the job of fitting contact lenses.
Note that the image distance here is negative, consistent with the fact that the image is behind the mirror.
Thus, the image is virtual because no rays actually pass through it. In the problems and exercises, you will
show that, for a fixed object distance, a smaller radius of curvature corresponds to a smaller the magnification.

PROBLEM-SOLVING STRATEGY

Spherical Mirrors
Step 1. First make sure that image formation by a spherical mirror is involved.

Step 2. Determine whether ray tracing, the mirror equation, or both are required. A sketch is very useful even
if ray tracing is not specifically required by the problem. Write symbols and known values on the sketch.

Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).

Step 4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

Step 5. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.

Step 6. Most quantitative problems require using the mirror equation. Use the examples as guides for using the
mirror equation.

Step 7. Check to see whether the answer makes sense. Do the signs of object distance, image distance, and
focal length correspond with what is expected from ray tracing? Is the sign of the magnification correct? Are
the object and image distances reasonable?

Departure from the Small-Angle Approximation
The small-angle approximation is a cornerstone of the above discussion of image formation by a spherical
mirror. When this approximation is violated, then the image created by a spherical mirror becomes distorted.
Such distortion is called aberration. Here we briefly discuss two specific types of aberrations: spherical
aberration and coma.

Spherical aberration
Consider a broad beam of parallel rays impinging on a spherical mirror, as shown in Figure 2.12.
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Figure 2.12 (a) With spherical aberration, the rays that are farther from the optical axis and the rays that are closer to the optical axis are

focused at different points. Notice that the aberration gets worse for rays farther from the optical axis. (b) For comatic aberration, parallel

rays that are not parallel to the optical axis are focused at different heights and at different focal lengths, so the image contains a “tail” like

a comet (which is “coma” in Latin). Note that the colored rays are only to facilitate viewing; the colors do not indicate the color of the light.

The farther from the optical axis the rays strike, the worse the spherical mirror approximates a parabolic
mirror. Thus, these rays are not focused at the same point as rays that are near the optical axis, as shown in the
figure. Because of spherical aberration, the image of an extended object in a spherical mirror will be blurred.
Spherical aberrations are characteristic of the mirrors and lenses that we consider in the following section of
this chapter (more sophisticated mirrors and lenses are needed to eliminate spherical aberrations).

Coma or comatic aberration
Coma is similar to spherical aberration, but arises when the incoming rays are not parallel to the optical axis,
as shown in part (b) of Figure 2.12. Recall that the small-angle approximation holds for spherical mirrors that
are small compared to their radius. In this case, spherical mirrors are good approximations of parabolic
mirrors. Parabolic mirrors focus all rays that are parallel to the optical axis at the focal point. However, parallel
rays that are not parallel to the optical axis are focused at different heights and at different focal lengths, as
show in part (b) of Figure 2.12. Because a spherical mirror is symmetric about the optical axis, the various
colored rays in this figure create circles of the corresponding color on the focal plane.

Although a spherical mirror is shown in part (b) of Figure 2.12, comatic aberration occurs also for parabolic
mirrors—it does not result from a breakdown in the small-angle approximation. Spherical aberration, however,
occurs only for spherical mirrors and is a result of a breakdown in the small-angle approximation. We will
discuss both coma and spherical aberration later in this chapter, in connection with telescopes.

64 2 • Geometric Optics and Image Formation

Access for free at openstax.org.



2.3 Images Formed by Refraction
Learning Objectives
By the end of this section, you will be able to:

• Describe image formation by a single refracting surface
• Determine the location of an image and calculate its properties by using a ray diagram
• Determine the location of an image and calculate its properties by using the equation for a single refracting

surface

When rays of light propagate from one medium to another, these rays undergo refraction, which is when light
waves are bent at the interface between two media. The refracting surface can form an image in a similar
fashion to a reflecting surface, except that the law of refraction (Snell’s law) is at the heart of the process
instead of the law of reflection.

Refraction at a Plane Interface—Apparent Depth
If you look at a straight rod partially submerged in water, it appears to bend at the surface (Figure 2.13). The
reason behind this curious effect is that the image of the rod inside the water forms a little closer to the surface
than the actual position of the rod, so it does not line up with the part of the rod that is above the water. The
same phenomenon explains why a fish in water appears to be closer to the surface than it actually is.

Figure 2.13 Bending of a rod at a water-air interface. Point P on the rod appears to be at point Q, which is where the image of point P

forms due to refraction at the air-water interface.

To study image formation as a result of refraction, consider the following questions:

1. What happens to the rays of light when they enter or pass through a different medium?
2. Do the refracted rays originating from a single point meet at some point or diverge away from each other?

To be concrete, we consider a simple system consisting of two media separated by a plane interface (Figure
2.14). The object is in one medium and the observer is in the other. For instance, when you look at a fish from
above the water surface, the fish is in medium 1 (the water) with refractive index 1.33, and your eye is in
medium 2 (the air) with refractive index 1.00, and the surface of the water is the interface. The depth that you
“see” is the image height and is called the apparent depth. The actual depth of the fish is the object height

.
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Figure 2.14 Apparent depth due to refraction. The real object at point P creates an image at point Q. The image is not at the same depth

as the object, so the observer sees the image at an “apparent depth.”

The apparent depth depends on the angle at which you view the image. For a view from above (the so-called
“normal” view), we can approximate the refraction angle to be small, and replace sin in Snell’s law by tan .
With this approximation, you can use the triangles and to show that the apparent depth is given
by

The derivation of this result is left as an exercise. Thus, a fish appears at 3/4 of the real depth when viewed
from above.

Refraction at a Spherical Interface
Spherical shapes play an important role in optics primarily because high-quality spherical shapes are far
easier to manufacture than other curved surfaces. To study refraction at a single spherical surface, we assume
that the medium with the spherical surface at one end continues indefinitely (a “semi-infinite” medium).

Refraction at a convex surface
Consider a point source of light at point P in front of a convex surface made of glass (see Figure 2.15). Let R be
the radius of curvature, be the refractive index of the medium in which object point P is located, and be
the refractive index of the medium with the spherical surface. We want to know what happens as a result of
refraction at this interface.

Figure 2.15 Refraction at a convex surface .

Because of the symmetry involved, it is sufficient to examine rays in only one plane. The figure shows a ray of
light that starts at the object point P, refracts at the interface, and goes through the image point . We derive a
formula relating the object distance , the image distance , and the radius of curvature R.

2.10
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Applying Snell’s law to the ray emanating from point P gives . We work in the small-angle
approximation, so and Snell’s law then takes the form

From the geometry of the figure, we see that

Inserting these expressions into Snell’s law gives

Using the diagram, we calculate the tangent of the angles :

Again using the small-angle approximation, we find that , so the above relationships become

Putting these angles into Snell’s law gives

We can write this more conveniently as

If the object is placed at a special point called the first focus, or the object focus , then the image is formed
at infinity, as shown in part (a) of Figure 2.16.

Figure 2.16 (a) First focus (called the “object focus”) for refraction at a convex surface. (b) Second focus (called “image focus”) for

refraction at a convex surface.

We can find the location of the first focus by setting in the preceding equation.

Similarly, we can define a second focus or image focus where the image is formed for an object that is far
away [part (b)]. The location of the second focus is obtained from Equation 2.11 by setting :

2.11

2.12

2.13
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Note that the object focus is at a different distance from the vertex than the image focus because .

Sign convention for single refracting surfaces
Although we derived this equation for refraction at a convex surface, the same expression holds for a concave
surface, provided we use the following sign convention:

1. if surface is convex toward object; otherwise,
2. if image is real and on opposite side from the object; otherwise,

2.4 Thin Lenses
Learning Objectives
By the end of this section, you will be able to:

• Use ray diagrams to locate and describe the image formed by a lens
• Employ the thin-lens equation to describe and locate the image formed by a lens

Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to a camera’s
zoom lens to the eye itself. In this section, we use the Snell’s law to explore the properties of lenses and how
they form images.

The word “lens” derives from the Latin word for a lentil bean, the shape of which is similar to a convex lens.
However, not all lenses have the same shape. Figure 2.17 shows a variety of different lens shapes. The
vocabulary used to describe lenses is the same as that used for spherical mirrors: The axis of symmetry of a
lens is called the optical axis, where this axis intersects the lens surface is called the vertex of the lens, and so
forth.

Figure 2.17 Various types of lenses: Note that a converging lens has a thicker “waist,” whereas a diverging lens has a thinner waist.

A convex or converging lens is shaped so that all light rays that enter it parallel to its optical axis intersect (or
focus) at a single point on the optical axis on the opposite side of the lens, as shown in part (a) of Figure 2.18.
Likewise, a concave or diverging lens is shaped so that all rays that enter it parallel to its optical axis diverge,
as shown in part (b). To understand more precisely how a lens manipulates light, look closely at the top ray
that goes through the converging lens in part (a). Because the index of refraction of the lens is greater than that
of air, Snell’s law tells us that the ray is bent toward the perpendicular to the interface as it enters the lens.
Likewise, when the ray exits the lens, it is bent away from the perpendicular. The same reasoning applies to the
diverging lenses, as shown in part (b). The overall effect is that light rays are bent toward the optical axis for a
converging lens and away from the optical axis for diverging lenses. For a converging lens, the point at which
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the rays cross is the focal point F of the lens. For a diverging lens, the point from which the rays appear to
originate is the (virtual) focal point. The distance from the center of the lens to its focal point is the focal length
f of the lens.

Figure 2.18 Rays of light entering (a) a converging lens and (b) a diverging lens, parallel to its axis, converge at its focal point F. The

distance from the center of the lens to the focal point is the lens’s focal length f. Note that the light rays are bent upon entering and exiting

the lens, with the overall effect being to bend the rays toward the optical axis.

A lens is considered to be thin if its thickness t is much less than the radii of curvature of both surfaces, as
shown in Figure 2.19. In this case, the rays may be considered to bend once at the center of the lens. For the
case drawn in the figure, light ray 1 is parallel to the optical axis, so the outgoing ray is bent once at the center
of the lens and goes through the focal point. Another important characteristic of thin lenses is that light rays
that pass through the center of the lens are undeviated, as shown by light ray 2.

Figure 2.19 In the thin-lens approximation, the thickness t of the lens is much, much less than the radii and of curvature of the

surfaces of the lens. Light rays are considered to bend at the center of the lens, such as light ray 1. Light ray 2 passes through the center of

the lens and is undeviated in the thin-lens approximation.

As noted in the initial discussion of Snell’s law, the paths of light rays are exactly reversible. This means that
the direction of the arrows could be reversed for all of the rays in Figure 2.18. For example, if a point-light
source is placed at the focal point of a convex lens, as shown in Figure 2.20, parallel light rays emerge from the
other side.
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Figure 2.20 A small light source, like a light bulb filament, placed at the focal point of a convex lens results in parallel rays of light

emerging from the other side. The paths are exactly the reverse of those shown in Figure 2.18 in converging and diverging lenses. This

technique is used in lighthouses and sometimes in traffic lights to produce a directional beam of light from a source that emits light in all

directions.

Ray Tracing and Thin Lenses
Ray tracing is the technique of determining or following (tracing) the paths taken by light rays.

Ray tracing for thin lenses is very similar to the technique we used with spherical mirrors. As for mirrors, ray
tracing can accurately describe the operation of a lens. The rules for ray tracing for thin lenses are similar to
those of spherical mirrors:

1. A ray entering a converging lens parallel to the optical axis passes through the focal point on the other side of
the lens (ray 1 in part (a) of Figure 2.21). A ray entering a diverging lens parallel to the optical axis exits along
the line that passes through the focal point on the same side of the lens (ray 1 in part (b) of the figure).

2. A ray passing through the center of either a converging or a diverging lens is not deviated (ray 2 in parts (a) and
(b)).

3. For a converging lens, a ray that passes through the focal point exits the lens parallel to the optical axis (ray 3
in part (a)). For a diverging lens, a ray that approaches along the line that passes through the focal point on the
opposite side exits the lens parallel to the axis (ray 3 in part (b)).
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Figure 2.21 Thin lenses have the same focal lengths on either side. (a) Parallel light rays from the object toward a converging lens cross at

its focal point on the right. (b) Parallel light rays from the object entering a diverging lens from the left seem to come from the focal point on

the left.

Thin lenses work quite well for monochromatic light (i.e., light of a single wavelength). However, for light that
contains several wavelengths (e.g., white light), the lenses work less well. The problem is that, as we learned in
the previous chapter, the index of refraction of a material depends on the wavelength of light. This
phenomenon is responsible for many colorful effects, such as rainbows. Unfortunately, this phenomenon also
leads to aberrations in images formed by lenses. In particular, because the focal distance of the lens depends
on the index of refraction, it also depends on the wavelength of the incident light. This means that light of
different wavelengths will focus at different points, resulting is so-called “chromatic aberrations.” In particular,
the edges of an image of a white object will become colored and blurred. Special lenses called doublets are
capable of correcting chromatic aberrations. A doublet is formed by gluing together a converging lens and a
diverging lens. The combined doublet lens produces significantly reduced chromatic aberrations.

Image Formation by Thin Lenses
We use ray tracing to investigate different types of images that can be created by a lens. In some
circumstances, a lens forms a real image, such as when a movie projector casts an image onto a screen. In
other cases, the image is a virtual image, which cannot be projected onto a screen. Where, for example, is the
image formed by eyeglasses? We use ray tracing for thin lenses to illustrate how they form images, and then we
develop equations to analyze quantitatively the properties of thin lenses.

Consider an object some distance away from a converging lens, as shown in Figure 2.22. To find the location
and size of the image, we trace the paths of selected light rays originating from one point on the object, in this
case, the tip of the arrow. The figure shows three rays from many rays that emanate from the tip of the arrow.
These three rays can be traced by using the ray-tracing rules given above.

• Ray 1 enters the lens parallel to the optical axis and passes through the focal point on the opposite side
(rule 1).

• Ray 2 passes through the center of the lens and is not deviated (rule 2).
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• Ray 3 passes through the focal point on its way to the lens and exits the lens parallel to the optical axis
(rule 3).

The three rays cross at a single point on the opposite side of the lens. Thus, the image of the tip of the arrow is
located at this point. All rays that come from the tip of the arrow and enter the lens are refracted and cross at
the point shown.

After locating the image of the tip of the arrow, we need another point of the image to orient the entire image of
the arrow. We chose to locate the image base of the arrow, which is on the optical axis. As explained in the
section on spherical mirrors, the base will be on the optical axis just above the image of the tip of the arrow
(due to the top-bottom symmetry of the lens). Thus, the image spans the optical axis to the (negative) height
shown. Rays from another point on the arrow, such as the middle of the arrow, cross at another common point,
thus filling in the rest of the image.

Although three rays are traced in this figure, only two are necessary to locate a point of the image. It is best to
trace rays for which there are simple ray-tracing rules.

Figure 2.22 Ray tracing is used to locate the image formed by a lens. Rays originating from the same point on the object are traced—the

three chosen rays each follow one of the rules for ray tracing, so that their paths are easy to determine. The image is located at the point

where the rays cross. In this case, a real image—one that can be projected on a screen—is formed.

Several important distances appear in the figure. As for a mirror, we define to be the object distance, or the
distance of an object from the center of a lens. The image distance is defined to be the distance of the image
from the center of a lens. The height of the object and the height of the image are indicated by and ,
respectively. Images that appear upright relative to the object have positive heights, and those that are inverted
have negative heights. By using the rules of ray tracing and making a scale drawing with paper and pencil, like
that in Figure 2.22, we can accurately describe the location and size of an image. But the real benefit of ray
tracing is in visualizing how images are formed in a variety of situations.

Oblique Parallel Rays and Focal Plane
We have seen that rays parallel to the optical axis are directed to the focal point of a converging lens. In the
case of a diverging lens, they come out in a direction such that they appear to be coming from the focal point
on the opposite side of the lens (i.e., the side from which parallel rays enter the lens). What happens to parallel
rays that are not parallel to the optical axis (Figure 2.23)? In the case of a converging lens, these rays do not
converge at the focal point. Instead, they come together on another point in the plane called the focal plane.
The focal plane contains the focal point and is perpendicular to the optical axis. As shown in the figure, parallel
rays focus where the ray through the center of the lens crosses the focal plane.
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Figure 2.23 Parallel oblique rays focus on a point in a focal plane.

Thin-Lens Equation
Ray tracing allows us to get a qualitative picture of image formation. To obtain numeric information, we derive
a pair of equations from a geometric analysis of ray tracing for thin lenses. These equations, called the thin-
lens equation and the lens maker’s equation, allow us to quantitatively analyze thin lenses.

Consider the thick bi-convex lens shown in Figure 2.24. The index of refraction of the surrounding medium is
(if the lens is in air, then ) and that of the lens is . The radii of curvatures of the two sides are

. We wish to find a relation between the object distance , the image distance , and the
parameters of the lens.

Figure 2.24 Figure for deriving the lens maker’s equation. Here, t is the thickness of lens, is the index of refraction of the exterior

medium, and is the index of refraction of the lens. We take the limit of to obtain the formula for a thin lens.

To derive the thin-lens equation, we consider the image formed by the first refracting surface (i.e., left surface)
and then use this image as the object for the second refracting surface. In the figure, the image from the first
refracting surface is , which is formed by extending backwards the rays from inside the lens (these rays
result from refraction at the first surface). This is shown by the dashed lines in the figure. Notice that this
image is virtual because no rays actually pass through the point . To find the image distance
corresponding to the image , we use Equation 2.11. In this case, the object distance is , the image distance
is , and the radius of curvature is . Inserting these into Equation 2.3 gives

The image is virtual and on the same side as the object, so and . The first surface is convex

2.14
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toward the object, so .

To find the object distance for the object Q formed by refraction from the second interface, note that the role of
the indices of refraction and are interchanged in Equation 2.11. In Figure 2.24, the rays originate in the
medium with index , whereas in Figure 2.15, the rays originate in the medium with index . Thus, we must
interchange and in Equation 2.11. In addition, by consulting again Figure 2.24, we see that the object
distance is and the image distance is . The radius of curvature is Inserting these quantities into
Equation 2.11 gives

The image is real and on the opposite side from the object, so and . The second surface is convex
away from the object, so . Equation 2.15 can be simplified by noting that , where we have
taken the absolute value because is a negative number, whereas both and t are positive. We can dispense
with the absolute value if we negate , which gives . Inserting this into Equation 2.15 gives

Summing Equation 2.14 and Equation 2.16 gives

In the thin-lens approximation, we assume that the lens is very thin compared to the first image distance, or
(or, equivalently, ). In this case, the third and fourth terms on the left-hand side of

Equation 2.17 cancel, leaving us with

Dividing by gives us finally

The left-hand side looks suspiciously like the mirror equation that we derived above for spherical mirrors. As
done for spherical mirrors, we can use ray tracing and geometry to show that, for a thin lens,

where f is the focal length of the thin lens (this derivation is left as an exercise). This is the thin-lens equation.
The focal length of a thin lens is the same to the left and to the right of the lens. Combining Equation 2.18 and
Equation 2.19 gives

which is called the lens maker’s equation. It shows that the focal length of a thin lens depends only of the radii
of curvature and the index of refraction of the lens and that of the surrounding medium. For a lens in air,

and , so the lens maker’s equation reduces to

2.15
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Sign conventions for lenses
To properly use the thin-lens equation, the following sign conventions must be obeyed:

1. is positive if the image is on the side opposite the object (i.e., real image); otherwise, is negative (i.e.,
virtual image).

2. f is positive for a converging lens and negative for a diverging lens.
3. R is positive for a surface convex toward the object, and negative for a surface concave toward object.

Magnification
By using a finite-size object on the optical axis and ray tracing, you can show that the magnification m of an
image is

(where the three lines mean “is defined as”). This is exactly the same equation as we obtained for mirrors (see
Equation 2.8). If , then the image has the same vertical orientation as the object (called an “upright”
image). If , then the image has the opposite vertical orientation as the object (called an “inverted” image).

Using the Thin-Lens Equation
The thin-lens equation and the lens maker’s equation are broadly applicable to situations involving thin
lenses. We explore many features of image formation in the following examples.

Consider a thin converging lens. Where does the image form and what type of image is formed as the object
approaches the lens from infinity? This may be seen by using the thin-lens equation for a given focal length to
plot the image distance as a function of object distance. In other words, we plot

for a given value of f. For , the result is shown in part (a) of Figure 2.25.

Figure 2.25 (a) Image distance for a thin converging lens with as a function of object distance. (b) Same thing but for a

diverging lens with .

An object much farther than the focal length f from the lens should produce an image near the focal plane,
because the second term on the right-hand side of the equation above becomes negligible compared to the first
term, so we have This can be seen in the plot of part (a) of the figure, which shows that the image
distance approaches asymptotically the focal length of 1 cm for larger object distances. As the object
approaches the focal plane, the image distance diverges to positive infinity. This is expected because an object
at the focal plane produces parallel rays that form an image at infinity (i.e., very far from the lens). When the

2.22
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object is farther than the focal length from the lens, the image distance is positive, so the image is real, on the
opposite side of the lens from the object, and inverted (because ). When the object is closer than
the focal length from the lens, the image distance becomes negative, which means that the image is virtual, on
the same side of the lens as the object, and upright.

For a thin diverging lens of focal length , a similar plot of image distance vs. object distance is
shown in part (b). In this case, the image distance is negative for all positive object distances, which means that
the image is virtual, on the same side of the lens as the object, and upright. These characteristics may also be
seen by ray-tracing diagrams (see Figure 2.26).

Figure 2.26 The red dots show the focal points of the lenses. (a) A real, inverted image formed from an object that is farther than the focal

length from a converging lens. (b) A virtual, upright image formed from an object that is closer than a focal length from the lens. (c) A virtual,

upright image formed from an object that is farther than a focal length from a diverging lens.

To see a concrete example of upright and inverted images, look at Figure 2.27, which shows images formed by
converging lenses when the object (the person’s face in this case) is place at different distances from the lens.
In part (a) of the figure, the person’s face is farther than one focal length from the lens, so the image is inverted.
In part (b), the person’s face is closer than one focal length from the lens, so the image is upright.

Figure 2.27 (a) When a converging lens is held farther than one focal length from the man’s face, an inverted image is formed. Note that

the image is in focus but the face is not, because the image is much closer to the camera taking this photograph than the face. (b) An

upright image of the man’s face is produced when a converging lens is held at less than one focal length from his face. (credit a:

modification of work by “DaMongMan”/Flickr; credit b: modification of work by Casey Fleser)

Work through the following examples to better understand how thin lenses work.

76 2 • Geometric Optics and Image Formation

Access for free at openstax.org.



PROBLEM-SOLVING STRATEGY

Lenses
Step 1. Determine whether ray tracing, the thin-lens equation, or both would be useful. Even if ray tracing is
not used, a careful sketch is always very useful. Write symbols and values on the sketch.

Step 2. Identify what needs to be determined in the problem (identify the unknowns).

Step 3. Make a list of what is given or can be inferred from the problem (identify the knowns).

Step 4. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.

Step 5. Most quantitative problems require the use of the thin-lens equation and/or the lens maker’s equation.
Solve these for the unknowns and insert the given quantities or use both together to find two unknowns.

Step 7. Check to see if the answer is reasonable. Are the signs correct? Is the sketch or ray tracing consistent
with the calculation?

EXAMPLE 2.3

Using the Lens Maker’s Equation
Find the radius of curvature of a biconcave lens symmetrically ground from a glass with index of refractive
1.55 so that its focal length in air is 20 cm (for a biconcave lens, both surfaces have the same radius of
curvature).

Strategy
Use the thin-lens form of the lens maker’s equation:

where and . Since we are making a symmetric biconcave lens, we have .

Solution
We can determine the radius R of curvature from

Solving for R and inserting gives

EXAMPLE 2.4

Converging Lens and Different Object Distances
Find the location, orientation, and magnification of the image for an 3.0 cm high object at each of the following
positions in front of a convex lens of focal length 10.0 cm. , , and

.

Strategy
We start with the thin-lens equation . Solve this for the image distance and insert the given

object distance and focal length.
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Solution

a. For , this gives

The image is positive, so the image, is real, is on the opposite side of the lens from the object, and is 12.6
cm from the lens. To find the magnification and orientation of the image, use

The negative magnification means that the image is inverted. Since , the image is smaller than the
object. The size of the image is given by

b. For

The image distance is negative, so the image is virtual, is on the same side of the lens as the object, and is
10 cm from the lens. The magnification and orientation of the image are found from

The positive magnification means that the image is upright (i.e., it has the same orientation as the object).
Since , the image is larger than the object. The size of the image is

c. For

The image distance is positive, so the image is real, is on the opposite side of the lens from the object, and
is 20.0 cm from the lens. The magnification is

The negative magnification means that the image is inverted. Since , the image is the same size as
the object.

When solving problems in geometric optics, we often need to combine ray tracing and the lens equations. The
following example demonstrates this approach.
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EXAMPLE 2.5

Choosing the Focal Length and Type of Lens
To project an image of a light bulb on a screen 1.50 m away, you need to choose what type of lens to use
(converging or diverging) and its focal length (Figure 2.28). The distance between the lens and the lightbulb is
fixed at 0.75 m. Also, what is the magnification and orientation of the image?

Strategy
The image must be real, so you choose to use a converging lens. The focal length can be found by using the
thin-lens equation and solving for the focal length. The object distance is and the image distance
is .

Solution
Solve the thin lens for the focal length and insert the desired object and image distances:

The magnification is

Significance
The minus sign for the magnification means that the image is inverted. The focal length is positive, as
expected for a converging lens. Ray tracing can be used to check the calculation (see Figure 2.28). As expected,
the image is inverted, is real, and is larger than the object.

Figure 2.28 A light bulb placed 0.75 m from a lens having a 0.50-m focal length produces a real image on a screen, as discussed in the

example. Ray tracing predicts the image location and size.

2.5 The Eye
Learning Objectives
By the end of this section, you will be able to:

• Understand the basic physics of how images are formed by the human eye
• Recognize several conditions of impaired vision as well as the optics principles for treating these conditions

The human eye is perhaps the most interesting and important of all optical instruments. Our eyes perform a
vast number of functions: They allow us to sense direction, movement, colors, and distance. In this section, we
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explore the geometric optics of the eye.

Physics of the Eye
The eye is remarkable in how it forms images and in the richness of detail and color it can detect. However, our
eyes often need some correction to reach what is called “normal” vision. Actually, normal vision should be
called “ideal” vision because nearly one-half of the human population requires some sort of eyesight
correction, so requiring glasses is by no means “abnormal.” Image formation by our eyes and common vision
correction can be analyzed with the optics discussed earlier in this chapter.

Figure 2.29 shows the basic anatomy of the eye. The cornea and lens form a system that, to a good
approximation, acts as a single thin lens. For clear vision, a real image must be projected onto the light-
sensitive retina, which lies a fixed distance from the lens. The flexible lens of the eye allows it to adjust the
radius of curvature of the lens to produce an image on the retina for objects at different distances. The center
of the image falls on the fovea, which has the greatest density of light receptors and the greatest acuity
(sharpness) in the visual field. The variable opening (i.e., the pupil) of the eye, along with chemical adaptation,
allows the eye to detect light intensities from the lowest observable to times greater (without damage).
This is an incredible range of detection. Processing of visual nerve impulses begins with interconnections in
the retina and continues in the brain. The optic nerve conveys the signals received by the eye to the brain.

Figure 2.29 The cornea and lens of the eye act together to form a real image on the light-sensing retina, which has its densest

concentration of receptors in the fovea and a blind spot over the optic nerve. The radius of curvature of the lens of an eye is adjustable to

form an image on the retina for different object distances. Layers of tissues with varying indices of refraction in the lens are shown here.

However, they have been omitted from other pictures for clarity.

The indices of refraction in the eye are crucial to its ability to form images. Table 2.1 lists the indices of
refraction relevant to the eye. The biggest change in the index of refraction, which is where the light rays are
most bent, occurs at the air-cornea interface rather than at the aqueous humor-lens interface. The ray diagram
in Figure 2.30 shows image formation by the cornea and lens of the eye. The cornea, which is itself a
converging lens with a focal length of approximately 2.3 cm, provides most of the focusing power of the eye.
The lens, which is a converging lens with a focal length of about 6.4 cm, provides the finer focus needed to
produce a clear image on the retina. The cornea and lens can be treated as a single thin lens, even though the
light rays pass through several layers of material (such as cornea, aqueous humor, several layers in the lens,
and vitreous humor), changing direction at each interface. The image formed is much like the one produced by
a single convex lens (i.e., a real, inverted image). Although images formed in the eye are inverted, the brain
inverts them once more to make them seem upright.

Material Index of Refraction

Water 1.33
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Material Index of Refraction

Air 1.0

Cornea 1.38

Aqueous humor 1.34

Lens 1.41*

Vitreous humor 1.34

Table 2.1 Refractive Indices Relevant to the Eye *This is an average value. The actual index of refraction
varies throughout the lens and is greatest in center of the lens.

Figure 2.30 In the human eye, an image forms on the retina. Rays from the top and bottom of the object are traced to show how a real,

inverted image is produced on the retina. The distance to the object is not to scale.

As noted, the image must fall precisely on the retina to produce clear vision—that is, the image distance
must equal the lens-to-retina distance. Because the lens-to-retina distance does not change, the image
distance must be the same for objects at all distances. The ciliary muscles adjust the shape of the eye lens
for focusing on nearby or far objects. By changing the shape of the eye lens, the eye changes the focal length of
the lens. This mechanism of the eye is called accommodation.

The nearest point an object can be placed so that the eye can form a clear image on the retina is called the near
point of the eye. Similarly, the far point is the farthest distance at which an object is clearly visible. A person
with normal vision can see objects clearly at distances ranging from 25 cm to essentially infinity. The near
point increases with age, becoming several meters for some older people. In this text, we consider the near
point to be 25 cm.

We can use the thin-lens equations to quantitatively examine image formation by the eye. First, we define the
optical power of a lens as

with the focal length f given in meters. The units of optical power are called “diopters” (D). That is,
. Optometrists prescribe common eyeglasses and contact lenses in units of diopters. With

this definition of optical power, we can rewrite the thin-lens equations as

2.23
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Working with optical power is convenient because, for two or more lenses close together, the effective optical
power of the lens system is approximately the sum of the optical power of the individual lenses:

EXAMPLE 2.6

Effective Focal Length of the Eye
The cornea and eye lens have focal lengths of 2.3 and 6.4 cm, respectively. Find the net focal length and optical
power of the eye.

Strategy
The optical powers of the closely spaced lenses add, so .

Solution
Writing the equation for power in terms of the focal lengths gives

Hence, the focal length of the eye (cornea and lens together) is

The optical power of the eye is

For clear vision, the image distance must equal the lens-to-retina distance. Normal vision is possible for
objects at distances to infinity. The following example shows how to calculate the image distance
for an object placed at the near point of the eye.

EXAMPLE 2.7

Image of an object placed at the near point
The net focal length of a particular human eye is 1.7 cm. An object is placed at the near point of the eye. How
far behind the lens is a focused image formed?

Strategy
The near point is 25 cm from the eye, so the object distance is . We determine the image distance
from the lens equation:

Solution

2.24

2.25

82 2 • Geometric Optics and Image Formation

Access for free at openstax.org.



Therefore, the image is formed 1.8 cm behind the lens.

Significance
From the magnification formula, we find . Since , the image is inverted in
orientation with respect to the object. From the absolute value of m we see that the image is much smaller than
the object; in fact, it is only 7% of the size of the object.

Vision Correction
The need for some type of vision correction is very common. Typical vision defects are easy to understand
with geometric optics, and some are simple to correct. Figure 2.31 illustrates two common vision defects.
Nearsightedness, or myopia, is the ability to see near objects, whereas distant objects are blurry. The eye
overconverges the nearly parallel rays from a distant object, and the rays cross in front of the retina. More
divergent rays from a close object are converged on the retina for a clear image. The distance to the farthest
object that can be seen clearly is called the far point of the eye (normally the far point is at infinity).
Farsightedness, or hyperopia, is the ability to see far objects clearly, whereas near objects are blurry. A
farsighted eye does not sufficiently converge the rays from a near object to make the rays meet on the retina.

Figure 2.31 (a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina, so they have diverged when they

strike the retina, producing a blurry image. An eye lens that is too powerful can cause nearsightedness, or the eye may be too long. (b) The

farsighted (hyperopic) eye is unable to converge the rays from a close object on the retina, producing blurry near-field vision. An eye lens

with insufficient optical power or an eye that is too short can cause farsightedness.

Since the nearsighted eye overconverges light rays, the correction for nearsightedness consists of placing a
diverging eyeglass lens in front of the eye, as shown in Figure 2.32. This reduces the optical power of an eye
that is too powerful (recall that the focal length of a diverging lens is negative, so its optical power is negative).
Another way to understand this correction is that a diverging lens will cause the incoming rays to diverge more
to compensate for the excessive convergence caused by the lens system of the eye. The image produced by the
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diverging eyeglass lens serves as the (optical) object for the eye, and because the eye cannot focus on objects
beyond its far point, the diverging lens must form an image of distant (physical) objects at a point that is closer
than the far point.

Figure 2.32 Correction of nearsightedness requires a diverging lens that compensates for overconvergence by the eye. The diverging lens

produces an image closer to the eye than the physical object. This image serves as the optical object for the eye, and the nearsighted

person can see it clearly because it is closer than their far point.

EXAMPLE 2.8

Correcting Nearsightedness
What optical power of eyeglass lens is needed to correct the vision of a nearsighted person whose far point is
30.0 cm? Assume the corrective lens is fixed 1.50 cm away from the eye.

Strategy
You want this nearsighted person to be able to see distant objects clearly, which means that the eyeglass lens
must produce an image 30.0 cm from the eye for an object at infinity. An image 30.0 cm from the eye will be

from the eyeglass lens. Therefore, we must have when .
The image distance is negative because it is on the same side of the eyeglass lens as the object.

Solution
Since and are known, we can find the optical power of the eyeglass lens by using Equation 2.24:

Significance
The negative optical power indicates a diverging (or concave) lens, as expected. If you examine eyeglasses for
nearsighted people, you will find the lenses are thinnest in the center. Additionally, if you examine a
prescription for eyeglasses for nearsighted people, you will find that the prescribed optical power is negative
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and given in units of diopters.

Correcting farsightedness consists simply of using the opposite type of lens as for nearsightedness (i.e., a
converging lens), as shown in Figure 2.33.

Such a lens will produce an image of physical objects that are closer than the near point at a distance that is
between the near point and the far point, so that the person can see the image clearly. To determine the optical
power needed for correction, you must therefore know the person’s near point, as explained in Example 2.9.

Figure 2.33 Correction of farsightedness uses a converging lens that compensates for the underconvergence by the eye. The converging

lens produces an image farther from the eye than the object, so that the farsighted person can see it clearly.

EXAMPLE 2.9

Correcting Farsightedness
What optical power of eyeglass lens is needed to allow a farsighted person, whose near point is 1.00 m, to see
an object clearly that is 25.0 cm from the eye? Assume the corrective lens is fixed 1.5 cm from the eye.

Strategy
When an object is 25.0 cm from the person’s eyes, the eyeglass lens must produce an image 1.00 m away (the
near point), so that the person can see it clearly. An image 1.00 m from the eye will be

from the eyeglass lens because the eyeglass lens is 1.5 cm from the eye. Therefore,
, where the minus sign indicates that the image is on the same side of the lens as the object. The

object is from the eyeglass lens, so .

Solution
Since and are known, we can find the optical power of the eyeglass lens by using Equation 2.24:
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Significance
The positive optical power indicates a converging (convex) lens, as expected. If you examine eyeglasses of
farsighted people, you will find the lenses to be thickest in the center. In addition, prescription eyeglasses for
farsighted people have a prescribed optical power that is positive.

2.6 The Camera
Learning Objectives
By the end of this section, you will be able to:

• Describe the optics of a camera
• Characterize the image created by a camera

Cameras are very common in our everyday life. Between 1825 and 1827, French inventor Nicéphore Niépce
successfully photographed an image created by a primitive camera. Since then, enormous progress has been
achieved in the design of cameras and camera-based detectors.

Initially, photographs were recorded by using the light-sensitive reaction of silver-based compounds such as
silver chloride or silver bromide. Silver-based photographic paper was in common use until the advent of
digital photography in the 1980s, which is intimately connected to charge-coupled device (CCD) detectors. In
a nutshell, a CCD is a semiconductor chip that records images as a matrix of tiny pixels, each pixel located in a
“bin” in the surface. Each pixel is capable of detecting the intensity of light impinging on it. Color is brought
into play by putting red-, blue-, and green-colored filters over the pixels, resulting in colored digital images
(Figure 2.34). At its best resolution, one CCD pixel corresponds to one pixel of the image. To reduce the
resolution and decrease the size of the file, we can “bin” several CCD pixels into one, resulting in a smaller but
“pixelated” image.

Figure 2.34 A charge-coupled device (CCD) converts light signals into electronic signals, enabling electronic processing and storage of

visual images. This is the basis for electronic imaging in all digital cameras, from cell phones to movie cameras. (credit left: modification of

work by Bruce Turner)

Clearly, electronics is a big part of a digital camera; however, the underlying physics is basic optics. As a matter
of fact, the optics of a camera are pretty much the same as those of a single lens with an object distance that is
significantly larger than the lens’s focal distance (Figure 2.35).
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Figure 2.35 Modern digital cameras have several lenses to produce a clear image with minimal aberration and use red, blue, and green

filters to produce a color image.

For instance, let us consider the camera in a smartphone. An average smartphone camera is equipped with a
stationary wide-angle lens with a focal length of about 4–5 mm. (This focal length is about equal to the
thickness of the phone.) The image created by the lens is focused on the CCD detector mounted at the opposite
side of the phone. In a cell phone, the lens and the CCD cannot move relative to each other. So how do we make
sure that both the images of a distant and a close object are in focus?

Recall that a human eye can accommodate for distant and close images by changing its focal distance. A cell
phone camera cannot do that because the distance from the lens to the detector is fixed. Here is where the
small focal distance becomes important. Let us assume we have a camera with a 5-mm focal distance. What is
the image distance for a selfie? The object distance for a selfie (the length of the hand holding the phone) is
about 50 cm. Using the thin-lens equation, we can write

We then obtain the image distance:

Note that the object distance is 100 times larger than the focal distance. We can clearly see that the 1/(500 mm)
term is significantly smaller than 1/(5 mm), which means that the image distance is pretty much equal to the
lens’s focal length. An actual calculation gives us the image distance . This value is extremely
close to the lens’s focal distance.

Now let us consider the case of a distant object. Let us say that we would like to take a picture of a person
standing about 5 m from us. Using the thin-lens equation again, we obtain the image distance of 5.005 mm.
The farther the object is from the lens, the closer the image distance is to the focal distance. At the limiting
case of an infinitely distant object, we obtain the image distance exactly equal to the focal distance of the lens.

As you can see, the difference between the image distance for a selfie and the image distance for a distant
object is just about 0.05 mm or 50 microns. Even a short object distance such as the length of your hand is two
orders of magnitude larger than the lens’s focal length, resulting in minute variations of the image distance.
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(The 50-micron difference is smaller than the thickness of an average sheet of paper.) Such a small difference
can be easily accommodated by the same detector, positioned at the focal distance of the lens. Image analysis
software can help improve image quality.

Conventional point-and-shoot cameras often use a movable lens to change the lens-to-image distance.
Complex lenses of the more expensive mirror reflex cameras allow for superb quality photographic images.
The optics of these camera lenses is beyond the scope of this textbook.

2.7 The Simple Magnifier
Learning Objectives
By the end of this section, you will be able to:

• Understand the optics of a simple magnifier
• Characterize the image created by a simple magnifier

The apparent size of an object perceived by the eye depends on the angle the object subtends from the eye. As
shown in Figure 2.36, the object at A subtends a larger angle from the eye than when it is position at point B.
Thus, the object at A forms a larger image on the retina (see ) than when it is positioned at B (see ).
Thus, objects that subtend large angles from the eye appear larger because they form larger images on the
retina.

Figure 2.36 Size perceived by an eye is determined by the angle subtended by the object. An image formed on the retina by an object at A

is larger than an image formed on the retina by the same object positioned at B (compared image heights to ).

We have seen that, when an object is placed within a focal length of a convex lens, its image is virtual, upright,
and larger than the object (see part (b) of Figure 2.26). Thus, when such an image produced by a convex lens
serves as the object for the eye, as shown in Figure 2.37, the image on the retina is enlarged, because the image
produced by the lens subtends a larger angle in the eye than does the object. A convex lens used for this
purpose is called a magnifying glass or a simple magnifier.
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Figure 2.37 The simple magnifier is a convex lens used to produce an enlarged image of an object on the retina. (a) With no convex lens,

the object subtends an angle from the eye. (b) With the convex lens in place, the image produced by the convex lens subtends an

angle from the eye, with . Thus, the image on the retina is larger with the convex lens in place.

To account for the magnification of a magnifying lens, we compare the angle subtended by the image (created
by the lens) with the angle subtended by the object (viewed with no lens), as shown in Figure 2.37. We assume
that the object is situated at the near point of the eye, because this is the object distance at which the unaided
eye can form the largest image on the retina. We will compare the magnified images created by a lens with this
maximum image size for the unaided eye. The magnification of an image when observed by the eye is the
angular magnification M, which is defined by the ratio of the angle subtended by the image to the angle

subtended by the object:

Consider the situation shown in Figure 2.37. The magnifying lens is held a distance l from the eye, and the

image produced by the magnifier forms a distance L from the eye. We want to calculate the angular
magnification for any arbitrary L and l . In the small-angle approximation, the angular size of the image

is . The angular size of the object at the near point is . The angular magnification
is then

2.26

2.27
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Using Equation 2.8 for linear magnification

and the thin-lens equation

in Equation 2.27, we arrive at the following expression for the angular magnification of a magnifying lens:

From part (b) of the figure, we see that the absolute value of the image distance is l . Note that

because the image is virtual, so we can dispense with the absolute value by explicitly inserting the
minus sign: l . Inserting this into Equation 2.28 gives us the final equation for the angular

magnification of a magnifying lens:

Note that all the quantities in this equation have to be expressed in centimeters. Often, we want the image to be
at the near-point distance ( ) to get maximum magnification, and we hold the magnifying lens close
to the eye (l ). In this case, Equation 2.29 gives

which shows that the greatest magnification occurs for the lens with the shortest focal length. In addition,
when the image is at the near-point distance and the lens is held close to the eye l , then

and Equation 2.27 becomes

where m is the linear magnification (Equation 2.32) derived for spherical mirrors and thin lenses. Another
useful situation is when the image is at infinity . Equation 2.29 then takes the form

The resulting magnification is simply the ratio of the near-point distance to the focal length of the magnifying
lens, so a lens with a shorter focal length gives a stronger magnification. Although this magnification is smaller
by 1 than the magnification obtained with the image at the near point, it provides for the most comfortable
viewing conditions, because the eye is relaxed when viewing a distant object.

By comparing Equation 2.29 with Equation 2.32, we see that the range of angular magnification of a given
converging lens is

2.28

l
2.29

2.30

2.31

2.32

2.33
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EXAMPLE 2.10

Magnifying a Diamond
A jeweler wishes to inspect a 3.0-mm-diameter diamond with a magnifier. The diamond is held at the jeweler’s
near point (25 cm), and the jeweler holds the magnifying lens close to his eye.

(a) What should the focal length of the magnifying lens be to see a 15-mm-diameter image of the diamond?

(b) What should the focal length of the magnifying lens be to obtain magnification?

Strategy
We need to determine the requisite magnification of the magnifier. Because the jeweler holds the magnifying
lens close to his eye, we can use Equation 2.30 to find the focal length of the magnifying lens.

Solution

a. The required linear magnification is the ratio of the desired image diameter to the diamond’s actual
diameter (Equation 2.32). Because the jeweler holds the magnifying lens close to his eye and the image
forms at his near point, the linear magnification is the same as the angular magnification, so

The focal length f of the magnifying lens may be calculated by solving Equation 2.30 for f, which gives

b. To get an image magnified by a factor of ten, we again solve Equation 2.30 for f, but this time we use
. The result is

Significance
Note that a greater magnification is achieved by using a lens with a smaller focal length. We thus need to use a
lens with radii of curvature that are less than a few centimeters and hold it very close to our eye. This is not
very convenient. A compound microscope, explored in the following section, can overcome this drawback.

2.8 Microscopes and Telescopes
Learning Objectives
By the end of this section, you will be able to:

• Explain the physics behind the operation of microscopes and telescopes
• Describe the image created by these instruments and calculate their magnifications

Microscopes and telescopes are major instruments that have contributed hugely to our current understanding
of the micro- and macroscopic worlds. The invention of these devices led to numerous discoveries in
disciplines such as physics, astronomy, and biology, to name a few. In this section, we explain the basic physics
that make these instruments work.

Microscopes
Although the eye is marvelous in its ability to see objects large and small, it obviously is limited in the smallest
details it can detect. The desire to see beyond what is possible with the naked eye led to the use of optical
instruments. We have seen that a simple convex lens can create a magnified image, but it is hard to get large
magnification with such a lens. A magnification greater than is difficult without distorting the image. To
get higher magnification, we can combine the simple magnifying glass with one or more additional lenses. In
this section, we examine microscopes that enlarge the details that we cannot see with the naked eye.
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Microscopes were first developed in the early 1600s by eyeglass makers in The Netherlands and Denmark. The
simplest compound microscope is constructed from two convex lenses (Figure 2.38). The objective lens is a
convex lens of short focal length (i.e., high power) with typical magnification from to . The
eyepiece, also referred to as the ocular, is a convex lens of longer focal length.

The purpose of a microscope is to create magnified images of small objects, and both lenses contribute to the
final magnification. Also, the final enlarged image is produced sufficiently far from the observer to be easily
viewed, since the eye cannot focus on objects or images that are too close (i.e., closer than the near point of the
eye).

Figure 2.38 A compound microscope is composed of two lenses: an objective and an eyepiece. The objective forms the first image, which

is larger than the object. This first image is inside the focal length of the eyepiece and serves as the object for the eyepiece. The eyepiece

forms the final image that is further magnified. The do and di shown will be discussed with superscripts "obj" below to denote they are

measured from the objective lens, while the eye piece variables will have superscripts of "eye" to denote this lens.

To see how the microscope in Figure 2.38 forms an image, consider its two lenses in succession. The object is
just beyond the focal length of the objective lens, producing a real, inverted image that is larger than the
object. This first image serves as the object for the second lens, or eyepiece. The eyepiece is positioned so that
the first image is within its focal length , so that it can further magnify the image. In a sense, it acts as a
magnifying glass that magnifies the intermediate image produced by the objective. The image produced by the
eyepiece is a magnified virtual image. The final image remains inverted but is farther from the observer than
the object, making it easy to view.

The eye views the virtual image created by the eyepiece, which serves as the object for the lens in the eye. The
virtual image formed by the eyepiece is well outside the focal length of the eye, so the eye forms a real image on
the retina.

The magnification of the microscope is the product of the linear magnification by the objective and the
angular magnification by the eyepiece. These are given by
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Here, and are the focal lengths of the objective and the eyepiece, respectively. We assume that the
final image is formed at the near point of the eye, providing the largest magnification. Note that the angular
magnification of the eyepiece is the same as obtained earlier for the simple magnifying glass. This should not
be surprising, because the eyepiece is essentially a magnifying glass, and the same physics applies here. The
net magnification of the compound microscope is the product of the linear magnification of the
objective and the angular magnification of the eyepiece:

EXAMPLE 2.11

Microscope Magnification
Calculate the magnification of an object placed 6.20 mm from a compound microscope that has a 6.00 mm-
focal length objective and a 50.0 mm-focal length eyepiece. The objective and eyepiece are separated by 23.0
cm.

Strategy
This situation is similar to that shown in Figure 2.38. To find the overall magnification, we must know the
linear magnification of the objective and the angular magnification of the eyepiece. We can use Equation 2.34,
but we need to use the thin-lens equation to find the image distance of the objective.

Solution

Solving the thin-lens equation for gives

Inserting this result into Equation 2.34 along with the known values and
gives

Significance
Both the objective and the eyepiece contribute to the overall magnification, which is large and negative,
consistent with Figure 2.38, where the image is seen to be large and inverted. In this case, the image is virtual
and inverted, which cannot happen for a single element (see Figure 2.26).

2.34
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Figure 2.39 A compound microscope with the image created at infinity.

We now calculate the magnifying power of a microscope when the image is at infinity, as shown in Figure 2.39,
because this makes for the most relaxed viewing. The magnifying power of the microscope is the product of
linear magnification of the objective and the angular magnification of the eyepiece. The
magnification of the objective can be obtained from the thin-lens equation for magnification, which is

If the final image is at infinity, then the image created by the objective must be located at the focal point of the
eyepiece. This may be seen by considering the thin-lens equation with or by recalling that rays that
pass through the focal point exit the lens parallel to each other, which is equivalent to focusing at infinity. For
many microscopes, the distance between the image-side focal point of the objective and the object-side focal
point of the eyepiece is standardized at . This distance is called the tube length of the microscope. If
the length of the compound microscope L is roughly the focal length of the objective, we can substitute L in for
di

obj to get

We now need to calculate the angular magnification of the eyepiece with the image at infinity. To do so, we take
the ratio of the angle subtended by the image to the angle subtended by the object at the near
point of the eye (this is the closest that the unaided eye can view the object, and thus this is the position where
the object will form the largest image on the retina of the unaided eye). Using Figure 2.39 and working in the
small-angle approximation, we have and , where is the height of
the image formed by the objective, which is the object of the eyepiece. Thus, the angular magnification of the
eyepiece is

The net magnifying power of the compound microscope with the image at infinity is therefore

2.35

2.36

2.37
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The focal distances must be in centimeters. The minus sign indicates that the final image is inverted. Note that
the only variables in the equation are the focal distances of the eyepiece and the objective, which makes this
equation particularly useful.

Telescopes
Telescopes are meant for viewing distant objects and produce an image that is larger than the image produced
in the unaided eye. Telescopes gather far more light than the eye, allowing dim objects to be observed with
greater magnification and better resolution. Telescopes were invented around 1600, and Galileo was the first
to use them to study the heavens, with monumental consequences. He observed the moons of Jupiter, the
craters and mountains on the moon, the details of sunspots, and the fact that the Milky Way is composed of a
vast number of individual stars.

Figure 2.40 (a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an upright image and are used in

spyglasses. (b) Most simple refracting telescopes have two convex lenses. The objective forms a real, inverted image at (or just within) the

focal plane of the eyepiece. This image serves as the object for the eyepiece. The eyepiece forms a virtual, inverted image that is magnified.

Part (a) of Figure 2.40 shows a refracting telescope made of two lenses. The first lens, called the objective,

2.38
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forms a real image within the focal length of the second lens, which is called the eyepiece. The image of the
objective lens serves as the object for the eyepiece, which forms a magnified virtual image that is observed by
the eye. This design is what Galileo used to observe the heavens.

Although the arrangement of the lenses in a refracting telescope looks similar to that in a microscope, there
are important differences. In a telescope, the real object is far away and the intermediate image is smaller than
the object. In a microscope, the real object is very close and the intermediate image is larger than the object. In
both the telescope and the microscope, the eyepiece magnifies the intermediate image; in the telescope,
however, this is the only magnification.

The most common two-lens telescope is shown in part (b) of the figure. The object is so far from the telescope
that it is essentially at infinity compared with the focal lengths of the lenses , so the incoming rays
are essentially parallel and focus on the focal plane. Thus, the first image is produced at , as shown
in the figure, and is not large compared with what you might see by looking directly at the object. However, the
eyepiece of the telescope eyepiece (like the microscope eyepiece) allows you to get nearer than your near point
to this first image and so magnifies it (because you are near to it, it subtends a larger angle from your eye and
so forms a larger image on your retina). As for a simple magnifier, the angular magnification of a telescope is
the ratio of the angle subtended by the image [ in part (b)] to the angle subtended by the real object
[ in part (b)]:

To obtain an expression for the magnification that involves only the lens parameters, note that the focal plane
of the objective lens lies very close to the focal plan of the eyepiece. If we assume that these planes are
superposed, we have the situation shown in Figure 2.41.

Figure 2.41 The focal plane of the objective lens of a telescope is very near to the focal plane of the eyepiece. The angle

subtended by the image viewed through the eyepiece is larger than the angle subtended by the object when viewed with the

unaided eye.

We further assume that the angles and are small, so that the small-angle approximation holds
( ). If the image formed at the focal plane has height h, then

where the minus sign is introduced because the height is negative if we measure both angles in the

2.39
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counterclockwise direction. Inserting these expressions into Equation 2.39 gives

Thus, to obtain the greatest angular magnification, it is best to have an objective with a long focal length and an
eyepiece with a short focal length. The greater the angular magnification M, the larger an object will appear
when viewed through a telescope, making more details visible. Limits to observable details are imposed by
many factors, including lens quality and atmospheric disturbance. Typical eyepieces have focal lengths of 2.5
cm or 1.25 cm. If the objective of the telescope has a focal length of 1 meter, then these eyepieces result in
magnifications of and , respectively. Thus, the angular magnifications make the image appear 40
times or 80 times closer than the real object.

The minus sign in the magnification indicates the image is inverted, which is unimportant for observing the
stars but is a real problem for other applications, such as telescopes on ships or telescopic gun sights. If an
upright image is needed, Galileo’s arrangement in part (a) of Figure 2.40 can be used. But a more common
arrangement is to use a third convex lens as an eyepiece, increasing the distance between the first two and
inverting the image once again, as seen in Figure 2.42.

Figure 2.42 This arrangement of three lenses in a telescope produces an upright final image. The first two lenses are far enough apart

that the second lens inverts the image of the first. The third lens acts as a magnifier and keeps the image upright and in a location that is

easy to view.

The largest refracting telescope in the world is the 40-inch diameter Yerkes telescope located at Lake Geneva,
Wisconsin (Figure 2.43), and operated by the University of Chicago.

It is very difficult and expensive to build large refracting telescopes. You need large defect-free lenses, which in
itself is a technically demanding task. A refracting telescope basically looks like a tube with a support
structure to rotate it in different directions. A refracting telescope suffers from several problems. The
aberration of lenses causes the image to be blurred. Also, as the lenses become thicker for larger lenses, more
light is absorbed, making faint stars more difficult to observe. Large lenses are also very heavy and deform
under their own weight. Some of these problems with refracting telescopes are addressed by avoiding
refraction for collecting light and instead using a curved mirror in its place, as devised by Isaac Newton. These
telescopes are called reflecting telescopes.

2.40
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Figure 2.43 In 1897, the Yerkes Observatory in Wisconsin (USA) built a large refracting telescope with an objective lens that is 40 inches

in diameter and has a tube length of 62 feet. (credit: Yerkes Observatory, University of Chicago)

Reflecting Telescopes
Isaac Newton designed the first reflecting telescope around 1670 to solve the problem of chromatic aberration
that happens in all refracting telescopes. In chromatic aberration, light of different colors refracts by slightly
different amounts in the lens. As a result, a rainbow appears around the image and the image appears blurred.
In the reflecting telescope, light rays from a distant source fall upon the surface of a concave mirror fixed at the
bottom end of the tube. The use of a mirror instead of a lens eliminates chromatic aberration. The concave
mirror focuses the rays on its focal plane. The design problem is how to observe the focused image. Newton
used a design in which the focused light from the concave mirror was reflected to one side of the tube into an
eyepiece [part (a) of Figure 2.44]. This arrangement is common in many amateur telescopes and is called the
Newtonian design.

Some telescopes reflect the light back toward the middle of the concave mirror using a convex mirror. In this
arrangement, the light-gathering concave mirror has a hole in the middle [part (b) of the figure]. The light then
is incident on an eyepiece lens. This arrangement of the objective and eyepiece is called the Cassegrain
design. Most big telescopes, including the Hubble space telescope, are of this design. Other arrangements are
also possible. In some telescopes, a light detector is placed right at the spot where light is focused by the
curved mirror.

Figure 2.44 Reflecting telescopes: (a) In the Newtonian design, the eyepiece is located at the side of the telescope; (b) in the Cassegrain

design, the eyepiece is located past a hole in the primary mirror.

Most astronomical research telescopes are now of the reflecting type. One of the earliest large telescopes of

98 2 • Geometric Optics and Image Formation

Access for free at openstax.org.



this kind is the Hale 200-inch (or 5-meter) telescope built on Mount Palomar in southern California, which has
a 200 inch-diameter mirror. One of the largest telescopes in the world is the 10-meter Keck telescope at the
Keck Observatory on the summit of the dormant Mauna Kea volcano in Hawaii. The Keck Observatory operates
two 10-meter telescopes. Each is not a single mirror, but is instead made up of 36 hexagonal mirrors.
Furthermore, the two telescopes on the Keck can work together, which increases their power to an effective
85-meter mirror. The Hubble telescope (Figure 2.45) is another large reflecting telescope with a 2.4 meter-
diameter primary mirror. The Hubble was put into orbit around Earth in 1990.

Figure 2.45 The Hubble space telescope as seen from the Space Shuttle Discovery. (credit: modification of work by NASA)

The angular magnification M of a reflecting telescope is also given by Equation 2.36. For a spherical mirror, the
focal length is half the radius of curvature, so making a large objective mirror not only helps the telescope
collect more light but also increases the magnification of the image.
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CHAPTER REVIEW
Key Terms
aberration distortion in an image caused by

departures from the small-angle approximation
accommodation use of the ciliary muscles to

adjust the shape of the eye lens for focusing on
near or far objects

angular magnification ratio of the angle
subtended by an object observed with a magnifier
to that observed by the naked eye

apparent depth depth at which an object is
perceived to be located with respect to an
interface between two media

Cassegrain design arrangement of an objective
and eyepiece such that the light-gathering
concave mirror has a hole in the middle, and light
then is incident on an eyepiece lens

charge-coupled device (CCD) semiconductor chip
that converts a light image into tiny pixels that
can be converted into electronic signals of color
and intensity

coma similar to spherical aberration, but arises
when the incoming rays are not parallel to the
optical axis

compound microscope microscope constructed
from two convex lenses, the first serving as the
eyepiece and the second serving as the objective
lens

concave mirror spherical mirror with its reflecting
surface on the inner side of the sphere; the mirror
forms a “cave”

converging (or convex) lens lens in which light
rays that enter it parallel converge into a single
point on the opposite side

convex mirror spherical mirror with its reflecting
surface on the outer side of the sphere

curved mirror mirror formed by a curved surface,
such as spherical, elliptical, or parabolic

diverging (or concave) lens lens that causes light
rays to bend away from its optical axis

eyepiece lens or combination of lenses in an
optical instrument nearest to the eye of the
observer

far point furthest point an eye can see in focus
farsightedness (or hyperopia) visual defect in

which near objects appear blurred because their
images are focused behind the retina rather than
on the retina; a farsighted person can see far
objects clearly but near objects appear blurred

first focus or object focus object located at this
point will result in an image created at infinity on
the opposite side of a spherical interface between

two media
focal length distance along the optical axis from

the focal point to the optical element that focuses
the light rays

focal plane plane that contains the focal point and
is perpendicular to the optical axis

focal point for a converging lens or mirror, the
point at which converging light rays cross; for a
diverging lens or mirror, the point from which
diverging light rays appear to originate

image distance distance of the image from the
central axis of the optical element that produces
the image

linear magnification ratio of image height to
object height

magnification ratio of image size to object size
near point closest point an eye can see in focus
nearsightedness (or myopia) visual defect in

which far objects appear blurred because their
images are focused in front of the retina rather
than on the retina; a nearsighted person can see
near objects clearly but far objects appear
blurred

net magnification ( ) of the compound
microscope is the product of the linear
magnification of the objective and the angular
magnification of the eyepiece

Newtonian design arrangement of an objective
and eyepiece such that the focused light from the
concave mirror was reflected to one side of the
tube into an eyepiece

object distance distance of the object from the
central axis of the optical element that produces
its image

objective lens nearest to the object being
examined.

optical axis axis about which the mirror is
rotationally symmetric; you can rotate the mirror
about this axis without changing anything

optical power (P) inverse of the focal length of a
lens, with the focal length expressed in meters.
The optical power P of a lens is expressed in units
of diopters D; that is,

plane mirror plane (flat) reflecting surface
ray tracing technique that uses geometric

constructions to find and characterize the image
formed by an optical system

real image image that can be projected onto a
screen because the rays physically go through the
image
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second focus or image focus for a converging
interface, the point where a bundle of parallel
rays refracting at a spherical interface; for a
diverging interface, the point at which the
backward continuation of the refracted rays will
converge between two media will focus

simple magnifier (or magnifying glass)
converging lens that produces a virtual image of
an object that is within the focal length of the lens

small-angle approximation approximation that is
valid when the size of a spherical mirror is
significantly smaller than the mirror’s radius; in
this approximation, spherical aberration is

negligible and the mirror has a well-defined focal
point

spherical aberration distortion in the image
formed by a spherical mirror when rays are not
all focused at the same point

thin-lens approximation assumption that the lens
is very thin compared to the first image distance

vertex point where the mirror’s surface intersects
with the optical axis

virtual image image that cannot be projected on a
screen because the rays do not physically go
through the image, they only appear to originate
from the image

Key Equations

Image distance in a plane mirror

Focal length for a spherical mirror

Mirror equation

Magnification of a spherical mirror

Sign convention for mirrors

Focal length f

Object distance do

Image distance di

Magnification m

Apparent depth equation

Spherical interface equation

The thin-lens equation

The lens maker’s equation

2 • Chapter Review 101



The magnification m of an object

Optical power

Optical power of thin, closely spaced lenses

Angular magnification M of a simple magnifier

Angular magnification of an object a distance
L from the eye for a convex lens of focal length
f held a distance ℓ from the eye

l

Range of angular magnification for a given
lens for a person with a near point of 25 cm

Net magnification of compound microscope

Summary
2.1 Images Formed by Plane Mirrors

• A plane mirror always forms a virtual image
(behind the mirror).

• The image and object are the same distance
from a flat mirror, the image size is the same as
the object size, and the image is upright.

2.2 Spherical Mirrors

• Spherical mirrors may be concave (converging)
or convex (diverging).

• The focal length of a spherical mirror is one-half
of its radius of curvature: .

• The mirror equation and ray tracing allow you to
give a complete description of an image formed
by a spherical mirror.

• Spherical aberration occurs for spherical
mirrors but not parabolic mirrors; comatic
aberration occurs for both types of mirrors.

2.3 Images Formed by Refraction

This section explains how a single refracting
interface forms images.

• When an object is observed through a plane
interface between two media, then it appears at
an apparent distance that differs from the
actual distance : .

• An image is formed by the refraction of light at a
spherical interface between two media of

indices of refraction and .
• Image distance depends on the radius of

curvature of the interface, location of the object,
and the indices of refraction of the media.

2.4 Thin Lenses

• Two types of lenses are possible: converging and
diverging. A lens that causes light rays to bend
toward (away from) its optical axis is a
converging (diverging) lens.

• For a converging lens, the focal point is where
the converging light rays cross; for a diverging
lens, the focal point is the point from which the
diverging light rays appear to originate.

• The distance from the center of a thin lens to its
focal point is called the focal length f.

• Ray tracing is a geometric technique to
determine the paths taken by light rays through
thin lenses.

• A real image can be projected onto a screen.
• A virtual image cannot be projected onto a

screen.
• A converging lens forms either real or virtual

images, depending on the object location; a
diverging lens forms only virtual images.

2.5 The Eye

• Image formation by the eye is adequately
described by the thin-lens equation.

• The eye produces a real image on the retina by
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adjusting its focal length in a process called
accommodation.

• Nearsightedness, or myopia, is the inability to
see far objects and is corrected with a diverging
lens to reduce the optical power of the eye.

• Farsightedness, or hyperopia, is the inability to
see near objects and is corrected with a
converging lens to increase the optical power of
the eye.

• In myopia and hyperopia, the corrective lenses
produce images at distances that fall between
the person’s near and far points so that images
can be seen clearly.

2.6 The Camera

• Cameras use combinations of lenses to create
an image for recording.

• Digital photography is based on charge-coupled
devices (CCDs) that break an image into tiny
“pixels” that can be converted into electronic
signals.

2.7 The Simple Magnifier

• A simple magnifier is a converging lens and
produces a magnified virtual image of an object
located within the focal length of the lens.

• Angular magnification accounts for
magnification of an image created by a
magnifier. It is equal to the ratio of the angle
subtended by the image to that subtended by the
object when the object is observed by the
unaided eye.

• Angular magnification is greater for magnifying
lenses with smaller focal lengths.

• Simple magnifiers can produce as great as
tenfold ( ) magnification.

2.8 Microscopes and Telescopes

• Many optical devices contain more than a single
lens or mirror. These are analyzed by
considering each element sequentially. The

image formed by the first is the object for the
second, and so on. The same ray-tracing and
thin-lens techniques developed in the previous
sections apply to each lens element.

• The overall magnification of a multiple-element
system is the product of the linear
magnifications of its individual elements times
the angular magnification of the eyepiece. For a
two-element system with an objective and an
eyepiece, this is

where is the linear magnification of the
objective and is the angular magnification
of the eyepiece.

• The microscope is a multiple-element system
that contains more than a single lens or mirror.
It allows us to see detail that we could not to see
with the unaided eye. Both the eyepiece and
objective contribute to the magnification. The
magnification of a compound microscope with
the image at infinity is

In this equation, 16 cm is the standardized
distance between the image-side focal point of
the objective lens and the object-side focal point
of the eyepiece, 25 cm is the normal near point
distance, and are the focal distances
for the objective lens and the eyepiece,
respectively.

• Simple telescopes can be made with two lenses.
They are used for viewing objects at large
distances.

• The angular magnification M for a telescope is
given by

where and are the focal lengths of the
objective lens and the eyepiece, respectively.

Conceptual Questions
2.1 Images Formed by Plane Mirrors

1. What are the differences between real and virtual
images? How can you tell (by looking) whether an
image formed by a single lens or mirror is real or
virtual?

2. Can you see a virtual image? Explain your
response.

3. Can you photograph a virtual image?
4. Can you project a virtual image onto a screen?

5. Is it necessary to project a real image onto a
screen to see it?

6. Devise an arrangement of mirrors allowing you to
see the back of your head. What is the minimum
number of mirrors needed for this task?

7. If you wish to see your entire body in a flat mirror
(from head to toe), how tall should the mirror be?
Does its size depend upon your distance away
from the mirror? Provide a sketch.

2.41

2.42

2.43
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2.2 Spherical Mirrors

8. At what distance is an image always located: at
or f ?

9. Under what circumstances will an image be
located at the focal point of a spherical lens or
mirror?

10. What is meant by a negative magnification?
What is meant by a magnification whose
absolute value is less than one?

11. Can an image be larger than the object even
though its magnification is negative? Explain.

2.3 Images Formed by Refraction

12. Derive the formula for the apparent depth of a
fish in a fish tank using Snell’s law.

13. Use a ruler and a protractor to find the image by
refraction in the following cases. Assume an air-
glass interface. Use a refractive index of 1 for air
and of 1.5 for glass. (Hint: Use Snell’s law at the
interface.)
(a) A point object located on the axis of a
concave interface located at a point within the
focal length from the vertex.
(b) A point object located on the axis of a
concave interface located at a point farther than
the focal length from the vertex.
(c) A point object located on the axis of a convex
interface located at a point within the focal
length from the vertex.
(d) A point object located on the axis of a convex
interface located at a point farther than the
focal length from the vertex.
(e) Repeat (a)–(d) for a point object off the axis.

2.4 Thin Lenses

14. You can argue that a flat piece of glass, such as
in a window, is like a lens with an infinite focal
length. If so, where does it form an image? That
is, how are and related?

15. When you focus a camera, you adjust the
distance of the lens from the film. If the camera
lens acts like a thin lens, why can it not be a
fixed distance from the film for both near and
distant objects?

16. A thin lens has two focal points, one on either

side of the lens at equal distances from its
center, and should behave the same for light
entering from either side. Look backward and
forward through a pair of eyeglasses and
comment on whether they are thin lenses.

17. Will the focal length of a lens change when it is
submerged in water? Explain.

2.5 The Eye

18. If the lens of a person’s eye is removed because
of cataracts (as has been done since ancient
times), why would you expect an eyeglass lens
of about 16 D to be prescribed?

19. When laser light is shone into a relaxed normal-
vision eye to repair a tear by spot-welding the
retina to the back of the eye, the rays entering
the eye must be parallel. Why?

20. Why is your vision so blurry when you open
your eyes while swimming under water? How
does a face mask enable clear vision?

21. It has become common to replace the cataract-
clouded lens of the eye with an internal lens.
This intraocular lens can be chosen so that the
person has perfect distant vision. Will the
person be able to read without glasses? If the
person was nearsighted, is the power of the
intraocular lens greater or less than the
removed lens?

22. If the cornea is to be reshaped (this can be done
surgically or with contact lenses) to correct
myopia, should its curvature be made greater or
smaller? Explain.

2.8 Microscopes and Telescopes

23. Geometric optics describes the interaction of
light with macroscopic objects. Why, then, is it
correct to use geometric optics to analyze a
microscope’s image?

24. The image produced by the microscope in
Figure 2.38 cannot be projected. Could extra
lenses or mirrors project it? Explain.

25. If you want your microscope or telescope to
project a real image onto a screen, how would
you change the placement of the eyepiece
relative to the objective?

Problems
2.1 Images Formed by Plane Mirrors

26. Consider a pair of flat mirrors that are
positioned so that they form an angle of 120 .

An object is placed on the bisector between the
mirrors. Construct a ray diagram as in Figure
2.4 to show how many images are formed.

27. Consider a pair of flat mirrors that are
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positioned so that they form an angle of 60 . An
object is placed on the bisector between the
mirrors. Construct a ray diagram as in Figure
2.4 to show how many images are formed.

28. By using more than one flat mirror, construct a
ray diagram showing how to create an inverted
image.

2.2 Spherical Mirrors

29. The following figure shows a light bulb between
two spherical mirrors. One mirror produces a
beam of light with parallel rays; the other keeps
light from escaping without being put into the
beam. Where is the filament of the light in relation
to the focal point or radius of curvature of each
mirror?

30. Why are diverging mirrors often used for
rearview mirrors in vehicles? What is the main
disadvantage of using such a mirror compared
with a flat one?

31. Some telephoto cameras use a mirror rather
than a lens. What radius of curvature mirror is
needed to replace a 800 mm-focal length
telephoto lens?

32. Calculate the focal length of a mirror formed by
the shiny back of a spoon that has a 3.00 cm
radius of curvature.

33. Electric room heaters use a concave mirror to
reflect infrared (IR) radiation from hot coils.
Note that IR radiation follows the same law of
reflection as visible light. Given that the mirror
has a radius of curvature of 50.0 cm and
produces an image of the coils 3.00 m away
from the mirror, where are the coils?

34. Find the magnification of the heater element in
the previous problem. Note that its large
magnitude helps spread out the reflected
energy.

35. What is the focal length of a makeup mirror that
produces a magnification of 1.50 when a

person’s face is 12.0 cm away? Explicitly show
how you follow the steps in the Example 2.2.

36. A shopper standing 3.00 m from a convex
security mirror sees his image with a
magnification of 0.250. (a) Where is his image?
(b) What is the focal length of the mirror? (c)
What is its radius of curvature?

37. An object 1.50 cm high is held 3.00 cm from a
person’s cornea, and its reflected image is
measured to be 0.167 cm high. (a) What is the
magnification? (b) Where is the image? (c) Find
the radius of curvature of the convex mirror
formed by the cornea. (Note that this technique
is used by optometrists to measure the
curvature of the cornea for contact lens fitting.
The instrument used is called a keratometer, or
curve measurer.)

38. Ray tracing for a flat mirror shows that the
image is located a distance behind the mirror
equal to the distance of the object from the
mirror. This is stated as , since this is a
negative image distance (it is a virtual image).
What is the focal length of a flat mirror?

39. Show that, for a flat mirror, , given that
the image is the same distance behind the
mirror as the distance of the object from the
mirror.

40. Use the law of reflection to prove that the focal
length of a mirror is half its radius of curvature.
That is, prove that . Note this is true for
a spherical mirror only if its diameter is small
compared with its radius of curvature.

41. Referring to the electric room heater considered
in problem 5, calculate the intensity of IR
radiation in projected by the concave
mirror on a person 3.00 m away. Assume that
the heating element radiates 1500 W and has an
area of , and that half of the radiated
power is reflected and focused by the mirror.

42. Two mirrors are inclined at an angle of 60 and
an object is placed at a point that is equidistant
from the two mirrors. Use a protractor to draw
rays accurately and locate all images. You may
have to draw several figures so that that rays for
different images do not clutter your drawing.

43. Two parallel mirrors are facing each other and
are separated by a distance of 3 cm. A point
object is placed between the mirrors 1 cm from
one of the mirrors. Find the coordinates of all
the images.

2.3 Images Formed by Refraction

44. An object is located in air 30 cm from the vertex

2 • Chapter Review 105



of a concave surface made of glass with a radius
of curvature 10 cm. Where does the image by
refraction form and what is its magnification?
Use and .

45. An object is located in air 30 cm from the vertex
of a convex surface made of glass with a radius
of curvature 80 cm. Where does the image by
refraction form and what is its magnification?

46. An object is located in water 15 cm from the
vertex of a concave surface made of glass with a
radius of curvature 10 cm. Where does the
image by refraction form and what is its
magnification? Use and

.
47. An object is located in water 30 cm from the

vertex of a convex surface made of Plexiglas
with a radius of curvature of 80 cm. Where does
the image form by refraction and what is its
magnification? and

.
48. An object is located in air 5 cm from the vertex

of a concave surface made of glass with a radius
of curvature 20 cm. Where does the image form
by refraction and what is its magnification? Use

and .
49. Derive the spherical interface equation for

refraction at a concave surface. (Hint: Follow the
derivation in the text for the convex surface.)

2.4 Thin Lenses

50. How far from the lens must the film in a camera
be, if the lens has a 35.0-mm focal length and is
being used to photograph a flower 75.0 cm
away? Explicitly show how you follow the steps
in the Figure 2.27.

51. A certain slide projector has a 100 mm-focal
length lens. (a) How far away is the screen if a
slide is placed 103 mm from the lens and
produces a sharp image? (b) If the slide is 24.0
by 36.0 mm, what are the dimensions of the
image? Explicitly show how you follow the steps
in the Figure 2.27.

52. A doctor examines a mole with a 15.0-cm focal
length magnifying glass held 13.5 cm from the
mole. (a) Where is the image? (b) What is its
magnification? (c) How big is the image of a 5.00
mm diameter mole?

53. A camera with a 50.0-mm focal length lens is
being used to photograph a person standing
3.00 m away. (a) How far from the lens must the
film be? (b) If the film is 36.0 mm high, what
fraction of a 1.75-m-tall person will fit on it? (c)

Discuss how reasonable this seems, based on
your experience in taking or posing for
photographs.

54. A camera lens used for taking close-up
photographs has a focal length of 22.0 mm. The
farthest it can be placed from the film is 33.0
mm. (a) What is the closest object that can be
photographed? (b) What is the magnification of
this closest object?

55. Suppose your 50.0 mm-focal length camera
lens is 51.0 mm away from the film in the
camera. (a) How far away is an object that is in
focus? (b) What is the height of the object if its
image is 2.00 cm high?

56. What is the focal length of a magnifying glass
that produces a magnification of 3.00 when held
5.00 cm from an object, such as a rare coin?

57. The magnification of a book held 7.50 cm from
a 10.0 cm-focal length lens is 4.00. (a) Find the
magnification for the book when it is held 8.50
cm from the magnifier. (b) Repeat for the book
held 9.50 cm from the magnifier. (c) Comment
on how magnification changes as the object
distance increases as in these two calculations.

58. Suppose a 200 mm-focal length telephoto lens
is being used to photograph mountains 10.0 km
away. (a) Where is the image? (b) What is the
height of the image of a 1000 m high cliff on one
of the mountains?

59. A camera with a 100 mm-focal length lens is
used to photograph the sun. What is the height
of the image of the sun on the film, given the
sun is in diameter and is

away?
60. Use the thin-lens equation to show that the

magnification for a thin lens is determined by
its focal length and the object distance and is
given by .

61. An object of height 3.0 cm is placed 5.0 cm in
front of a converging lens of focal length 20 cm
and observed from the other side. Where and
how large is the image?

62. An object of height 3.0 cm is placed at 5.0 cm in
front of a diverging lens of focal length 20 cm
and observed from the other side. Where and
how large is the image?

63. An object of height 3.0 cm is placed at 25 cm in
front of a diverging lens of focal length 20 cm.
Behind the diverging lens, there is a converging
lens of focal length 20 cm. The distance
between the lenses is 5.0 cm. Find the location
and size of the final image.

64. Two convex lenses of focal lengths 20 cm and
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10 cm are placed 30 cm apart, with the lens
with the longer focal length on the right. An
object of height 2.0 cm is placed midway
between them and observed through each lens
from the left and from the right. Describe what
you will see, such as where the image(s) will
appear, whether they will be upright or inverted
and their magnifications.

2.5 The Eye

Unless otherwise stated, the lens-to-retina distance
is 2.00 cm.

65. What is the power of the eye when viewing an
object 50.0 cm away?

66. Calculate the power of the eye when viewing an
object 3.00 m away.

67. The print in many books averages 3.50 mm in
height. How high is the image of the print on the
retina when the book is held 30.0 cm from the
eye?

68. Suppose a certain person’s visual acuity is such
that he can see objects clearly that form an
image high on his retina. What is the
maximum distance at which he can read the
75.0-cm-high letters on the side of an airplane?

69. People who do very detailed work close up, such
as jewelers, often can see objects clearly at
much closer distance than the normal 25 cm.
(a) What is the power of the eyes of a woman
who can see an object clearly at a distance of
only 8.00 cm? (b) What is the image size of a
1.00-mm object, such as lettering inside a ring,
held at this distance? (c) What would the size of
the image be if the object were held at the
normal 25.0 cm distance?

70. What is the far point of a person whose eyes
have a relaxed power of 50.5 D?

71. What is the near point of a person whose eyes
have an accommodated power of 53.5 D?

72. (a) A laser reshaping the cornea of a myopic
patient reduces the power of his eye by 9.00 D,
with a uncertainty in the final correction.
What is the range of diopters for eyeglass lenses
that this person might need after this
procedure? (b) Was the person nearsighted or
farsighted before the procedure? How do you
know?

73. The power for normal close vision is 54.0 D. In a
vision-correction procedure, the power of a
patient’s eye is increased by 3.00 D. Assuming
that this produces normal close vision, what
was the patient’s near point before the

procedure?
74. For normal distant vision, the eye has a power

of 50.0 D. What was the previous far point of a
patient who had laser vision correction that
reduced the power of her eye by 7.00 D,
producing normal distant vision?

75. The power for normal distant vision is 50.0 D. A
severely myopic patient has a far point of 5.00
cm. By how many diopters should the power of
his eye be reduced in laser vision correction to
obtain normal distant vision for him?

76. A student’s eyes, while reading the blackboard,
have a power of 51.0 D. How far is the board
from his eyes?

77. The power of a physician’s eyes is 53.0 D while
examining a patient. How far from her eyes is
the object that is being examined?

78. The normal power for distant vision is 50.0 D. A
young woman with normal distant vision has a
10.0% ability to accommodate (that is, increase)
the power of her eyes. What is the closest object
she can see clearly?

79. The far point of a myopic administrator is 50.0
cm. (a) What is the relaxed power of his eyes?
(b) If he has the normal 8.00% ability to
accommodate, what is the closest object he can
see clearly?

80. A very myopic man has a far point of 20.0 cm.
What power contact lens (when on the eye) will
correct his distant vision?

81. Repeat the previous problem for eyeglasses held
1.50 cm from the eyes.

82. A myopic person sees that her contact lens
prescription is –4.00 D. What is her far point?

83. Repeat the previous problem for glasses that are
1.75 cm from the eyes.

84. The contact lens prescription for a mildly
farsighted person is 0.750 D, and the person has
a near point of 29.0 cm. What is the power of the
tear layer between the cornea and the lens if the
correction is ideal, taking the tear layer into
account?

2.7 The Simple Magnifier

85. If the image formed on the retina subtends an
angle of and the object subtends an angle of

, what is the magnification of the image?
86. What is the magnification of a magnifying lens

with a focal length of 10 cm if it is held 3.0 cm
from the eye and the object is 12 cm from the
eye?

87. How far should you hold a 2.1 cm-focal length
magnifying glass from an object to obtain a
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magnification of ? Assume you place your
eye 5.0 cm from the magnifying glass.

88. You hold a 5.0 cm-focal length magnifying glass
as close as possible to your eye. If you have a
normal near point, what is the magnification?

89. You view a mountain with a magnifying glass of
focal length . What is the
magnification?

90. You view an object by holding a 2.5 cm-focal
length magnifying glass 10 cm away from it.
How far from your eye should you hold the
magnifying glass to obtain a magnification of

91. A magnifying glass forms an image 10 cm on
the opposite side of the lens from the object,
which is 10 cm away. What is the magnification
of this lens for a person with a normal near
point if their eye 12 cm from the object?

92. An object viewed with the naked eye subtends a
angle. If you view the object through a

magnifying glass, what angle is subtended by
the image formed on your retina?

93. For a normal, relaxed eye, a magnifying glass
produces an angular magnification of 4.0. What
is the largest magnification possible with this
magnifying glass?

94. What range of magnification is possible with a
7.0 cm-focal length converging lens?

95. A magnifying glass produces an angular
magnification of 4.5 when used by a young
person with a near point of 18 cm. What is the
maximum angular magnification obtained by
an older person with a near point of 45 cm?

2.8 Microscopes and Telescopes

96. A microscope with an overall magnification of
800 has an objective that magnifies by 200. (a)
What is the angular magnification of the
eyepiece? (b) If there are two other objectives
that can be used, having magnifications of 100
and 400, what other total magnifications are
possible?

97. (a) What magnification is produced by a 0.150
cm-focal length microscope objective that is
0.155 cm from the object being viewed? (b)
What is the overall magnification if an
eyepiece (one that produces an angular
magnification of 8.00) is used?

98. Where does an object need to be placed relative
to a microscope for its 0.50 cm-focal length
objective to produce a magnification of −400?

99. An amoeba is 0.305 cm away from the 0.300
cm-focal length objective lens of a microscope.

(a) Where is the image formed by the objective
lens? (b) What is this image’s magnification? (c)
An eyepiece with a 2.00-cm focal length is
placed 20.0 cm from the objective. Where is the
final image? (d) What angular magnification is
produced by the eyepiece? (e) What is the
overall magnification? (See Figure 2.39.)

100. Unreasonable Results Your friends show you
an image through a microscope. They tell you
that the microscope has an objective with a
0.500-cm focal length and an eyepiece with a
5.00-cm focal length. The resulting overall
magnification is 250,000. Are these viable
values for a microscope?

Unless otherwise stated, the lens-to-retina distance
is 2.00 cm.

101. What is the angular magnification of a
telescope that has a 100 cm-focal length
objective and a 2.50 cm-focal length eyepiece?

102. Find the distance between the objective and
eyepiece lenses in the telescope in the above
problem needed to produce a final image very
far from the observer, where vision is most
relaxed. Note that a telescope is normally used
to view very distant objects.

103. A large reflecting telescope has an objective
mirror with a 10.0-m radius of curvature.
What angular magnification does it produce
when a 3.00 m-focal length eyepiece is used?

104. A small telescope has a concave mirror with a
2.00-m radius of curvature for its objective. Its
eyepiece is a 4.00 cm-focal length lens. (a)
What is the telescope’s angular magnification?
(b) What angle is subtended by a 25,000 km-
diameter sunspot? (c) What is the angle of its
telescopic image?

105. A binocular produces an angular
magnification of −7.50, acting like a telescope.
(Mirrors are used to make the image upright.)
If the binoculars have objective lenses with a
75.0-cm focal length, what is the focal length
of the eyepiece lenses?

106. Construct Your Own Problem Consider a
telescope of the type used by Galileo, having a
convex objective and a concave eyepiece as
illustrated in part (a) of Figure 2.40. Construct
a problem in which you calculate the location
and size of the image produced. Among the
things to be considered are the focal lengths of
the lenses and their relative placements as
well as the size and location of the object.
Verify that the angular magnification is greater
than one. That is, the angle subtended at the

108 2 • Chapter Review

Access for free at openstax.org.



eye by the image is greater than the angle
subtended by the object.

107. Trace rays to find which way the given ray will
emerge after refraction through the thin lens
in the following figure. Assume thin-lens
approximation. (Hint: Pick a point P on the
given ray in each case. Treat that point as an
object. Now, find its image Q. Use the rule: All
rays on the other side of the lens will either go
through Q or appear to be coming from Q.)

108. Copy and draw rays to find the final image in
the following diagram. (Hint: Find the
intermediate image through lens alone. Use
the intermediate image as the object for the
mirror and work with the mirror alone to find
the final image.)

109. A concave mirror of radius of curvature 10 cm
is placed 30 cm from a thin convex lens of
focal length 15 cm. Find the location and
magnification of a small bulb sitting 50 cm
from the lens by using the algebraic method.

110. An object of height 3 cm is placed at 25 cm in
front of a converging lens of focal length 20
cm. Behind the lens there is a concave mirror
of focal length 20 cm. The distance between
the lens and the mirror is 5 cm. Find the
location, orientation and size of the final
image.

111. An object of height 3 cm is placed at a distance
of 25 cm in front of a converging lens of focal
length 20 cm, to be referred to as the first lens.
Behind the lens there is another converging
lens of focal length 20 cm placed 10 cm from
the first lens. There is a concave mirror of focal
length 15 cm placed 50 cm from the second

lens. Find the location, orientation, and size of
the final image.

112. An object of height 2 cm is placed at 50 cm in
front of a converging lens of focal length 40
cm. Behind the lens, there is a convex mirror
of focal length 15 cm placed 30 cm from the
converging lens. Find the location, orientation,
and size of the final image.

113. Two concave mirrors are placed facing each other.
One of them has a small hole in the middle. A penny
is placed on the bottom mirror (see the following
figure). When you look from the side, a real image of
the penny is observed above the hole. Explain how
that could happen.

114. A lamp of height 5 cm is placed 40 cm in front
of a converging lens of focal length 20 cm.
There is a plane mirror 15 cm behind the lens.
Where would you find the image when you
look in the mirror?

115. Parallel rays from a faraway source strike a
converging lens of focal length 20 cm at an
angle of 15 degrees with the horizontal
direction. Find the vertical position of the real
image observed on a screen in the focal plane.

116. Parallel rays from a faraway source strike a
diverging lens of focal length 20 cm at an angle
of 10 degrees with the horizontal direction. As
you look through the lens, where in the vertical
plane the image would appear?

117. A light bulb is placed 10 cm from a plane
mirror, which faces a convex mirror of radius
of curvature 8 cm. The plane mirror is located
at a distance of 30 cm from the vertex of the
convex mirror. Find the location of two images
in the convex mirror. Are there other images?
If so, where are they located?

118. A point source of light is 50 cm in front of a
converging lens of focal length 30 cm. A
concave mirror with a focal length of 20 cm is
placed 25 cm behind the lens. Where does the
final image form, and what are its orientation
and magnification?

119. Copy and trace to find how a horizontal ray from S
comes out after the lens. Use for the
prism material.
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120. Copy and trace how a horizontal ray from S
comes out after the lens. Use for the
glass.

121. Copy and draw rays to figure out the final
image.

122. By ray tracing or by calculation, find the place

inside the glass where rays from S converge as
a result of refraction through the lens and the
convex air-glass interface. Use a ruler to
estimate the radius of curvature.

123. A diverging lens has a focal length of 20 cm.
What is the power of the lens in diopters?

124. Two lenses of focal lengths of and are
glued together with transparent material of
negligible thickness. Show that the total power
of the two lenses simply add.

125. What will be the angular magnification of a
convex lens with the focal length 2.5 cm?

126. What will be the formula for the angular
magnification of a convex lens of focal length f
if the eye is very close to the lens and the near
point is located a distance D from the eye?

Additional Problems
127. Use a ruler and a protractor to draw rays to

find images in the following cases.
(a) A point object located on the axis of a
concave mirror located at a point within the
focal length from the vertex.
(b) A point object located on the axis of a
concave mirror located at a point farther than
the focal length from the vertex.
(c) A point object located on the axis of a
convex mirror located at a point within the
focal length from the vertex.
(d) A point object located on the axis of a
convex mirror located at a point farther than
the focal length from the vertex.
(e) Repeat (a)–(d) for a point object off the axis.

128. Where should a 3 cm tall object be placed in
front of a concave mirror of radius 20 cm so
that its image is real and 2 cm tall?

129. A 3 cm tall object is placed 5 cm in front of a
convex mirror of radius of curvature 20 cm.
Where is the image formed? How tall is the
image? What is the orientation of the image?

130. You are looking for a mirror so that you can see
a four-fold magnified virtual image of an object
when the object is placed 5 cm from the vertex
of the mirror. What kind of mirror you will
need? What should be the radius of curvature
of the mirror?

131. Derive the following equation for a convex
mirror:

,
where VO is the distance to the object O from
vertex V, VI the distance to the image I from V,
and VF is the distance to the focal point F from
V. (Hint: use two sets of similar triangles.)

132. (a) Draw rays to form the image of a vertical
object on the optical axis and farther than the
focal point from a converging lens. (b) Use
plane geometry in your figure and prove that
the magnification m is given by

133. Use another ray-tracing diagram for the same
situation as given in the previous problem to
derive the thin-lens equation, .

134. You photograph a 2.0-m-tall person with a
camera that has a 5.0 cm-focal length lens.
The image on the film must be no more than
2.0 cm high. (a) What is the closest distance
the person can stand to the lens? (b) For this
distance, what should be the distance from the
lens to the film?
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135. Find the focal length of a thin plano-convex
lens. The front surface of this lens is flat, and
the rear surface has a radius of curvature of

. Assume that the index of
refraction of the lens is 1.5.

136. Find the focal length of a meniscus lens with
and . Assume that the

index of refraction of the lens is 1.5.
137. A nearsighted man cannot see objects clearly

beyond 20 cm from his eyes. How close must
he stand to a mirror in order to see what he is
doing when he shaves?

138. A mother sees that her child’s contact lens
prescription is 0.750 D. What is the child’s
near point?

139. Repeat the previous problem for glasses that
are 2.20 cm from the eyes.

140. The contact-lens prescription for a
nearsighted person is −4.00 D and the person
has a far point of 22.5 cm. What is the power of
the tear layer between the cornea and the lens
if the correction is ideal, taking the tear layer
into account?

141. Unreasonable Results A boy has a near point
of 50 cm and a far point of 500 cm. Will a −4.00
D lens correct his far point to infinity?

142. Find the angular magnification of an image by
a magnifying glass of if the object
is placed from the lens and the
lens is close to the eye.

143. Let objective and eyepiece of a compound
microscope have focal lengths of 2.5 cm and
10 cm, respectively and be separated by 12
cm. A object is placed 6.0 cm from the
objective. How large is the virtual image
formed by the objective-eyepiece system?

144. Draw rays to scale to locate the image at the
retina if the eye lens has a focal length 2.5 cm
and the near point is 24 cm. (Hint: Place an
object at the near point.)

145. The objective and the eyepiece of a microscope
have the focal lengths 3 cm and 10 cm
respectively. Decide about the distance
between the objective and the eyepiece if we
need a magnification from the objective/
eyepiece compound system.

146. A far-sighted person has a near point of 100
cm. How far in front or behind the retina does
the image of an object placed 25 cm from the
eye form? Use the cornea to retina distance of
2.5 cm.

147. A near-sighted person has afar point of 80 cm.
(a) What kind of corrective lens will the person
need assuming the distance to the contact lens
from the eye is zero? (b) What would be the
power of the contact lens needed?

148. In a reflecting telescope the objective is a
concave mirror of radius of curvature 2 m and
an eyepiece is a convex lens of focal length 5
cm. Find the apparent size of a 25-m tree at a
distance of 10 km that you would perceive
when looking through the telescope.

149. Two stars that are apart are viewed by a
telescope and found to be separated by an
angle of . If the eyepiece of the
telescope has a focal length of 1.5 cm and the
objective has a focal length of 3 meters, how
far away are the stars from the observer?

150. What is the angular size of the Moon if viewed
from a binocular that has a focal length of 1.2
cm for the eyepiece and a focal length of 8 cm
for the objective? Use the radius of the moon

and the distance of the moon
from the observer to be .

151. An unknown planet at a distance of
from Earth is observed by a telescope that has
a focal length of the eyepiece of 1 cm and a
focal length of the objective of 1 m. If the far
away planet is seen to subtend an angle of

at the eyepiece, what is the size of
the planet?
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INTRODUCTION

CHAPTER 3
Interference

3.1 Young's Double-Slit Interference

3.2 Mathematics of Interference

3.3 Multiple-Slit Interference

3.4 Interference in Thin Films

3.5 The Michelson Interferometer

The most certain indication of a wave is interference. This wave characteristic is most
prominent when the wave interacts with an object that is not large compared with the wavelength. Interference
is observed for water waves, sound waves, light waves, and, in fact, all types of waves.

If you have ever looked at the reds, blues, and greens in a sunlit soap bubble and wondered how straw-colored
soapy water could produce them, you have hit upon one of the many phenomena that can only be explained by
the wave character of light (see Figure 3.1). The same is true for the colors seen in an oil slick or in the light
reflected from a DVD disc. These and other interesting phenomena cannot be explained fully by geometric
optics. In these cases, light interacts with objects and exhibits wave characteristics. The branch of optics that
considers the behavior of light when it exhibits wave characteristics is called wave optics (sometimes called
physical optics). It is the topic of this chapter.

3.1 Young's Double-Slit Interference
Learning Objectives
By the end of this section, you will be able to:

• Explain the phenomenon of interference
• Define constructive and destructive interference for a double slit

The Dutch physicist Christiaan Huygens (1629–1695) thought that light was a wave, but Isaac Newton did not.

Figure 3.1 Soap bubbles are blown from clear fluid into very thin films. The colors we see are not due to any
pigmentation but are the result of light interference, which enhances specific wavelengths for a given thickness of
the film.
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Newton thought that there were other explanations for color, and for the interference and diffraction effects
that were observable at the time. Owing to Newton’s tremendous reputation, his view generally prevailed; the
fact that Huygens’s principle worked was not considered direct evidence proving that light is a wave. The
acceptance of the wave character of light came many years later in 1801, when the English physicist and
physician Thomas Young (1773–1829) demonstrated optical interference with his now-classic double-slit
experiment.

If there were not one but two sources of waves, the waves could be made to interfere, as in the case of waves on
water (Figure 3.2). If light is an electromagnetic wave, it must therefore exhibit interference effects under
appropriate circumstances. In Young’s experiment, sunlight was passed through a pinhole on a board. The
emerging beam fell on two pinholes on a second board. The light emanating from the two pinholes then fell on
a screen where a pattern of bright and dark spots was observed. This pattern, called fringes, can only be
explained through interference, a wave phenomenon.

Figure 3.2 Photograph of an interference pattern produced by circular water waves in a ripple tank. Two thin plungers are vibrated up and

down in phase at the surface of the water. Circular water waves are produced by and emanate from each plunger.

We can analyze double-slit interference with the help of Figure 3.3, which depicts an apparatus analogous to
Young’s. Light from a monochromatic source falls on a slit . The light emanating from is incident on two
other slits and that are equidistant from . A pattern of interference fringes on the screen is then
produced by the light emanating from and . All slits are assumed to be so narrow that they can be
considered secondary point sources for Huygens’ wavelets (The Nature of Light). Slits and are a distance
d apart ( ), and the distance between the screen and the slits is , which is much greater than
d.

114 3 • Interference

Access for free at openstax.org.



Figure 3.3 The double-slit interference experiment using monochromatic light and narrow slits. Fringes produced by interfering Huygens

wavelets from slits and are observed on the screen.

Since is assumed to be a point source of monochromatic light, the secondary Huygens wavelets leaving
and always maintain a constant phase difference (zero in this case because and are equidistant from

) and have the same frequency. The sources and are then said to be coherent. By coherent waves, we
mean the waves are in phase or have a definite phase relationship. The term incoherent means the waves have
random phase relationships, which would be the case if and were illuminated by two independent light
sources, rather than a single source . Two independent light sources (which may be two separate areas
within the same lamp or the Sun) would generally not emit their light in unison, that is, not coherently. Also,
because and are the same distance from , the amplitudes of the two Huygens wavelets are equal.

Young used sunlight, where each wavelength forms its own pattern, making the effect more difficult to see. In
the following discussion, we illustrate the double-slit experiment with monochromatic light (single ) to
clarify the effect. Figure 3.4 shows the pure constructive and destructive interference of two waves having the
same wavelength and amplitude.

Figure 3.4 The amplitudes of waves add. (a) Pure constructive interference is obtained when identical waves are in phase. (b) Pure

destructive interference occurs when identical waves are exactly out of phase, or shifted by half a wavelength.

When light passes through narrow slits, the slits act as sources of coherent waves and light spreads out as
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semicircular waves, as shown in Figure 3.5(a). Pure constructive interference occurs where the waves are crest
to crest or trough to trough. Pure destructive interference occurs where they are crest to trough. The light must
fall on a screen and be scattered into our eyes for us to see the pattern. An analogous pattern for water waves is
shown in Figure 3.2. Note that regions of constructive and destructive interference move out from the slits at
well-defined angles to the original beam. These angles depend on wavelength and the distance between the
slits, as we shall see below.

Figure 3.5 Double slits produce two coherent sources of waves that interfere. (a) Light spreads out (diffracts) from each slit, because the

slits are narrow. These waves overlap and interfere constructively (bright lines) and destructively (dark regions). We can only see this if the

light falls onto a screen and is scattered into our eyes. (b) When light that has passed through double slits falls on a screen, we see a

pattern such as this.

To understand the double-slit interference pattern, consider how two waves travel from the slits to the screen
(Figure 3.6). Each slit is a different distance from a given point on the screen. Thus, different numbers of
wavelengths fit into each path. Waves start out from the slits in phase (crest to crest), but they may end up out
of phase (crest to trough) at the screen if the paths differ in length by half a wavelength, interfering
destructively. If the paths differ by a whole wavelength, then the waves arrive in phase (crest to crest) at the
screen, interfering constructively. More generally, if the path length difference between the two waves is
any half-integral number of wavelengths [(1 / 2) , (3 / 2) , (5 / 2) , etc.], then destructive interference occurs.
Similarly, if the path length difference is any integral number of wavelengths ( , 2 , 3 , etc.), then constructive
interference occurs. These conditions can be expressed as equations:

3.1

3.2
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Figure 3.6 Waves follow different paths from the slits to a common point P on a screen. Destructive interference occurs where one path is

a half wavelength longer than the other—the waves start in phase but arrive out of phase. Constructive interference occurs where one path

is a whole wavelength longer than the other—the waves start out and arrive in phase.

3.2 Mathematics of Interference
Learning Objectives
By the end of this section, you will be able to:

• Determine the angles for bright and dark fringes for double slit interference
• Calculate the positions of bright fringes on a screen

Figure 3.7(a) shows how to determine the path length difference for waves traveling from two slits to a
common point on a screen. If the screen is a large distance away compared with the distance between the slits,
then the angle between the path and a line from the slits to the screen [part (b)] is nearly the same for each
path. In other words, and are essentially parallel. The lengths of and differ by , as indicated by the
two dashed lines in the figure. Simple trigonometry shows

where d is the distance between the slits. Combining this result with Equation 3.1, we obtain constructive
interference for a double slit when the path length difference is an integral multiple of the wavelength, or

Similarly, to obtain destructive interference for a double slit, the path length difference must be a half-integral
multiple of the wavelength, or

where is the wavelength of the light, d is the distance between slits, and is the angle from the original
direction of the beam as discussed above. We call m the order of the interference. For example, is
fourth-order interference.

3.3

3.4

3.5
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Figure 3.7 (a) To reach P, the light waves from and must travel different distances. (b) The path difference between the two rays is

.

The equations for double-slit interference imply that a series of bright and dark lines are formed. For vertical
slits, the light spreads out horizontally on either side of the incident beam into a pattern called interference
fringes (Figure 3.8). The closer the slits are, the more the bright fringes spread apart. We can see this by
examining the equation

. For fixed and m, the smaller d is, the larger must be, since
. This is consistent with our contention that wave effects are most noticeable when the object the

wave encounters (here, slits a distance d apart) is small. Small d gives large , hence, a large effect.

Referring back to part (a) of the figure, is typically small enough that , where is the
distance from the central maximum to the mth bright fringe and D is the distance between the slit and the
screen. Equation 3.4 may then be written as

or

3.6

118 3 • Interference

Access for free at openstax.org.



Figure 3.8 The interference pattern for a double slit has an intensity that falls off with angle. The image shows multiple bright and dark

lines, or fringes, formed by light passing through a double slit.

EXAMPLE 3.1

Finding a Wavelength from an Interference Pattern
Suppose you pass light from a He-Ne laser through two slits separated by 0.0100 mm and find that the third
bright line on a screen is formed at an angle of relative to the incident beam. What is the wavelength of
the light?

Strategy
The phenomenon is two-slit interference as illustrated in Figure 3.8 and the third bright line is due to third-
order constructive interference, which means that . We are given and . The
wavelength can thus be found using the equation for constructive interference.

Solution
Solving for the wavelength gives

Substituting known values yields

Significance
To three digits, this is the wavelength of light emitted by the common He-Ne laser. Not by coincidence, this red
color is similar to that emitted by neon lights. More important, however, is the fact that interference patterns
can be used to measure wavelength. Young did this for visible wavelengths. This analytical techinque is still
widely used to measure electromagnetic spectra. For a given order, the angle for constructive interference
increases with , so that spectra (measurements of intensity versus wavelength) can be obtained.
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EXAMPLE 3.2

Calculating the Highest Order Possible
Interference patterns do not have an infinite number of lines, since there is a limit to how big m can be. What is
the highest-order constructive interference possible with the system described in the preceding example?

Strategy
The equation (for ) describes constructive interference from two slits. For
fixed values of , the larger m is, the larger is. However, the maximum value that can have is 1,
for an angle of . (Larger angles imply that light goes backward and does not reach the screen at all.) Let us
find what value of m corresponds to this maximum diffraction angle.

Solution
Solving the equation for m gives

Taking and substituting the values of from the preceding example gives

Therefore, the largest integer m can be is 15, or .

Significance
The number of fringes depends on the wavelength and slit separation. The number of fringes is very large for
large slit separations. However, recall (see The Propagation of Light and the introduction for this chapter) that
wave interference is only prominent when the wave interacts with objects that are not large compared to the
wavelength. Therefore, if the slit separation and the sizes of the slits become much greater than the
wavelength, the intensity pattern of light on the screen changes, so there are simply two bright lines cast by the
slits, as expected, when light behaves like rays. We also note that the fringes get fainter farther away from the
center. Consequently, not all 15 fringes may be observable.

CHECK YOUR UNDERSTANDING 3.1

In the system used in the preceding examples, at what angles are the first and the second bright fringes
formed?

3.3 Multiple-Slit Interference
Learning Objectives
By the end of this section, you will be able to:

• Describe the locations and intensities of secondary maxima for multiple-slit interference

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference
and gives us a historical insight into Thomas Young’s experiments. However, much of the modern-day
application of slit interference uses not just two slits but many, approaching infinity for practical purposes.
The key optical element is called a diffraction grating, an important tool in optical analysis, which we discuss
in detail in Diffraction. Here, we start the analysis of multiple-slit interference by taking the results from our
analysis of the double slit ( ) and extending it to configurations with three, four, and much larger
numbers of slits.

Figure 3.9 shows the simplest case of multiple-slit interference, with three slits, or . The spacing
between slits is d, and the path length difference between adjacent slits is , same as the case for the
double slit. What is new is that the path length difference for the first and the third slits is . The
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condition for constructive interference is the same as for the double slit, that is

When this condition is met, is automatically a multiple of , so all three rays combine constructively,
and the bright fringes that occur here are called principal maxima. But what happens when the path length
difference between adjacent slits is only ? We can think of the first and second rays as interfering
destructively, but the third ray remains unaltered. Instead of obtaining a dark fringe, or a minimum, as we did
for the double slit, we see a secondary maximum with intensity lower than the principal maxima.

Figure 3.9 Interference with three slits. Different pairs of emerging rays can combine constructively or destructively at the same time,

leading to secondary maxima.

In general, for N slits, these secondary maxima occur whenever an unpaired ray is present that does not go
away due to destructive interference. This occurs at evenly spaced positions between the principal
maxima. The amplitude of the electromagnetic wave is correspondingly diminished to of the wave at the
principal maxima, and the light intensity, being proportional to the square of the wave amplitude, is
diminished to of the intensity compared to the principal maxima. As Figure 3.10 shows, a dark fringe is
located between every maximum (principal or secondary). As N grows larger and the number of bright and
dark fringes increase, the widths of the maxima become narrower due to the closely located neighboring dark
fringes. Because the total amount of light energy remains unaltered, narrower maxima require that each
maximum reaches a correspondingly higher intensity.

Figure 3.10 Interference fringe patterns for two, three and four slits. As the number of slits increases, more secondary maxima appear,
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but the principal maxima become brighter and narrower. (a) Graph and (b) photographs of fringe patterns.

3.4 Interference in Thin Films
Learning Objectives
By the end of this section, you will be able to:

• Describe the phase changes that occur upon reflection
• Describe fringes established by reflected rays of a common source
• Explain the appearance of colors in thin films

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by interference.
The brightest colors are those that interfere constructively. This interference is between light reflected from
different surfaces of a thin film; thus, the effect is known as thin-film interference.

As we noted before, interference effects are most prominent when light interacts with something having a size
similar to its wavelength. A thin film is one having a thickness t smaller than a few times the wavelength of
light, . Since color is associated indirectly with and because all interference depends in some way on the
ratio of to the size of the object involved, we should expect to see different colors for different thicknesses of a
film, as in Figure 3.11.

Figure 3.11 These soap bubbles exhibit brilliant colors when exposed to sunlight. (credit: Scott Robinson)

What causes thin-film interference? Figure 3.12 shows how light reflected from the top and bottom surfaces of
a film can interfere. Incident light is only partially reflected from the top surface of the film (ray 1). The
remainder enters the film and is itself partially reflected from the bottom surface. Part of the light reflected
from the bottom surface can emerge from the top of the film (ray 2) and interfere with light reflected from the
top (ray 1). The ray that enters the film travels a greater distance, so it may be in or out of phase with the ray
reflected from the top. However, consider for a moment, again, the bubbles in Figure 3.11. The bubbles are
darkest where they are thinnest. Furthermore, if you observe a soap bubble carefully, you will note it gets dark
at the point where it breaks. For very thin films, the difference in path lengths of rays 1 and 2 in Figure 3.12 is
negligible, so why should they interfere destructively and not constructively? The answer is that a phase
change can occur upon reflection, as discussed next.
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Figure 3.12 Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is partially

reflected at the bottom surface and emerges as ray 2. These rays interfere in a way that depends on the thickness of the film and the

indices of refraction of the various media.

Changes in Phase due to Reflection
We saw earlier (Waves) that reflection of mechanical waves can involve a phase change. For example, a
traveling wave on a string is inverted (i.e., a phase change) upon reflection at a boundary to which a
heavier string is tied. However, if the second string is lighter (or more precisely, of a lower linear density), no
inversion occurs. Light waves produce the same effect, but the deciding parameter for light is the index of
refraction. Light waves undergo a or radians phase change upon reflection at an interface beyond which
is a medium of higher index of refraction. No phase change takes place when reflecting from a medium of
lower refractive index (Figure 3.13). Because of the periodic nature of waves, this phase change or inversion is
equivalent to in distance travelled, or path length. Both the path length and refractive indices are
important factors in thin-film interference.

Figure 3.13 Reflection at an interface for light traveling from a medium with index of refraction to a medium with index of refraction

, , causes the phase of the wave to change by radians.

If the film in Figure 3.12 is a soap bubble (essentially water with air on both sides), then a phase shift of
occurs for ray 1 but not for ray 2. Thus, when the film is very thin and the path length difference between the
two rays is negligible, they are exactly out of phase, and destructive interference occurs at all wavelengths.
Thus, the soap bubble is dark here. The thickness of the film relative to the wavelength of light is the other
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crucial factor in thin-film interference. Ray 2 in Figure 3.12 travels a greater distance than ray 1. For light
incident perpendicular to the surface, ray 2 travels a distance approximately 2t farther than ray 1. When this
distance is an integral or half-integral multiple of the wavelength in the medium , where is the
wavelength in vacuum and n is the index of refraction), constructive or destructive interference occurs,
depending also on whether there is a phase change in either ray.

EXAMPLE 3.3

Calculating the Thickness of a Nonreflective Lens Coating
Sophisticated cameras use a series of several lenses. Light can reflect from the surfaces of these various lenses
and degrade image clarity. To limit these reflections, lenses are coated with a thin layer of magnesium fluoride,
which causes destructive thin-film interference. What is the thinnest this film can be, if its index of refraction
is 1.38 and it is designed to limit the reflection of 550-nm light, normally the most intense visible wavelength?
Assume the index of refraction of the glass is 1.52.

Strategy
Refer to Figure 3.12 and use for air, , and . Both ray 1 and ray 2 have a shift
upon reflection. Thus, to obtain destructive interference, ray 2 needs to travel a half wavelength farther than
ray 1. For rays incident perpendicularly, the path length difference is 2t.

Solution
To obtain destructive interference here,

where is the wavelength in the film and is given by . Thus,

Solving for t and entering known values yields

Significance
Films such as the one in this example are most effective in producing destructive interference when the
thinnest layer is used, since light over a broader range of incident angles is reduced in intensity. These films
are called nonreflective coatings; this is only an approximately correct description, though, since other
wavelengths are only partially cancelled. Nonreflective coatings are also used in car windows and sunglasses.

Combining Path Length Difference with Phase Change
Thin-film interference is most constructive or most destructive when the path length difference for the two
rays is an integral or half-integral wavelength. That is, for rays incident perpendicularly,

To know whether interference is constructive or destructive, you must also determine if there is a phase
change upon reflection. Thin-film interference thus depends on film thickness, the wavelength of light, and the
refractive indices. For white light incident on a film that varies in thickness, you can observe rainbow colors of
constructive interference for various wavelengths as the thickness varies.
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EXAMPLE 3.4

Soap Bubbles
(a) What are the three smallest thicknesses of a soap bubble that produce constructive interference for red
light with a wavelength of 650 nm? The index of refraction of soap is taken to be the same as that of water. (b)
What three smallest thicknesses give destructive interference?

Strategy
Use Figure 3.12 to visualize the bubble, which acts as a thin film between two layers of air. Thus
for air, and for soap (equivalent to water). There is a shift for ray 1 reflected from the top surface
of the bubble and no shift for ray 2 reflected from the bottom surface. To get constructive interference, then,
the path length difference (2t) must be a half-integral multiple of the wavelength—the first three being

, and . To get destructive interference, the path length difference must be an integral multiple
of the wavelength—the first three being 0, , and .

Solution
a. Constructive interference occurs here when

Thus, the smallest constructive thickness is

The next thickness that gives constructive interference is , so that

Finally, the third thickness producing constructive interference is , so that

b. For destructive interference, the path length difference here is an integral multiple of the wavelength. The
first occurs for zero thickness, since there is a phase change at the top surface, that is,

the very thin (or negligibly thin) case discussed above. The first non-zero thickness producing destructive
interference is

Substituting known values gives

Finally, the third destructive thickness is , so that

Significance
If the bubble were illuminated with pure red light, we would see bright and dark bands at very uniform
increases in thickness. First would be a dark band at 0 thickness, then bright at 122 nm thickness, then dark at
244 nm, bright at 366 nm, dark at 488 nm, and bright at 610 nm. If the bubble varied smoothly in thickness,
like a smooth wedge, then the bands would be evenly spaced.

CHECK YOUR UNDERSTANDING 3.2
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Going further with Example 3.4, what are the next two thicknesses of soap bubble that would lead to (a)
constructive interference, and (b) destructive interference?

Another example of thin-film interference can be seen when microscope slides are separated (see Figure 3.14).
The slides are very flat, so that the wedge of air between them increases in thickness very uniformly. A phase
change occurs at the second surface but not the first, so a dark band forms where the slides touch. The
rainbow colors of constructive interference repeat, going from violet to red again and again as the distance
between the slides increases. As the layer of air increases, the bands become more difficult to see, because
slight changes in incident angle have greater effects on path length differences. If monochromatic light instead
of white light is used, then bright and dark bands are obtained rather than repeating rainbow colors.

Figure 3.14 (a) The rainbow-color bands are produced by thin-film interference in the air between the two glass slides. (b) Schematic of

the paths taken by rays in the wedge of air between the slides. (c) If the air wedge is illuminated with monochromatic light, bright and dark

bands are obtained rather than repeating rainbow colors.

An important application of thin-film interference is found in the manufacturing of optical instruments. A lens
or mirror can be compared with a master as it is being ground, allowing it to be shaped to an accuracy of less
than a wavelength over its entire surface. Figure 3.15 illustrates the phenomenon called Newton’s rings,
which occurs when the plane surfaces of two lenses are placed together. (The circular bands are called
Newton’s rings because Isaac Newton described them and their use in detail. Newton did not discover them;
Robert Hooke did, and Newton did not believe they were due to the wave character of light.) Each successive
ring of a given color indicates an increase of only half a wavelength in the distance between the lens and the
blank, so that great precision can be obtained. Once the lens is perfect, no rings appear.
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Figure 3.15 “Newton’s rings” interference fringes are produced when two plano-convex lenses are placed together with their plane

surfaces in contact. The rings are created by interference between the light reflected off the two surfaces as a result of a slight gap between

them, indicating that these surfaces are not precisely plane but are slightly convex. (credit: Ulf Seifert)

Thin-film interference has many other applications, both in nature and in manufacturing. The wings of certain
moths and butterflies have nearly iridescent colors due to thin-film interference. In addition to pigmentation,
the wing’s color is affected greatly by constructive interference of certain wavelengths reflected from its film-
coated surface. Some car manufacturers offer special paint jobs that use thin-film interference to produce
colors that change with angle. This expensive option is based on variation of thin-film path length differences
with angle. Security features on credit cards, banknotes, driving licenses, and similar items prone to forgery
use thin-film interference, diffraction gratings, or holograms. As early as 1998, Australia led the way with
dollar bills printed on polymer with a diffraction grating security feature, making the currency difficult to
forge. Other countries, such as Canada, New Zealand, and Taiwan, are using similar technologies, while US
currency includes a thin-film interference effect.

3.5 The Michelson Interferometer
Learning Objectives
By the end of this section, you will be able to:

• Explain changes in fringes observed with a Michelson interferometer caused by mirror movements
• Explain changes in fringes observed with a Michelson interferometer caused by changes in medium

The Michelson interferometer (invented by the American physicist Albert A. Michelson, 1852–1931) is a
precision instrument that produces interference fringes by splitting a light beam into two parts and then
recombining them after they have traveled different optical paths. Figure 3.16 depicts the interferometer and
the path of a light beam from a single point on the extended source S, which is a ground-glass plate that
diffuses the light from a monochromatic lamp of wavelength . The beam strikes the half-silvered mirror M,
where half of it is reflected to the side and half passes through the mirror. The reflected light travels to the
movable plane mirror , where it is reflected back through M to the observer. The transmitted half of the
original beam is reflected back by the stationary mirror and then toward the observer by M.
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Figure 3.16 (a) The Michelson interferometer. The extended light source is a ground-glass plate that diffuses the light from a laser. (b) A

planar view of the interferometer.

Because both beams originate from the same point on the source, they are coherent and therefore interfere.
Notice from the figure that one beam passes through M three times and the other only once. To ensure that
both beams traverse the same thickness of glass, a compensator plate C of transparent glass is placed in the
arm containing . This plate is a duplicate of M (without the silvering) and is usually cut from the same piece
of glass used to produce M. With the compensator in place, any phase difference between the two beams is due
solely to the difference in the distances they travel.

The path difference of the two beams when they recombine is , where is the distance between M
and , and is the distance between M and . Suppose this path difference is an integer number of
wavelengths . Then, constructive interference occurs and a bright image of the point on the source is seen
at the observer. Now the light from any other point on the source whose two beams have this same path
difference also undergoes constructive interference and produces a bright image. The collection of these point
images is a bright fringe corresponding to a path difference of (Figure 3.17). When is moved a
distance , this path difference changes by , and each fringe moves to the position previously
occupied by an adjacent fringe. Consequently, by counting the number of fringes m passing a given point as

is moved, an observer can measure minute displacements that are accurate to a fraction of a wavelength,
as shown by the relation

Figure 3.17 Fringes produced with a Michelson interferometer. (credit: “SILLAGESvideos”/YouTube)

3.7
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EXAMPLE 3.5

Precise Distance Measurements by Michelson Interferometer
A red laser light of wavelength 630 nm is used in a Michelson interferometer. While keeping the mirror
fixed, mirror is moved. The fringes are found to move past a fixed cross-hair in the viewer. Find the
distance the mirror is moved for a single fringe to move past the reference line.

Strategy
Refer to Figure 3.16 for the geometry. We use the result of the Michelson interferometer interference condition
to find the distance moved, .

Solution
For a 630-nm red laser light, and for each fringe crossing , the distance traveled by if you keep
fixed is

Significance
An important application of this measurement is the definition of the standard meter. As mentioned in Units
and Measurement, the length of the standard meter was once defined as the mirror displacement in a
Michelson interferometer corresponding to 1,650,763.73 wavelengths of the particular fringe of krypton-86 in
a gas discharge tube.

EXAMPLE 3.6

Measuring the Refractive Index of a Gas
In one arm of a Michelson interferometer, a glass chamber is placed with attachments for evacuating the inside
and putting gases in it. The space inside the container is 2 cm wide. Initially, the container is empty. As gas is
slowly let into the chamber, you observe that dark fringes move past a reference line in the field of observation.
By the time the chamber is filled to the desired pressure, you have counted 122 fringes move past the
reference line. The wavelength of the light used is 632.8 nm. What is the refractive index of this gas?

Strategy
The fringes observed compose the difference between the number of wavelengths that fit within the
empty chamber (vacuum) and the number of wavelengths that fit within the same chamber when it is gas-
filled. The wavelength in the filled chamber is shorter by a factor of n, the index of refraction.
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Solution
The ray travels a distance to the right through the glass chamber and another distance t to the left
upon reflection. The total travel is . When empty, the number of wavelengths that fit in this chamber is

where is the wavelength in vacuum of the light used. In any other medium, the wavelength is
and the number of wavelengths that fit in the gas-filled chamber is

The number of fringes observed in the transition is

Solving for gives

and .

Significance
The indices of refraction for gases are so close to that of vacuum, that we normally consider them equal to 1.
The difference between 1 and 1.0019 is so small that measuring it requires a correspondingly sensitive
technique such as interferometry. We cannot, for example, hope to measure this value using techniques based
simply on Snell’s law.

CHECK YOUR UNDERSTANDING 3.3

Although m, the number of fringes observed, is an integer, which is often regarded as having zero uncertainty,
in practical terms, it is all too easy to lose track when counting fringes. In Example 3.6, if you estimate that you
might have missed as many as five fringes when you reported fringes, (a) is the value for the index of
refraction worked out in Example 3.6 too large or too small? (b) By how much?

PROBLEM-SOLVING STRATEGY

Wave Optics
Step 1. Examine the situation to determine that interference is involved. Identify whether slits, thin films, or
interferometers are considered in the problem.

Step 2. If slits are involved, note that diffraction gratings and double slits produce very similar interference
patterns, but that gratings have narrower (sharper) maxima. Single-slit patterns are characterized by a large
central maximum and smaller maxima to the sides.

Step 3. If thin-film interference or an interferometer is involved, take note of the path length difference
between the two rays that interfere. Be certain to use the wavelength in the medium involved, since it differs
from the wavelength in vacuum. Note also that there is an additional phase shift when light reflects from a
medium with a greater index of refraction.

Step 4. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is
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useful. Draw a diagram of the situation. Labeling the diagram is useful.

Step 5. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

Step 6. Solve the appropriate equation for the quantity to be determined (the unknown) and enter the knowns.
Slits, gratings, and the Rayleigh limit involve equations.

Step 7. For thin-film interference, you have constructive interference for a total shift that is an integral number
of wavelengths. You have destructive interference for a total shift of a half-integral number of wavelengths.
Always keep in mind that crest to crest is constructive whereas crest to trough is destructive.

Step 8. Check to see if the answer is reasonable: Does it make sense? Angles in interference patterns cannot be
greater than , for example.
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CHAPTER REVIEW
Key Terms
coherent waves waves are in phase or have a

definite phase relationship
fringes bright and dark patterns of interference
incoherent waves have random phase

relationships
interferometer instrument that uses interference

of waves to make measurements
monochromatic light composed of one wavelength

only
Newton’s rings circular interference pattern

created by interference between the light

reflected off two surfaces as a result of a slight
gap between them

order integer m used in the equations for
constructive and destructive interference for a
double slit

principal maximum brightest interference fringes
seen with multiple slits

secondary maximum bright interference fringes
of intensity lower than the principal maxima

thin-film interference interference between light
reflected from different surfaces of a thin film

Key Equations

Constructive interference for m = 0, ±1, ±2, ±3…

Destructive interference for m = 0, ±1, ±2, ±3…

Path length difference for waves from two slits to a
common point on a screen

Constructive interference

Destructive interference

Distance from central maximum to the mth bright fringe

Displacement measured by a Michelson interferometer

Summary
3.1 Young's Double-Slit Interference

• Young’s double-slit experiment gave definitive
proof of the wave character of light.

• An interference pattern is obtained by the
superposition of light from two slits.

3.2 Mathematics of Interference

• In double-slit diffraction, constructive
interference occurs when

, where d
is the distance between the slits, is the angle
relative to the incident direction, and m is the
order of the interference.

• Destructive interference occurs when
.

3.3 Multiple-Slit Interference

• Interference from multiple slits ( )
produces principal as well as secondary
maxima.

• As the number of slits is increased, the intensity
of the principal maxima increases and the width
decreases.

3.4 Interference in Thin Films

• When light reflects from a medium having an
index of refraction greater than that of the
medium in which it is traveling, a phase
change (or a shift) occurs.

• Thin-film interference occurs between the light
reflected from the top and bottom surfaces of a
film. In addition to the path length difference,
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there can be a phase change.

3.5 The Michelson Interferometer

• When the mirror in one arm of the

interferometer moves a distance of each
fringe in the interference pattern moves to the
position previously occupied by the adjacent
fringe.

Conceptual Questions
3.1 Young's Double-Slit Interference

1. Young’s double-slit experiment breaks a single
light beam into two sources. Would the same
pattern be obtained for two independent sources
of light, such as the headlights of a distant car?
Explain.

2. Is it possible to create a experimental setup in
which there is only destructive interference?
Explain.

3. Why won’t two small sodium lamps, held close
together, produce an interference pattern on a
distant screen? What if the sodium lamps were
replaced by two laser pointers held close
together?

3.2 Mathematics of Interference

4. Suppose you use the same double slit to perform
Young’s double-slit experiment in air and then
repeat the experiment in water. Do the angles to
the same parts of the interference pattern get
larger or smaller? Does the color of the light
change? Explain.

5. Why is monochromatic light used in the double
slit experiment? What would happen if white
light were used?

3.4 Interference in Thin Films

6. What effect does increasing the wedge angle have
on the spacing of interference fringes? If the
wedge angle is too large, fringes are not
observed. Why?

7. How is the difference in paths taken by two
originally in-phase light waves related to whether
they interfere constructively or destructively?
How can this be affected by reflection? By
refraction?

8. Is there a phase change in the light reflected from
either surface of a contact lens floating on a

person’s tear layer? The index of refraction of the
lens is about 1.5, and its top surface is dry.

9. In placing a sample on a microscope slide, a glass
cover is placed over a water drop on the glass
slide. Light incident from above can reflect from
the top and bottom of the glass cover and from
the glass slide below the water drop. At which
surfaces will there be a phase change in the
reflected light?

10. Answer the above question if the fluid between
the two pieces of crown glass is carbon
disulfide.

11. While contemplating the food value of a slice of
ham, you notice a rainbow of color reflected
from its moist surface. Explain its origin.

12. An inventor notices that a soap bubble is dark at
its thinnest and realizes that destructive
interference is taking place for all wavelengths.
How could she use this knowledge to make a
nonreflective coating for lenses that is effective
at all wavelengths? That is, what limits would
there be on the index of refraction and
thickness of the coating? How might this be
impractical?

13. A nonreflective coating like the one described in
Example 3.3 works ideally for a single
wavelength and for perpendicular incidence.
What happens for other wavelengths and other
incident directions? Be specific.

14. Why is it much more difficult to see interference
fringes for light reflected from a thick piece of
glass than from a thin film? Would it be easier if
monochromatic light were used?

3.5 The Michelson Interferometer

15. Describe how a Michelson interferometer can
be used to measure the index of refraction of a
gas (including air).

Problems
3.2 Mathematics of Interference

16. At what angle is the first-order maximum for
450-nm wavelength blue light falling on double
slits separated by 0.0500 mm?

17. Calculate the angle for the third-order
maximum of 580-nm wavelength yellow light
falling on double slits separated by 0.100 mm.

18. What is the separation between two slits for
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which 610-nm orange light has its first
maximum at an angle of ?

19. Find the distance between two slits that
produces the first minimum for 410-nm violet
light at an angle of

20. Calculate the wavelength of light that has its
third minimum at an angle of when falling
on double slits separated by . Explicitly
show how you follow the steps from the
Problem-Solving Strategy: Wave Optics, located
at the end of the chapter.

21. What is the wavelength of light falling on double
slits separated by if the third-order
maximum is at an angle of ?

22. At what angle is the second-order maximum for
the situation in the preceding problem?

23. What is the highest-order maximum for 400-nm
light falling on double slits separated by

?
24. Find the largest wavelength of light falling on

double slits separated by for which
there is a first-order maximum. Is this in the
visible part of the spectrum?

25. What is the smallest separation between two
slits that will produce a second-order maximum
for 720-nm red light?

26. (a) What is the smallest separation between two
slits that will produce a second-order maximum
for any visible light? (b) For all visible light?

27. (a) If the first-order maximum for
monochromatic light falling on a double slit is at
an angle of , at what angle is the second-
order maximum? (b) What is the angle of the
first minimum? (c) What is the highest-order
maximum possible here?

28. Shown below is a double slit located a distance x
from a screen, with the distance from the center of
the screen given by y. When the distance d
between the slits is relatively large, numerous
bright spots appear, called fringes. Show that, for
small angles (where , with in radians),
the distance between fringes is given by

29. Using the result of the preceding problem, (a)
calculate the distance between fringes for
633-nm light falling on double slits separated
by 0.0800 mm, located 3.00 m from a screen.
(b) What would be the distance between fringes
if the entire apparatus were submersed in
water, whose index of refraction is 1.33?

30. Using the result of the problem two problems
prior, find the wavelength of light that produces
fringes 7.50 mm apart on a screen 2.00 m from
double slits separated by 0.120 mm.

31. In a double-slit experiment, the fifth maximum
is 2.8 cm from the central maximum on a
screen that is 1.5 m away from the slits. If the
slits are 0.15 mm apart, what is the wavelength
of the light being used?

32. The source in Young’s experiment emits at two
wavelengths. On the viewing screen, the fourth
maximum for one wavelength is located at the
same spot as the fifth maximum for the other
wavelength. What is the ratio of the two
wavelengths?

33. If 500-nm and 650-nm light illuminates two
slits that are separated by 0.50 mm, how far
apart are the second-order maxima for these
two wavelengths on a screen 2.0 m away?

34. Red light of wavelength of 700 nm falls on a
double slit separated by 400 nm. (a) At what
angle is the first-order maximum in the
diffraction pattern? (b) What is unreasonable
about this result? (c) Which assumptions are
unreasonable or inconsistent?

3.3 Multiple-Slit Interference

35. Ten narrow slits are equally spaced 0.25 mm
apart and illuminated with yellow light of
wavelength 580 nm. (a) What are the angular
positions of the third and fourth principal
maxima? (b) What is the separation of these
maxima on a screen 2.0 m from the slits?

134 3 • Chapter Review

Access for free at openstax.org.



36. The width of bright fringes can be calculated as
the separation between the two adjacent dark
fringes on either side. Find the angular widths
of the third- and fourth-order bright fringes
from the preceding problem.

37. For a three-slit interference pattern, find the
ratio of the peak intensities of a secondary
maximum to a principal maximum.

38. What is the angular width of the central fringe of
the interference pattern of (a) 20 slits separated
by ? (b) 50 slits with the
same separation? Assume that .

3.4 Interference in Thin Films

39. A soap bubble is 100 nm thick and illuminated
by white light incident perpendicular to its
surface. What wavelength and color of visible
light is most constructively reflected, assuming
the same index of refraction as water?

40. An oil slick on water is 120 nm thick and
illuminated by white light incident
perpendicular to its surface. What color does
the oil appear (what is the most constructively
reflected wavelength), given its index of
refraction is 1.40?

41. Calculate the minimum thickness of an oil slick
on water that appears blue when illuminated by
white light perpendicular to its surface. Take
the blue wavelength to be 470 nm and the index
of refraction of oil to be 1.40.

42. Find the minimum thickness of a soap bubble
that appears red when illuminated by white
light perpendicular to its surface. Take the
wavelength to be 680 nm, and assume the same
index of refraction as water.

43. A film of soapy water ( ) on top of a
plastic cutting board has a thickness of 233 nm.
What color is most strongly reflected if it is
illuminated perpendicular to its surface?

44. What are the three smallest non-zero
thicknesses of soapy water ( ) on
Plexiglas if it appears green (constructively
reflecting 520-nm light) when illuminated
perpendicularly by white light?

45. Suppose you have a lens system that is to be
used primarily for 700-nm red light. What is the
second thinnest coating of fluorite (magnesium
fluoride) that would be nonreflective for this
wavelength?

46. (a) As a soap bubble thins it becomes dark,
because the path length difference becomes
small compared with the wavelength of light
and there is a phase shift at the top surface. If it

becomes dark when the path length difference
is less than one-fourth the wavelength, what is
the thickest the bubble can be and appear dark
at all visible wavelengths? Assume the same
index of refraction as water. (b) Discuss the
fragility of the film considering the thickness
found.

47. To save money on making military aircraft
invisible to radar, an inventor decides to coat
them with a nonreflective material having an
index of refraction of 1.20, which is between
that of air and the surface of the plane. This, he
reasons, should be much cheaper than
designing Stealth bombers. (a) What thickness
should the coating be to inhibit the reflection of
4.00-cm wavelength radar? (b) What is
unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

3.5 The Michelson Interferometer

48. A Michelson interferometer has two equal arms.
A mercury light of wavelength 546 nm is used
for the interferometer and stable fringes are
found. One of the arms is moved by . How
many fringes will cross the observing field?

49. What is the distance moved by the traveling
mirror of a Michelson interferometer that
corresponds to 1500 fringes passing by a point
of the observation screen? Assume that the
interferometer is illuminated with a 606 nm
spectral line of krypton-86.

50. When the traveling mirror of a Michelson
interferometer is moved , 90
fringes pass by a point on the observation
screen. What is the wavelength of the light
used?

51. In a Michelson interferometer, light of
wavelength 632.8 nm from a He-Ne laser is
used. When one of the mirrors is moved by a
distance D, 8 fringes move past the field of view.
What is the value of the distance D?

52. A chamber 5.0 cm long with flat, parallel windows at
the ends is placed in one arm of a Michelson
interferometer (see below). The light used has a
wavelength of 500 nm in a vacuum. While all the air
is being pumped out of the chamber, 29 fringes pass
by a point on the observation screen. What is the
refractive index of the air?
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Additional Problems
53. For 600-nm wavelength light and a slit

separation of 0.12 mm, what are the angular
positions of the first and third maxima in the
double slit interference pattern?

54. If the light source in the preceding problem is
changed, the angular position of the third
maximum is found to be . What is the
wavelength of light being used now?

55. Red light ( ) illuminates double slits
separated by a distance The
screen and the slits are 3.00 m apart. (a) Find
the distance on the screen between the central
maximum and the third maximum. (b) What is
the distance between the second and the fourth
maxima?

56. Two sources as in phase and emit waves with
. Determine whether constructive or

destructive interference occurs at points whose
distances from the two sources are (a) 0.84 and
0.42 m, (b) 0.21 and 0.42 m, (c) 1.26 and 0.42 m,
(d) 1.87 and 1.45 m, (e) 0.63 and 0.84 m and (f)
1.47 and 1.26 m.

57. Two slits apart are illuminated
by light of wavelength 600 nm. What is the
highest order fringe in the interference pattern?

58. Suppose that the highest order fringe that can
be observed is the eighth in a double-slit
experiment where 550-nm wavelength light is
used. What is the minimum separation of the
slits?

59. The interference pattern of a He-Ne laser light
passing through two slits 0.031

mm apart is projected on a screen 10.0 m away.
Determine the distance between the adjacent
bright fringes.

60. Young’s double-slit experiment is performed
immersed in water ( ). The light source
is a He-Ne laser, in vacuum. (a)
What is the wavelength of this light in water? (b)
What is the angle for the third order maximum
for two slits separated by 0.100 mm.

61. A double-slit experiment is to be set up so that
the bright fringes appear 1.27 cm apart on a
screen 2.13 m away from the two slits. The light
source was wavelength 500 nm. What should be
the separation between the two slits?

62. An effect analogous to two-slit interference can
occur with sound waves, instead of light. In an
open field, two speakers placed 1.30 m apart
are powered by a single-function generator
producing sine waves at 1200-Hz frequency. A
student walks along a line 12.5 m away and
parallel to the line between the speakers. She
hears an alternating pattern of loud and quiet,
due to constructive and destructive
interference. What is (a) the wavelength of this
sound and (b) the distance between the central
maximum and the first maximum (loud)
position along this line?

63. A hydrogen gas discharge lamp emits visible
light at four wavelengths, 410, 434, 486,
and 656 nm. (a) If light from this lamp falls on a
N slits separated by 0.025 mm, how far from the
central maximum are the third maxima when
viewed on a screen 2.0 m from the slits? (b) By
what distance are the second and third maxima
separated for ?

64. Monochromatic light of frequency
falls on 10 slits separated by

0.020 mm. What is the separation between the
first and third maxima on a screen that is 2.0 m
from the slits?
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65. Eight slits equally separated by 0.149 mm is
uniformly illuminated by a monochromatic
light at . What is the width of the
central principal maximum on a screen 2.35 m
away?

66. Eight slits equally separated by 0.149 mm is
uniformly illuminated by a monochromatic
light at . What is the intensity of a
secondary maxima compared to that of the
principal maxima?

67. A transparent film of thickness 250 nm and
index of refraction of 1.40 is surrounded by air.
What wavelength in a beam of white light at
near-normal incidence to the film undergoes
destructive interference when reflected?

68. An intensity minimum is found for 450 nm light
transmitted through a transparent film

in air. (a) What is minimum thickness
of the film? (b) If this wavelength is the longest
for which the intensity minimum occurs, what
are the next three lower values of for which
this happens?

69. A thin film with is surrounded by air.
What is the minimum thickness of this film
such that the reflection of normally incident
light with is minimized?

70. Repeat your calculation of the previous problem
with the thin film placed on a flat glass
( ) surface.

71. After a minor oil spill, a think film of oil
( ) of thickness 450 nm floats on the
water surface in a bay. (a) What predominant
color is seen by a bird flying overhead? (b) What
predominant color is seen by a seal swimming
underwater?

72. A microscope slide 10 cm long is separated from a
glass plate at one end by a sheet of paper. As
shown below, the other end of the slide is in
contact with the plate. The slide is illuminated
from above by light from a sodium lamp
( ), and 14 fringes per centimeter are
seen along the slide. What is the thickness of the
piece of paper?

73. Suppose that the setup of the preceding
problem is immersed in an unknown liquid. If
18 fringes per centimeter are now seen along
the slide, what is the index of refraction of the
liquid?

74. A thin wedge filled with air is produced when
two flat glass plates are placed on top of one
another and a slip of paper is inserted between
them at one edge. Interference fringes are
observed when monochromatic light falling
vertically on the plates are seen in reflection. Is
the first fringe near the edge where the plates
are in contact a bright fringe or a dark fringe?
Explain.

75. Two identical pieces of rectangular plate glass
are used to measure the thickness of a hair. The
glass plates are in direct contact at one edge and
a single hair is placed between them hear the
opposite edge. When illuminated with a sodium
lamp ( ), the hair is seen between the
180th and 181st dark fringes. What are the
lower and upper limits on the hair’s diameter?

76. Two microscope slides made of glass are
illuminated by monochromatic ( )
light incident perpendicularly. The top slide
touches the bottom slide at one end and rests on
a thin copper wire at the other end, forming a
wedge of air. The diameter of the copper wire is

. How many bright fringes are seen
across these slides?

77. A good quality camera “lens” is actually a
system of lenses, rather than a single lens, but a
side effect is that a reflection from the surface of
one lens can bounce around many times within
the system, creating artifacts in the photograph.
To counteract this problem, one of the lenses in
such a system is coated with a thin layer of
material ( ) on one side. The index of
refraction of the lens glass is 1.68. What is the
smallest thickness of the coating that reduces
the reflection at 640 nm by destructive
interference? (In other words, the coating’s
effect is to be optimized for .)

78. Constructive interference is observed from
directly above an oil slick for wavelengths (in
air) 440 nm and 616 nm. The index of refraction
of this oil is . What is the film’s
minimum possible thickness?

79. A soap bubble is blown outdoors. What colors
(indicate by wavelengths) of the reflected
sunlight are seen enhanced? The soap bubble
has index of refraction 1.36 and thickness 380
nm.
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80. A Michelson interferometer with a He-Ne laser
light source ( ) projects its
interference pattern on a screen. If the movable
mirror is caused to move by , how many
fringes will be observed shifting through a
reference point on a screen?

81. An experimenter detects 251 fringes when the
movable mirror in a Michelson interferometer
is displaced. The light source used is a sodium
lamp, wavelength 589 nm. By what distance did
the movable mirror move?

82. A Michelson interferometer is used to measure
the wavelength of light put through it. When the
movable mirror is moved by exactly 0.100 mm,
the number of fringes observed moving through
is 316. What is the wavelength of the light?

83. A 5.08-cm-long rectangular glass chamber is
inserted into one arm of a Michelson
interferometer using a 633-nm light source.
This chamber is initially filled with air

at standard atmospheric
pressure but the air is gradually pumped out
using a vacuum pump until a near perfect
vacuum is achieved. How many fringes are
observed moving by during the transition?

84. Into one arm of a Michelson interferometer, a
plastic sheet of thickness is inserted,
which causes a shift in the interference pattern
by 86 fringes. The light source has wavelength
of 610 nm in air. What is the index of refraction
of this plastic?

85. The thickness of an aluminum foil is measured
using a Michelson interferometer that has its
movable mirror mounted on a micrometer.
There is a difference of 27 fringes in the
observed interference pattern when the
micrometer clamps down on the foil compared
to when the micrometer is empty. The light
source is a He-Ne laser with wavelength 632.8
nm. Calculate the thickness of the foil.

86. The movable mirror of a Michelson
interferometer is attached to one end of a thin
metal rod of length 23.3 mm. The other end of
the rod is anchored so it does not move. As the
temperature of the rod changes from to

, a change of 14 fringes is observed. The
light source is a He Ne laser, .
What is the change in length of the metal bar,
and what is its thermal expansion coefficient?

87. In a thermally stabilized lab, a Michelson
interferometer is used to monitor the
temperature to ensure it stays constant. The
movable mirror is mounted on the end of a
1.00-m-long aluminum rod, held fixed at the
other end. The light source is a He Ne laser,

. The resolution of this apparatus
corresponds to the temperature difference
when a change of just one fringe is observed.
What is this temperature difference?

88. A 65-fringe shift results in a Michelson
interferometer when a film made of an
unknown material is placed in one arm. The
light source has wavelength 632.9 nm. Identify
the material using the indices of refraction
found in Table 1.1.

Challenge Problems
89. Determine what happens to the double-slit

interference pattern if one of the slits is covered
with a thin, transparent film whose thickness is

, where is the wavelength of the
incident light and n is the index of refraction of
the film.

90. Fifty-one narrow slits are equally spaced and
separated by 0.10 mm. The slits are illuminated
by blue light of wavelength 400 nm. What is
angular position of the twenty-fifth secondary
maximum? What is its peak intensity in
comparison with that of the primary maximum?

91. A film of oil on water will appear dark when it is
very thin, because the path length difference
becomes small compared with the wavelength
of light and there is a phase shift at the top
surface. If it becomes dark when the path length
difference is less than one-fourth the
wavelength, what is the thickest the oil can be
and appear dark at all visible wavelengths? Oil
has an index of refraction of 1.40.
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92. Figure 3.14 shows two glass slides illuminated
by monochromatic light incident
perpendicularly. The top slide touches the
bottom slide at one end and rests on a
0.100-mm-diameter hair at the other end,
forming a wedge of air. (a) How far apart are the
dark bands, if the slides are 7.50 cm long and
589-nm light is used? (b) Is there any difference
if the slides are made from crown or flint glass?
Explain.

93. Figure 3.14 shows two 7.50-cm-long glass slides
illuminated by pure 589-nm wavelength light
incident perpendicularly. The top slide touches
the bottom slide at one end and rests on some
debris at the other end, forming a wedge of air.
How thick is the debris, if the dark bands are
1.00 mm apart?

94. A soap bubble is 100 nm thick and illuminated
by white light incident at a angle to its
surface. What wavelength and color of visible
light is most constructively reflected, assuming
the same index of refraction as water?

95. An oil slick on water is 120 nm thick and
illuminated by white light incident at a
angle to its surface. What color does the oil
appear (what is the most constructively
reflected wavelength), given its index of
refraction is 1.40?
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INTRODUCTION

CHAPTER 4
Diffraction

4.1 Single-Slit Diffraction

4.2 Intensity in Single-Slit Diffraction

4.3 Double-Slit Diffraction

4.4 Diffraction Gratings

4.5 Circular Apertures and Resolution

4.6 X-Ray Diffraction

4.7 Holography

Imagine passing a monochromatic light beam through a narrow opening—a slit just a little
wider than the wavelength of the light. Instead of a simple shadow of the slit on the screen, you will see that an
interference pattern appears, even though there is only one slit.

In the chapter on interference, we saw that you need two sources of waves for interference to occur. How can

Figure 4.1 A steel ball bearing illuminated by a laser does not cast a sharp, circular shadow. Instead, a series of
diffraction fringes and a central bright spot are observed. Known as Poisson’s spot, the effect was first predicted by
Augustin-Jean Fresnel (1788–1827) as a consequence of diffraction of light waves. Based on principles of ray
optics, Siméon-Denis Poisson (1781–1840) argued against Fresnel’s prediction. (credit: modification of work by
Harvard Natural Science Lecture Demonstrations)

Chapter Outline



there be an interference pattern when we have only one slit? In The Nature of Light, we learned that, due to
Huygens’s principle, we can imagine a wave front as equivalent to infinitely many point sources of waves.
Thus, a wave from a slit can behave not as one wave but as an infinite number of point sources. These waves
can interfere with each other, resulting in an interference pattern without the presence of a second slit. This
phenomenon is called diffraction.

Another way to view this is to recognize that a slit has a small but finite width. In the preceding chapter, we
implicitly regarded slits as objects with positions but no size. The widths of the slits were considered
negligible. When the slits have finite widths, each point along the opening can be considered a point source of
light—a foundation of Huygens’s principle. Because real-world optical instruments must have finite apertures
(otherwise, no light can enter), diffraction plays a major role in the way we interpret the output of these optical
instruments. For example, diffraction places limits on our ability to resolve images or objects. This is a
problem that we will study later in this chapter.

4.1 Single-Slit Diffraction
Learning Objectives
By the end of this section, you will be able to:

• Explain the phenomenon of diffraction and the conditions under which it is observed
• Describe diffraction through a single slit

After passing through a narrow aperture (opening), a wave propagating in a specific direction tends to spread
out. For example, sound waves that enter a room through an open door can be heard even if the listener is in a
part of the room where the geometry of ray propagation dictates that there should only be silence. Similarly,
ocean waves passing through an opening in a breakwater can spread throughout the bay inside. (Figure 4.2).
The spreading and bending of sound and ocean waves are two examples of diffraction, which is the bending of
a wave around the edges of an opening or an obstacle—a phenomenon exhibited by all types of waves.

Figure 4.2 Because of the diffraction of waves, ocean waves entering through an opening in a breakwater can spread throughout the bay.

(credit: modification of map data from Google Earth)

The diffraction of sound waves is apparent to us because wavelengths in the audible region are approximately
the same size as the objects they encounter, a condition that must be satisfied if diffraction effects are to be
observed easily. Since the wavelengths of visible light range from approximately 390 to 770 nm, most objects
do not diffract light significantly. However, situations do occur in which apertures are small enough that the
diffraction of light is observable. For example, if you place your middle and index fingers close together and
look through the opening at a light bulb, you can see a rather clear diffraction pattern, consisting of light and
dark lines running parallel to your fingers.

Diffraction through a Single Slit
Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double
slits or diffraction gratings, which we discussed in the chapter on interference. Figure 4.3 shows a single-slit
diffraction pattern. Note that the central maximum is larger than maxima on either side and that the intensity
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decreases rapidly on either side. In contrast, a diffraction grating (Diffraction Gratings) produces evenly
spaced lines that dim slowly on either side of the center.

Figure 4.3 Single-slit diffraction pattern. (a) Monochromatic light passing through a single slit has a central maximum and many smaller

and dimmer maxima on either side. The central maximum is six times higher than shown. (b) The diagram shows the bright central

maximum, and the dimmer and thinner maxima on either side.

The analysis of single-slit diffraction is illustrated in Figure 4.4. Here, the light arrives at the slit, illuminating it
uniformly and is in phase across its width. We then consider light propagating onwards from different parts of
the same slit. According to Huygens’s principle, every part of the wave front in the slit emits wavelets, as we
discussed in The Nature of Light. These are like rays that start out in phase and head in all directions. (Each ray
is perpendicular to the wave front of a wavelet.) Assuming the screen is very far away compared with the size
of the slit, rays heading toward a common destination are nearly parallel. When they travel straight ahead, as
in part (a) of the figure, they remain in phase, and we observe a central maximum. However, when rays travel
at an angle relative to the original direction of the beam, each ray travels a different distance to a common
location, and they can arrive in or out of phase. In part (b), the ray from the bottom travels a distance of one
wavelength farther than the ray from the top. Thus, a ray from the center travels a distance less than the
one at the bottom edge of the slit, arrives out of phase, and interferes destructively. A ray from slightly above
the center and one from slightly above the bottom also cancel one another. In fact, each ray from the slit
interferes destructively with another ray. In other words, a pair-wise cancellation of all rays results in a dark
minimum in intensity at this angle. By symmetry, another minimum occurs at the same angle to the right of
the incident direction (toward the bottom of the figure) of the light.
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Figure 4.4 Light passing through a single slit is diffracted in all directions and may interfere constructively or destructively, depending on

the angle. The difference in path length for rays from either side of the slit is seen to be a sin .

At the larger angle shown in part (c), the path lengths differ by for rays from the top and bottom of the slit.
One ray travels a distance different from the ray from the bottom and arrives in phase, interfering
constructively. Two rays, each from slightly above those two, also add constructively. Most rays from the slit
have another ray to interfere with constructively, and a maximum in intensity occurs at this angle. However,
not all rays interfere constructively for this situation, so the maximum is not as intense as the central
maximum. Finally, in part (d), the angle shown is large enough to produce a second minimum. As seen in the
figure, the difference in path length for rays from either side of the slit is a sin , and we see that a destructive
minimum is obtained when this distance is an integral multiple of the wavelength.

Thus, to obtain destructive interference for a single slit,

where a is the slit width, is the light’s wavelength, is the angle relative to the original direction of the light,
and m is the order of the minimum. Figure 4.5 shows a graph of intensity for single-slit interference, and it is
apparent that the maxima on either side of the central maximum are much less intense and not as wide. This
effect is explored in Double-Slit Diffraction.

4.1
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Figure 4.5 A graph of single-slit diffraction intensity showing the central maximum to be wider and much more intense than those to the

sides. In fact, the central maximum is six times higher than shown here.

EXAMPLE 4.1

Calculating Single-Slit Diffraction
Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction minimum at an
angle of relative to the incident direction of the light, as in Figure 4.6. (a) What is the width of the slit? (b)
At what angle is the first minimum produced?

Figure 4.6 In this example, we analyze a graph of the single-slit diffraction pattern.

Strategy
From the given information, and assuming the screen is far away from the slit, we can use the equation

first to find D, and again to find the angle for the first minimum

Solution

a. We are given that , , and . Solving the equation for a and
substituting known values gives
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b. Solving the equation for and substituting the known values gives

Thus the angle is

Significance
We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is consistent with
the fact that light must interact with an object comparable in size to its wavelength in order to exhibit
significant wave effects such as this single-slit diffraction pattern. We also see that the central maximum
extends on either side of the original beam, for a width of about . The angle between the first and
second minima is only about . Thus, the second maximum is only about half as wide as the
central maximum.

CHECK YOUR UNDERSTANDING 4.1

Suppose the slit width in Example 4.1 is increased to What are the new angular positions for
the first, second, and third minima? Would a fourth minimum exist?

4.2 Intensity in Single-Slit Diffraction
Learning Objectives
By the end of this section, you will be able to:

• Calculate the intensity relative to the central maximum of the single-slit diffraction peaks
• Calculate the intensity relative to the central maximum of an arbitrary point on the screen

To calculate the intensity of the diffraction pattern, we follow the phasor method used for calculations with ac
circuits in Alternating-Current Circuits. If we consider that there are N Huygens sources across the slit shown
in Figure 4.4, with each source separated by a distance a/N from its adjacent neighbors, the path difference
between waves from adjacent sources reaching the arbitrary point P on the screen is This distance
is equivalent to a phase difference of The phasor diagram for the waves arriving at the point
whose angular position is is shown in Figure 4.7. The amplitude of the phasor for each Huygens wavelet is

the amplitude of the resultant phasor is E, and the phase difference between the wavelets from the first
and the last sources is

With ∞ , the phasor diagram approaches a circular arc of length and radius r. Since the length of

the arc is for any , the radius r of the arc must decrease as increases (or equivalently, as the phasors
form tighter spirals).
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Figure 4.7 (a) Phasor diagram corresponding to the angular position in the single-slit diffraction pattern. The phase difference between

the wavelets from the first and last sources is . (b) The geometry of the phasor diagram.

The phasor diagram for (the center of the diffraction pattern) is shown in Figure 4.8(a) using . In
this case, the phasors are laid end to end in a straight line of length the radius r goes to infinity, and the
resultant has its maximum value The intensity of the light can be obtained using the relation

from Electromagnetic Waves. The intensity of the maximum is then

where . The phasor diagrams for the first two zeros of the diffraction pattern are shown in parts (b)
and (d) of the figure. In both cases, the phasors add to zero, after rotating through rad for and
rad for .

Figure 4.8 Phasor diagrams (with 30 phasors) for various points on the single-slit diffraction pattern. Multiple rotations around a given

circle have been separated slightly so that the phasors can be seen. (a) Central maximum, (b) first minimum, (c) first maximum beyond

central maximum, (d) second minimum, and (e) second maximum beyond central maximum.

The next two maxima beyond the central maxima are represented by the phasor diagrams of parts (c) and (e).
In part (c), the phasors have rotated through rad and have formed a resultant phasor of magnitude .
The length of the arc formed by the phasors is Since this corresponds to 1.5 rotations around a circle
of diameter , we have

so
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and

where

In part (e), the phasors have rotated through rad, corresponding to 2.5 rotations around a circle of
diameter and arc length This results in . The proof is left as an exercise for the
student (Exercise 4.119).

These two maxima actually correspond to values of slightly less than rad and rad. Since the total
length of the arc of the phasor diagram is always the radius of the arc decreases as increases. As a
result, and turn out to be slightly larger for arcs that have not quite curled through rad and rad,
respectively. The exact values of for the maxima are investigated in Exercise 4.120. In solving that problem,
you will find that they are less than, but very close to,

To calculate the intensity at an arbitrary point P on the screen, we return to the phasor diagram of Figure 4.7.
Since the arc subtends an angle at the center of the circle,

and

where E is the amplitude of the resultant field. Solving the second equation for E and then substituting r from
the first equation, we find

Now defining

we obtain

This equation relates the amplitude of the resultant field at any point in the diffraction pattern to the
amplitude at the central maximum. The intensity is proportional to the square of the amplitude, so

where is the intensity at the center of the pattern.

For the central maximum, , is also zero and we see from l’Hôpital’s rule that so
that For the next maximum, rad, we have rad and when substituted into
Equation 4.4, it yields

4.2

4.3

4.4

148 4 • Diffraction

Access for free at openstax.org.



in agreement with what we found earlier in this section using the diameters and circumferences of phasor
diagrams. Substituting rad into Equation 4.4 yields a similar result for .

A plot of Equation 4.4 is shown in Figure 4.9 and directly below it is a photograph of an actual diffraction
pattern. Notice that the central peak is much brighter than the others, and that the zeros of the pattern are
located at those points where which occurs when rad. This corresponds to

or

which is Equation 4.1.

Figure 4.9 (a) The calculated intensity distribution of a single-slit diffraction pattern. (b) The actual diffraction pattern.

EXAMPLE 4.2

Intensity in Single-Slit Diffraction
Light of wavelength 550 nm passes through a slit of width and produces a diffraction pattern similar
to that shown in Figure 4.9. (a) Find the locations of the first two minima in terms of the angle from the central
maximum and (b) determine the intensity relative to the central maximum at a point halfway between these
two minima.

Strategy
The minima are given by Equation 4.1, . The first two minima are for and Equation
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4.4 and Equation 4.2 can be used to determine the intensity once the angle has been worked out.

Solution

a. Solving Equation 4.1 for gives us so that

and

b. The halfway point between and is

Equation 4.2 gives

From Equation 4.4, we can calculate

Significance
This position, halfway between two minima, is very close to the location of the maximum, expected near

.

CHECK YOUR UNDERSTANDING 4.2

For the experiment in Example 4.2, at what angle from the center is the third maximum and what is its
intensity relative to the central maximum?

If the slit width a is varied, the intensity distribution changes, as illustrated in Figure 4.10. The central peak is
distributed over the region from to . For small , this corresponds to an angular
width Hence, an increase in the slit width results in a decrease in the width of the central peak.
For a slit with the central peak is very sharp, whereas if , it becomes quite broad.

Figure 4.10 Single-slit diffraction patterns for various slit widths. As the slit width a increases from and then to , the width

of the central peak decreases as the angles for the first minima decrease as predicted by Equation 4.1.
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INTERACTIVE

A diffraction experiment in optics can require a lot of preparation but this simulation (https://openstax.org/l/
21diffrexpoptsi) by Andrew Duffy offers not only a quick set up but also the ability to change the slit width
instantly. Run the simulation and select “Single slit.” You can adjust the slit width and see the effect on the
diffraction pattern on a screen and as a graph.

4.3 Double-Slit Diffraction
Learning Objectives
By the end of this section, you will be able to:

• Describe the combined effect of interference and diffraction with two slits, each with finite width
• Determine the relative intensities of interference fringes within a diffraction pattern
• Identify missing orders, if any

When we studied interference in Young’s double-slit experiment, we ignored the diffraction effect in each slit.
We assumed that the slits were so narrow that on the screen you saw only the interference of light from just
two point sources. If the slit is smaller than the wavelength, then Figure 4.10(a) shows that there is just a
spreading of light and no peaks or troughs on the screen. Therefore, it was reasonable to leave out the
diffraction effect in that chapter. However, if you make the slit wider, Figure 4.10(b) and (c) show that you
cannot ignore diffraction. In this section, we study the complications to the double-slit experiment that arise
when you also need to take into account the diffraction effect of each slit.

To calculate the diffraction pattern for two (or any number of) slits, we need to generalize the method we just
used for a single slit. That is, across each slit, we place a uniform distribution of point sources that radiate
Huygens wavelets, and then we sum the wavelets from all the slits. This gives the intensity at any point on the
screen. Although the details of that calculation can be complicated, the final result is quite simple:

In other words, the locations of the interference fringes are given by the equation , the same as
when we considered the slits to be point sources, but the intensities of the fringes are now reduced by
diffraction effects, according to Equation 4.4. [Note that in the chapter on interference, we wrote
and used the integer m to refer to interference fringes. Equation 4.1 also uses m, but this time to refer to
diffraction minima. If both equations are used simultaneously, it is good practice to use a different variable
(such as n) for one of these integers in order to keep them distinct.]

Interference and diffraction effects operate simultaneously and generally produce minima at different angles.
This gives rise to a complicated pattern on the screen, in which some of the maxima of interference from the
two slits are missing if the maximum of the interference is in the same direction as the minimum of the
diffraction. We refer to such a missing peak as a missing order. One example of a diffraction pattern on the
screen is shown in Figure 4.11. The solid line with multiple peaks of various heights is the intensity observed
on the screen. It is a product of the interference pattern of waves from separate slits and the diffraction of
waves from within one slit.

Two-Slit Diffraction Pattern

The diffraction pattern of two slits of width a that are separated by a distance d is the interference pattern
of two point sources separated by d multiplied by the diffraction pattern of a slit of width a.
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Figure 4.11 Diffraction from a double slit. The purple line with peaks of the same height are from the interference of the waves from two

slits; the blue line with one big hump in the middle is the diffraction of waves from within one slit; and the thick red line is the product of the

two, which is the pattern observed on the screen. The plot shows the expected result for a slit width and slit separation . The

maximum of order for the interference is missing because the minimum of the diffraction occurs in the same direction.

EXAMPLE 4.3

Intensity of the Fringes
Figure 4.11 shows that the intensity of the fringe for is zero, but what about the other fringes? Calculate
the intensity for the fringe at relative to the intensity of the central peak.

Strategy
Determine the angle for the double-slit interference fringe, using the equation from Interference, then
determine the relative intensity in that direction due to diffraction by using Equation 4.4.

Solution
From the chapter on interference, we know that the bright interference fringes occur at , or

From Equation 4.4,

Substituting from above,

For , , and ,

Then, the intensity is
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Significance
Note that this approach is relatively straightforward and gives a result that is almost exactly the same as the
more complicated analysis using phasors to work out the intensity values of the double-slit interference (thin
line in Figure 4.11). The phasor approach accounts for the downward slope in the diffraction intensity (blue
line) so that the peak near occurs at a value of ever so slightly smaller than we have shown here.

EXAMPLE 4.4

Two-Slit Diffraction
Suppose that in Young’s experiment, slits of width 0.020 mm are separated by 0.20 mm. If the slits are
illuminated by monochromatic light of wavelength 500 nm, how many bright fringes are observed in the
central peak of the diffraction pattern?

Solution
From Equation 4.1, the angular position of the first diffraction minimum is

Using for , we find

which is the maximum interference order that fits inside the central peak. We note that are missing
orders as matches exactly. Accordingly, we observe bright fringes for

for a total of 19 bright fringes.

CHECK YOUR UNDERSTANDING 4.3

For the experiment in Example 4.4, show that is also a missing order.

INTERACTIVE

Explore the effects of double-slit diffraction. In this simulation (https://openstax.org/l/21doubslitdiff) written
by Fu-Kwun Hwang, select using the slider and see what happens when you control the slit width, slit
separation and the wavelength. Can you make an order go “missing?”

4.4 Diffraction Gratings
Learning Objectives
By the end of this section, you will be able to:

• Discuss the pattern obtained from diffraction gratings
• Explain diffraction grating effects

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference
and gives us a historical insight into Thomas Young’s experiments. However, most modern-day applications of
slit interference use not just two slits but many, approaching infinity for practical purposes. The key optical
element is called a diffraction grating, an important tool in optical analysis.

Diffraction Gratings: An Infinite Number of Slits
The analysis of multi-slit interference in Interference allows us to consider what happens when the number of

4.4 • Diffraction Gratings 153



slits N approaches infinity. Recall that secondary maxima appear between the principal maxima. We can
see there will be an infinite number of secondary maxima that appear, and an infinite number of dark fringes
between them. This makes the spacing between the fringes, and therefore the width of the maxima,
infinitesimally small. Furthermore, because the intensity of the secondary maxima is proportional to , it
approaches zero so that the secondary maxima are no longer seen. What remains are only the principal
maxima, now very bright and very narrow (Figure 4.12).

Figure 4.12 (a) Intensity of light transmitted through a large number of slits. When N approaches infinity, only the principal maxima

remain as very bright and very narrow lines. (b) A laser beam passed through a diffraction grating. (credit b: modification of work by

Sebastian Stapelberg)

In reality, the number of slits is not infinite, but it can be very large—large enough to produce the equivalent
effect. A prime example is an optical element called a diffraction grating. A diffraction grating can be
manufactured by carving glass with a sharp tool in a large number of precisely positioned parallel lines, with
untouched regions acting like slits (Figure 4.13). This type of grating can be photographically mass produced
rather cheaply. Because there can be over 1000 lines per millimeter across the grating, when a section as small
as a few millimeters is illuminated by an incoming ray, the number of illuminated slits is effectively infinite,
providing for very sharp principal maxima.
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Figure 4.13 A diffraction grating can be manufactured by carving glass with a sharp tool in a large number of precisely positioned parallel

lines.

Diffraction gratings work both for transmission of light, as in Figure 4.14, and for reflection of light, as on
butterfly wings and the Australian opal in Figure 4.15. Natural diffraction gratings also occur in the feathers of
certain birds such as the hummingbird. Tiny, finger-like structures in regular patterns act as reflection
gratings, producing constructive interference that gives the feathers colors not solely due to their
pigmentation. This is called iridescence.

Figure 4.14 (a) Light passing through a diffraction grating is diffracted in a pattern similar to a double slit, with bright regions at various

angles. (b) The pattern obtained for white light incident on a grating. The central maximum is white, and the higher-order maxima disperse

white light into a rainbow of colors.
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Figure 4.15 (a) This Australian opal and (b) butterfly wings have rows of reflectors that act like reflection gratings, reflecting different

colors at different angles. (credit a: modification of work by "Opals-On-Black"/Flickr; credit b: modification of work by “whologwhy”/Flickr)

Applications of Diffraction Gratings
Where are diffraction gratings used in applications? Diffraction gratings are commonly used for spectroscopic
dispersion and analysis of light. What makes them particularly useful is the fact that they form a sharper
pattern than double slits do. That is, their bright fringes are narrower and brighter while their dark regions are
darker. Diffraction gratings are key components of monochromators used, for example, in optical imaging of
particular wavelengths from biological or medical samples. A diffraction grating can be chosen to specifically
analyze a wavelength emitted by molecules in diseased cells in a biopsy sample or to help excite strategic
molecules in the sample with a selected wavelength of light. Another vital use is in optical fiber technologies
where fibers are designed to provide optimum performance at specific wavelengths. A range of diffraction
gratings are available for selecting wavelengths for such use.

EXAMPLE 4.5

Calculating Typical Diffraction Grating Effects
Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you
send a beam of white light through it to a screen 2.00 m away. (a) Find the angles for the first-order diffraction
of the shortest and longest wavelengths of visible light (380 and 760 nm, respectively). (b) What is the distance
between the ends of the rainbow of visible light produced on the screen for first-order interference? (See
Figure 4.16.)

156 4 • Diffraction

Access for free at openstax.org.



Figure 4.16 (a) The diffraction grating considered in this example produces a rainbow of colors on a screen a distance from

the grating. The distances along the screen are measured perpendicular to the x-direction. In other words, the rainbow pattern extends out

of the page.

(b) In a bird’s-eye view, the rainbow pattern can be seen on a table where the equipment is placed.

Strategy
Once a value for the diffraction grating’s slit spacing d has been determined, the angles for the sharp lines can
be found using the equation

Since there are 10,000 lines per centimeter, each line is separated by 1/10,000 of a centimeter. Once we know
the angles, we an find the distances along the screen by using simple trigonometry.

Solution

a. The distance between slits is Let us call the two
angles for violet (380 nm) and for red (760 nm). Solving the equation

where for the first-order and Substituting these values gives

Thus the angle is

Similarly,

Thus the angle is
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Notice that in both equations, we reported the results of these intermediate calculations to four significant
figures to use with the calculation in part (b).

b. The distances on the secreen are labeled in Figure 4.16. Notice that We can solve
for That is,

and

The distance between them is therefore

Significance
The large distance between the red and violet ends of the rainbow produced from the white light indicates the
potential this diffraction grating has as a spectroscopic tool. The more it can spread out the wavelengths
(greater dispersion), the more detail can be seen in a spectrum. This depends on the quality of the diffraction
grating—it must be very precisely made in addition to having closely spaced lines.

CHECK YOUR UNDERSTANDING 4.4

If the line spacing of a diffraction grating d is not precisely known, we can use a light source with a well-
determined wavelength to measure it. Suppose the first-order constructive fringe of the emission line of
hydrogen is measured at using a spectrometer with a diffraction grating. What is the
line spacing of this grating?

INTERACTIVE

Take the same simulation (https://openstax.org/l/21doubslitdiff) we used for double-slit diffraction and try
increasing the number of slits from to . The primary peaks become sharper, and the
secondary peaks become less and less pronounced. By the time you reach the maximum number of ,
the system is behaving much like a diffraction grating.

4.5 Circular Apertures and Resolution
Learning Objectives
By the end of this section, you will be able to:

• Describe the diffraction limit on resolution
• Describe the diffraction limit on beam propagation

Light diffracts as it moves through space, bending around obstacles, interfering constructively and
destructively. This can be used as a spectroscopic tool—a diffraction grating disperses light according to
wavelength, for example, and is used to produce spectra—but diffraction also limits the detail we can obtain in
images.

Figure 4.17(a) shows the effect of passing light through a small circular aperture. Instead of a bright spot with
sharp edges, we obtain a spot with a fuzzy edge surrounded by circles of light. This pattern is caused by
diffraction, similar to that produced by a single slit. Light from different parts of the circular aperture
interferes constructively and destructively. The effect is most noticeable when the aperture is small, but the
effect is there for large apertures as well.
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Figure 4.17 (a) Monochromatic light passed through a small circular aperture produces this diffraction pattern. (b) Two point-light

sources that are close to one another produce overlapping images because of diffraction. (c) If the sources are closer together, they cannot

be distinguished or resolved.

How does diffraction affect the detail that can be observed when light passes through an aperture? Figure
4.17(b) shows the diffraction pattern produced by two point-light sources that are close to one another. The
pattern is similar to that for a single point source, and it is still possible to tell that there are two light sources
rather than one. If they are closer together, as in Figure 4.17(c), we cannot distinguish them, thus limiting the
detail or resolution we can obtain. This limit is an inescapable consequence of the wave nature of light.

Diffraction limits the resolution in many situations. The acuity of our vision is limited because light passes
through the pupil, which is the circular aperture of the eye. Be aware that the diffraction-like spreading of light
is due to the limited diameter of a light beam, not the interaction with an aperture. Thus, light passing through
a lens with a diameter D shows this effect and spreads, blurring the image, just as light passing through an
aperture of diameter D does. Thus, diffraction limits the resolution of any system having a lens or mirror.
Telescopes are also limited by diffraction, because of the finite diameter D of the primary mirror.

Just what is the limit? To answer that question, consider the diffraction pattern for a circular aperture, which
has a central maximum that is wider and brighter than the maxima surrounding it (similar to a slit) (Figure
4.18(a)). It can be shown that, for a circular aperture of diameter D, the first minimum in the diffraction pattern
occurs at (providing the aperture is large compared with the wavelength of light, which is the case
for most optical instruments). The accepted criterion for determining the diffraction limit to resolution based
on this angle is known as the Rayleigh criterion, which was developed by Lord Rayleigh in the nineteenth
century.

The first minimum is at an angle of , so that two point objects are just resolvable if they are
separated by the angle

where is the wavelength of light (or other electromagnetic radiation) and D is the diameter of the aperture,
lens, mirror, etc., with which the two objects are observed. In this expression, has units of radians. This angle
is also commonly known as the diffraction limit.

Rayleigh Criterion

The diffraction limit to resolution states that two images are just resolvable when the center of the
diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other (Figure
4.18(b)).

4.5
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Figure 4.18 (a) Graph of intensity of the diffraction pattern for a circular aperture. Note that, similar to a single slit, the central maximum

is wider and brighter than those to the sides. (b) Two point objects produce overlapping diffraction patterns. Shown here is the Rayleigh

criterion for being just resolvable. The central maximum of one pattern lies on the first minimum of the other.

All attempts to observe the size and shape of objects are limited by the wavelength of the probe. Even the small
wavelength of light prohibits exact precision. When extremely small wavelength probes are used, as with an
electron microscope, the system is disturbed, still limiting our knowledge. Heisenberg’s uncertainty principle
asserts that this limit is fundamental and inescapable, as we shall see in the chapter on quantum mechanics.

EXAMPLE 4.6

Calculating Diffraction Limits of the Hubble Space Telescope
The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m. Being in orbit, this
telescope avoids the degrading effects of atmospheric distortion on its resolution. (a) What is the angle
between two just-resolvable point light sources (perhaps two stars)? Assume an average light wavelength of
550 nm. (b) If these two stars are at a distance of 2 million light-years, which is the distance of the Andromeda
Galaxy, how close together can they be and still be resolved? (A light-year, or ly, is the distance light travels in 1
year.)

Strategy
The Rayleigh criterion stated in Equation 4.5, , gives the smallest possible angle between point
sources, or the best obtainable resolution. Once this angle is known, we can calculate the distance between the
stars, since we are given how far away they are.

Solution

a. The Rayleigh criterion for the minimum resolvable angle is

Entering known values gives

b. The distance s between two objects a distance r away and separated by an angle is
Substituting known values gives
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Significance
The angle found in part (a) is extraordinarily small (less than 1/50,000 of a degree), because the primary
mirror is so large compared with the wavelength of light. As noticed, diffraction effects are most noticeable
when light interacts with objects having sizes on the order of the wavelength of light. However, the effect is still
there, and there is a diffraction limit to what is observable. The actual resolution of the Hubble Telescope is not
quite as good as that found here. As with all instruments, there are other effects, such as nonuniformities in
mirrors or aberrations in lenses that further limit resolution. However, Figure 4.19 gives an indication of the
extent of the detail observable with the Hubble because of its size and quality, and especially because it is
above Earth’s atmosphere.

Figure 4.19 These two photographs of the M82 Galaxy give an idea of the observable detail using (a) a ground-based telescope and (b)

the Hubble Space Telescope. (credit a: modification of work by “Ricnun”/Wikimedia Commons; credit b: modification of work by NASA,

ESA, and The Hubble Heritage Team (STScI/AURA))

The answer in part (b) indicates that two stars separated by about half a light-year can be resolved. The
average distance between stars in a galaxy is on the order of five light-years in the outer parts and about one
light-year near the galactic center. Therefore, the Hubble can resolve most of the individual stars in
Andromeda Galaxy, even though it lies at such a huge distance that its light takes 2 million years to reach us.
Figure 4.20 shows another mirror used to observe radio waves from outer space.

Figure 4.20 A 305-m-diameter paraboloid at Arecibo in Puerto Rico is lined with reflective material, making it into a radio telescope. It is

the largest curved focusing dish in the world. Although D for Arecibo is much larger than for the Hubble Telescope, it detects radiation of a

much longer wavelength and its diffraction limit is significantly poorer than Hubble’s. The Arecibo telescope is still very useful, because

important information is carried by radio waves that is not carried by visible light. (credit: Jeff Hitchcock)

CHECK YOUR UNDERSTANDING 4.5

What is the angular resolution of the Arecibo telescope shown in Figure 4.20 when operated at 21-cm
wavelength? How does it compare to the resolution of the Hubble Telescope?
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Diffraction is not only a problem for optical instruments but also for the electromagnetic radiation itself. Any
beam of light having a finite diameter D and a wavelength exhibits diffraction spreading. The beam spreads
out with an angle given by Equation 4.5, . Take, for example, a laser beam made of rays as
parallel as possible (angles between rays as close to as possible) instead spreads out at an angle

, where D is the diameter of the beam and is its wavelength. This spreading is impossible to
observe for a flashlight because its beam is not very parallel to start with. However, for long-distance
transmission of laser beams or microwave signals, diffraction spreading can be significant (Figure 4.21). To
avoid this, we can increase D. This is done for laser light sent to the moon to measure its distance from Earth.
The laser beam is expanded through a telescope to make D much larger and smaller.

Figure 4.21 The beam produced by this microwave transmission antenna spreads out at a minimum angle due to

diffraction. It is impossible to produce a near-parallel beam because the beam has a limited diameter.

In most biology laboratories, resolution is an issue when the use of the microscope is introduced. The smaller
the distance x by which two objects can be separated and still be seen as distinct, the greater the resolution.
The resolving power of a lens is defined as that distance x. An expression for resolving power is obtained from
the Rayleigh criterion. Figure 4.22(a) shows two point objects separated by a distance x. According to the
Rayleigh criterion, resolution is possible when the minimum angular separation is

where d is the distance between the specimen and the objective lens, and we have used the small angle
approximation (i.e., we have assumed that x is much smaller than d), so that Therefore, the
resolving power is

Another way to look at this is by the concept of numerical aperture (NA), which is a measure of the maximum
acceptance angle at which a lens will take light and still contain it within the lens. Figure 4.22(b) shows a lens
and an object at point P. The NA here is a measure of the ability of the lens to gather light and resolve fine
detail. The angle subtended by the lens at its focus is defined to be . From the figure and again using the
small angle approximation, we can write

The NA for a lens is , where n is the index of refraction of the medium between the objective lens
and the object at point P. From this definition for NA, we can see that

In a microscope, NA is important because it relates to the resolving power of a lens. A lens with a large NA is
able to resolve finer details. Lenses with larger NA are also able to collect more light and so give a brighter
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image. Another way to describe this situation is that the larger the NA, the larger the cone of light that can be
brought into the lens, so more of the diffraction modes are collected. Thus the microscope has more
information to form a clear image, and its resolving power is higher.

Figure 4.22 (a) Two points separated by a distance x and positioned a distance d away from the objective. (b) Terms and symbols used in

discussion of resolving power for a lens and an object at point P (credit a: modification of work by “Infopro”/Wikimedia Commons).

One of the consequences of diffraction is that the focal point of a beam has a finite width and intensity
distribution. Imagine focusing when only considering geometric optics, as in Figure 4.23(a). The focal point is
regarded as an infinitely small point with a huge intensity and the capacity to incinerate most samples,
irrespective of the NA of the objective lens—an unphysical oversimplification. For wave optics, due to
diffraction, we take into account the phenomenon in which the focal point spreads to become a focal spot
(Figure 4.23(b)) with the size of the spot decreasing with increasing NA. Consequently, the intensity in the focal
spot increases with increasing NA. The higher the NA, the greater the chances of photodegrading the
specimen. However, the spot never becomes a true point.

Figure 4.23 (a) In geometric optics, the focus is modelled as a point, but it is not physically possible to produce such a point because it

implies infinite intensity. (b) In wave optics, the focus is an extended region.

In a different type of microscope, molecules within a specimen are made to emit light through a mechanism
called fluorescence. By controlling the molecules emitting light, it has become possible to construct images
with resolution much finer than the Rayleigh criterion, thus circumventing the diffraction limit. The
development of super-resolved fluorescence microscopy led to the 2014 Nobel Prize in Chemistry.

INTERACTIVE

In this Optical Resolution Model, two diffraction patterns for light through two circular apertures are shown
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side by side in this simulation (https://openstax.org/l/21optresmodsim) by Fu-Kwun Hwang. Watch the
patterns merge as you decrease the aperture diameters.

4.6 X-Ray Diffraction
Learning Objectives
By the end of this section, you will be able to:

• Describe interference and diffraction effects exhibited by X-rays in interaction with atomic-scale structures

Since X-ray photons are very energetic, they have relatively short wavelengths, on the order of m to
m. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce
sharp shadows. However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the
location, shape, and size of atoms and molecules. The process is called X-ray diffraction, and it involves the
interference of X-rays to produce patterns that can be analyzed for information about the structures that
scattered the X-rays.

Perhaps the most famous example of X-ray diffraction is the discovery of the double-helical structure of DNA
in 1953 by an international team of scientists working at England’s Cavendish Laboratory—American James
Watson, Englishman Francis Crick, and New Zealand-born Maurice Wilkins. Using X-ray diffraction data
produced by Rosalind Franklin, they were the first to model the double-helix structure of DNA that is so crucial
to life. For this work, Watson, Crick, and Wilkins were awarded the 1962 Nobel Prize in Physiology or Medicine.
(There is some debate and controversy over the issue that Rosalind Franklin was not included in the prize,
although she died in 1958, before the prize was awarded.)

Figure 4.24 shows a diffraction pattern produced by the scattering of X-rays from a crystal. This process is
known as X-ray crystallography because of the information it can yield about crystal structure, and it was the
type of data Rosalind Franklin supplied to Watson and Crick for DNA. Not only do X-rays confirm the size and
shape of atoms, they give information about the atomic arrangements in materials. For example, more recent
research in high-temperature superconductors involves complex materials whose lattice arrangements are
crucial to obtaining a superconducting material. These can be studied using X-ray crystallography.

Figure 4.24 X-ray diffraction from the crystal of a protein (hen egg lysozyme) produced this interference pattern. Analysis of the pattern

yields information about the structure of the protein. (credit: “Del45”/Wikimedia Commons)

Historically, the scattering of X-rays from crystals was used to prove that X-rays are energetic electromagnetic
(EM) waves. This was suspected from the time of the discovery of X-rays in 1895, but it was not until 1912 that
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the German Max von Laue (1879–1960) convinced two of his colleagues to scatter X-rays from crystals. If a
diffraction pattern is obtained, he reasoned, then the X-rays must be waves, and their wavelength could be
determined. (The spacing of atoms in various crystals was reasonably well known at the time, based on good
values for Avogadro’s number.) The experiments were convincing, and the 1914 Nobel Prize in Physics was
given to von Laue for his suggestion leading to the proof that X-rays are EM waves. In 1915, the unique father-
and-son team of Sir William Henry Bragg and his son Sir William Lawrence Bragg were awarded a joint Nobel
Prize for inventing the X-ray spectrometer and the then-new science of X-ray analysis.

In ways reminiscent of thin-film interference, we consider two plane waves at X-ray wavelengths, each one
reflecting off a different plane of atoms within a crystal’s lattice, as shown in Figure 4.25. From the geometry,
the difference in path lengths is . Constructive interference results when this distance is an integer
multiple of the wavelength. This condition is captured by the Bragg equation,

where m is a positive integer and d is the spacing between the planes. Following the Law of Reflection, both the
incident and reflected waves are described by the same angle, but unlike the general practice in geometric
optics, is measured with respect to the surface itself, rather than the normal.

Figure 4.25 X-ray diffraction with a crystal. Two incident waves reflect off two planes of a crystal. The difference in path lengths is

indicated by the dashed line.

EXAMPLE 4.7

X-Ray Diffraction with Salt Crystals
Common table salt is composed mainly of NaCl crystals. In a NaCl crystal, there is a family of planes 0.252 nm
apart. If the first-order maximum is observed at an incidence angle of , what is the wavelength of the X-
ray scattering from this crystal?

Strategy
Use the Bragg equation, Equation 4.6, , to solve for .

Solution
For first-order, and the plane spacing d is known. Solving the Bragg equation for wavelength yields

Significance
The determined wavelength fits within the X-ray region of the electromagnetic spectrum. Once again, the wave
nature of light makes itself prominent when the wavelength is comparable to the size of the
physical structures it interacts with.

CHECK YOUR UNDERSTANDING 4.6

4.6
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For the experiment described in Example 4.7, what are the two other angles where interference maxima may
be observed? What limits the number of maxima?

Although Figure 4.25 depicts a crystal as a two-dimensional array of scattering centers for simplicity, real
crystals are structures in three dimensions. Scattering can occur simultaneously from different families of
planes at different orientations and spacing patterns known as called Bragg planes, as shown in Figure 4.26.
The resulting interference pattern can be quite complex.

Figure 4.26 Because of the regularity that makes a crystal structure, one crystal can have many families of planes within its geometry,

each one giving rise to X-ray diffraction.

4.7 Holography
Learning Objectives
By the end of this section, you will be able to:

• Describe how a three-dimensional image is recorded as a hologram
• Describe how a three-dimensional image is formed from a hologram

A hologram, such as the one in Figure 4.27, is a true three-dimensional image recorded on film by lasers.
Holograms are used for amusement; decoration on novelty items and magazine covers; security on credit
cards and driver’s licenses (a laser and other equipment are needed to reproduce them); and for serious three-
dimensional information storage. You can see that a hologram is a true three-dimensional image because
objects change relative position in the image when viewed from different angles.

Figure 4.27 Credit cards commonly have holograms for logos, making them difficult to reproduce. (credit: Dominic Alves)

The name hologram means “entire picture” (from the Greek holo, as in holistic) because the image is three-
dimensional. Holography is the process of producing holograms and, although they are recorded on
photographic film, the process is quite different from normal photography. Holography uses light interference
or wave optics, whereas normal photography uses geometric optics. Figure 4.28 shows one method of
producing a hologram. Coherent light from a laser is split by a mirror, with part of the light illuminating the
object. The remainder, called the reference beam, shines directly on a piece of film. Light scattered from the
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object interferes with the reference beam, producing constructive and destructive interference. As a result, the
exposed film looks foggy, but close examination reveals a complicated interference pattern stored on it. Where
the interference was constructive, the film (a negative actually) is darkened. Holography is sometimes called
lens-less photography, because it uses the wave characteristics of light, as contrasted to normal photography,
which uses geometric optics and requires lenses.

Figure 4.28 Production of a hologram. Single-wavelength coherent light from a laser produces a well-defined interference pattern on a

piece of film. The laser beam is split by a partially silvered mirror, with part of the light illuminating the object and the remainder shining

directly on the film. (credit: modification of work by Mariana Ruiz Villarreal)

Light falling on a hologram can form a three-dimensional image of the original object. The process is
complicated in detail, but the basics can be understood, as shown in Figure 4.29, in which a laser of the same
type that exposed the film is now used to illuminate it. The myriad tiny exposed regions of the film are dark
and block the light, whereas less exposed regions allow light to pass. The film thus acts much like a collection
of diffraction gratings with various spacing patterns. Light passing through the hologram is diffracted in
various directions, producing both real and virtual images of the object used to expose the film. The
interference pattern is the same as that produced by the object. Moving your eye to various places in the
interference pattern gives you different perspectives, just as looking directly at the object would. The image
thus looks like the object and is three dimensional like the object.

Figure 4.29 A transmission hologram is one that produces real and virtual images when a laser of the same type as that which exposed

the hologram is passed through it. Diffraction from various parts of the film produces the same interference pattern that was produced by

the object that was used to expose it. (credit: modification of work by Mariana Ruiz Villarreal)

The hologram illustrated in Figure 4.29 is a transmission hologram. Holograms that are viewed with reflected
light, such as the white light holograms on credit cards, are reflection holograms and are more common. White
light holograms often appear a little blurry with rainbow edges, because the diffraction patterns of various
colors of light are at slightly different locations due to their different wavelengths. Further uses of holography
include all types of three-dimensional information storage, such as of statues in museums, engineering
studies of structures, and images of human organs.
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Invented in the late 1940s by Dennis Gabor (1900–1970), who won the 1971 Nobel Prize in Physics for his
work, holography became far more practical with the development of the laser. Since lasers produce coherent
single-wavelength light, their interference patterns are more pronounced. The precision is so great that it is
even possible to record numerous holograms on a single piece of film by just changing the angle of the film for
each successive image. This is how the holograms that move as you walk by them are produced—a kind of lens-
less movie.

In a similar way, in the medical field, holograms have allowed complete three-dimensional holographic
displays of objects from a stack of images. Storing these images for future use is relatively easy. With the use of
an endoscope, high-resolution, three-dimensional holographic images of internal organs and tissues can be
made.
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CHAPTER REVIEW
Key Terms
Bragg planes families of planes within crystals

that can give rise to X-ray diffraction
destructive interference for a single slit occurs

when the width of the slit is comparable to the
wavelength of light illuminating it

diffraction bending of a wave around the edges of
an opening or an obstacle

diffraction grating large number of evenly spaced
parallel slits

diffraction limit fundamental limit to resolution
due to diffraction

hologram three-dimensional image recorded on
film by lasers; the word hologram means entire
picture (from the Greek word holo, as in holistic)

holography process of producing holograms with
the use of lasers

missing order interference maximum that is not
seen because it coincides with a diffraction

minimum
Rayleigh criterion two images are just-resolvable

when the center of the diffraction pattern of one
is directly over the first minimum of the
diffraction pattern of the other

resolution ability, or limit thereof, to distinguish
small details in images

two-slit diffraction pattern diffraction pattern of
two slits of width D that are separated by a
distance d is the interference pattern of two point
sources separated by d multiplied by the
diffraction pattern of a slit of width D

width of the central peak angle between the
minimum for and

X-ray diffraction technique that provides the
detailed information about crystallographic
structure of natural and manufactured materials

Key Equations

Destructive interference for a single slit

Half phase angle

Field amplitude in the diffraction pattern

Intensity in the diffraction pattern

Rayleigh criterion for circular apertures

Bragg equation

Summary
4.1 Single-Slit Diffraction

• Diffraction can send a wave around the edges of
an opening or other obstacle.

• A single slit produces an interference pattern
characterized by a broad central maximum with
narrower and dimmer maxima to the sides.

4.2 Intensity in Single-Slit Diffraction

• The intensity pattern for diffraction due to a
single slit can be calculated using phasors as

where , a is the slit width, is
the wavelength, and is the angle from the
central peak.

4.3 Double-Slit Diffraction

• With real slits with finite widths, the effects of
interference and diffraction operate
simultaneously to form a complicated intensity
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pattern.
• Relative intensities of interference fringes

within a diffraction pattern can be determined.
• Missing orders occur when an interference

maximum and a diffraction minimum are
located together.

4.4 Diffraction Gratings

• A diffraction grating consists of a large number
of evenly spaced parallel slits that produce an
interference pattern similar to but sharper than
that of a double slit.

• Constructive interference occurs when
where d is

the distance between the slits, is the angle
relative to the incident direction, and m is the
order of the interference.

4.5 Circular Apertures and Resolution

• Diffraction limits resolution.

• The Rayleigh criterion states that two images
are just resolvable when the center of the
diffraction pattern of one is directly over the
first minimum of the diffraction pattern of the
other.

4.6 X-Ray Diffraction

• X-rays are relatively short-wavelength EM
radiation and can exhibit wave characteristics
such as interference when interacting with
correspondingly small objects.

4.7 Holography

• Holography is a technique based on wave
interference to record and form three-
dimensional images.

• Lasers offer a practical way to produce sharp
holographic images because of their
monochromatic and coherent light for
pronounced interference patterns.

Conceptual Questions
4.1 Single-Slit Diffraction

1. As the width of the slit producing a single-slit
diffraction pattern is reduced, how will the
diffraction pattern produced change?

2. Compare interference and diffraction.
3. If you and a friend are on opposite sides of a hill,

you can communicate with walkie-talkies but not
with flashlights. Explain.

4. What happens to the diffraction pattern of a
single slit when the entire optical apparatus is
immersed in water?

5. In our study of diffraction by a single slit, we
assume that the length of the slit is much larger
than the width. What happens to the diffraction
pattern if these two dimensions were
comparable?

6. A rectangular slit is twice as wide as it is high. Is
the central diffraction peak wider in the vertical
direction or in the horizontal direction?

4.2 Intensity in Single-Slit Diffraction

7. In Equation 4.4, the parameter looks like an
angle but is not an angle that you can measure
with a protractor in the physical world. Explain
what represents.

4.3 Double-Slit Diffraction

8. Shown below is the central part of the interference
pattern for a pure wavelength of red light projected

onto a double slit. The pattern is actually a
combination of single- and double-slit interference.
Note that the bright spots are evenly spaced. Is this a
double- or single-slit characteristic? Note that some
of the bright spots are dim on either side of the
center. Is this a single- or double-slit characteristic?
Which is smaller, the slit width or the separation
between slits? Explain your responses.
(credit: PASCO)

4.5 Circular Apertures and Resolution

9. Is higher resolution obtained in a microscope
with red or blue light? Explain your answer.

10. The resolving power of refracting telescope
increases with the size of its objective lens.
What other advantage is gained with a larger
lens?

11. The distance between atoms in a molecule is
about . Can visible light be used to
“see” molecules?

12. A beam of light always spreads out. Why can a
beam not be created with parallel rays to
prevent spreading? Why can lenses, mirrors, or
apertures not be used to correct the spreading?
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4.6 X-Ray Diffraction

13. Crystal lattices can be examined with X-rays but
not UV. Why?

4.7 Holography

14. How can you tell that a hologram is a true three-
dimensional image and that those in three-
dimensional movies are not?

15. If a hologram is recorded using monochromatic
light at one wavelength but its image is viewed
at another wavelength, say shorter, what
will you see? What if it is viewed using light of
exactly half the original wavelength?

16. What image will one see if a hologram is
recorded using monochromatic light but its
image is viewed in white light? Explain.

Problems
4.1 Single-Slit Diffraction

17. (a) At what angle is the first minimum for
550-nm light falling on a single slit of width

? (b) Will there be a second minimum?
18. (a) Calculate the angle at which a -wide

slit produces its first minimum for 410-nm
violet light. (b) Where is the first minimum for
700-nm red light?

19. (a) How wide is a single slit that produces its
first minimum for 633-nm light at an angle of

? (b) At what angle will the second
minimum be?

20. (a) What is the width of a single slit that
produces its first minimum at for 600-nm
light? (b) Find the wavelength of light that has
its first minimum at .

21. Find the wavelength of light that has its third
minimum at an angle of when it falls on a
single slit of width .

22. (a) Sodium vapor light averaging 589 nm in
wavelength falls on a single slit of width

. At what angle does it produces its
second minimum? (b) What is the highest-order
minimum produced?

23. Consider a single-slit diffraction pattern for
, projected on a screen that is 1.00

m from a slit of width 0.25 mm. How far from
the center of the pattern are the centers of the
first and second dark fringes?

24. (a) Find the angle between the first minima for
the two sodium vapor lines, which have
wavelengths of 589.1 and 589.6 nm, when they
fall upon a single slit of width . (b) What
is the distance between these minima if the
diffraction pattern falls on a screen 1.00 m from
the slit? (c) Discuss the ease or difficulty of
measuring such a distance.

25. (a) What is the minimum width of a single slit
(in multiples of ) that will produce a first
minimum for a wavelength ? (b) What is its
minimum width if it produces 50 minima? (c)

1000 minima?
26. (a) If a single slit produces a first minimum at

at what angle is the second-order
minimum? (b) What is the angle of the third-
order minimum? (c) Is there a fourth-order
minimum? (d) Use your answers to illustrate
how the angular width of the central maximum
is about twice the angular width of the next
maximum (which is the angle between the first
and second minima).

27. If the separation between the first and the
second minima of a single-slit diffraction
pattern is 6.0 mm, what is the distance between
the screen and the slit? The light wavelength is
500 nm and the slit width is 0.16 mm.

28. A water break at the entrance to a harbor
consists of a rock barrier with a 50.0-m-wide
opening. Ocean waves of 20.0-m wavelength
approach the opening straight on. At what
angles to the incident direction are the boats
inside the harbor most protected against wave
action?

29. An aircraft maintenance technician walks past a
tall hangar door that acts like a single slit for
sound entering the hangar. Outside the door, on
a line perpendicular to the opening in the door,
a jet engine makes a 600-Hz sound. At what
angle with the door will the technician observe
the first minimum in sound intensity if the
vertical opening is 0.800 m wide and the speed
of sound is 340 m/s?

4.2 Intensity in Single-Slit Diffraction

30. A single slit of width is illuminated by a
sodium yellow light of wavelength 589 nm. Find
the intensity at a angle to the axis in terms
of the intensity of the central maximum.

31. A single slit of width 0.1 mm is illuminated by a
mercury light of wavelength 576 nm. Find the
intensity at a angle to the axis in terms of
the intensity of the central maximum.
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32. The width of the central peak in a single-slit
diffraction pattern is 5.0 mm. The wavelength of
the light is 600 nm, and the screen is 2.0 m from
the slit. (a) What is the width of the slit? (b)
Determine the ratio of the intensity at 4.5 mm
from the center of the pattern to the intensity at
the center.

33. Consider the single-slit diffraction pattern for
, , and . Find

the intensity in terms of at , ,
, , and .

4.3 Double-Slit Diffraction

34. Two slits of width each in an opaque
material, are separated by a center-to-center
distance of A monochromatic light of
wavelength 450 nm is incident on the double-
slit. One finds a combined interference and
diffraction pattern on the screen.
(a) How many peaks of the interference will be
observed in the central maximum of the
diffraction pattern?
(b) How many peaks of the interference will be
observed if the slit width is doubled while
keeping the distance between the slits same?
(c) How many peaks of interference will be
observed if the slits are separated by twice the
distance, that is, while keeping the
widths of the slits same?
(d) What will happen in (a) if instead of 450-nm
light another light of wavelength 680 nm is
used?
(e) What is the value of the ratio of the intensity
of the central peak to the intensity of the next
bright peak in (a)?
(f) Does this ratio depend on the wavelength of
the light?
(g) Does this ratio depend on the width or
separation of the slits?

35. A double slit produces a diffraction pattern that
is a combination of single- and double-slit
interference. Find the ratio of the width of the
slits to the separation between them, if the first
minimum of the single-slit pattern falls on the
fifth maximum of the double-slit pattern. (This
will greatly reduce the intensity of the fifth
maximum.)

36. For a double-slit configuration where the slit
separation is four times the slit width, how
many interference fringes lie in the central peak
of the diffraction pattern?

37. Light of wavelength 500 nm falls normally on 50
slits that are wide and spaced

apart. How many interference
fringes lie in the central peak of the diffraction
pattern?

38. A monochromatic light of wavelength 589 nm
incident on a double slit with slit width
and unknown separation results in a diffraction
pattern containing nine interference peaks
inside the central maximum. Find the
separation of the slits.

39. When a monochromatic light of wavelength 430
nm incident on a double slit of slit separation

, there are 11 interference fringes in its
central maximum. How many interference
fringes will be in the central maximum of a light
of the same wavelength and slit widths, but a
new slit separation of ?

40. Determine the intensities of two interference
peaks other than the central peak in the central
maximum of the diffraction, if possible, when a
light of wavelength 628 nm is incident on a
double slit of width 500 nm and separation
1500 nm. Use the intensity of the central spot to
be .

4.4 Diffraction Gratings

41. A diffraction grating has 2000 lines per
centimeter. At what angle will the first-order
maximum be for 520-nm-wavelength green
light?

42. Find the angle for the third-order maximum for
580-nm-wavelength yellow light falling on a
difraction grating having 1500 lines per
centimeter.

43. How many lines per centimeter are there on a
diffraction grating that gives a first-order
maximum for 470-nm blue light at an angle of

?
44. What is the distance between lines on a

diffraction grating that produces a second-order
maximum for 760-nm red light at an angle of

?
45. Calculate the wavelength of light that has its

second-order maximum at when falling
on a diffraction grating that has 5000 lines per
centimeter.

46. An electric current through hydrogen gas
produces several distinct wavelengths of visible
light. What are the wavelengths of the hydrogen
spectrum, if they form first-order maxima at
angles and when
projected on a diffraction grating having 10,000
lines per centimeter?

47. (a) What do the four angles in the preceding
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problem become if a 5000-line per centimeter
diffraction grating is used? (b) Using this
grating, what would the angles be for the
second-order maxima? (c) Discuss the
relationship between integral reductions in
lines per centimeter and the new angles of
various order maxima.

48. What is the spacing between structures in a
feather that acts as a reflection grating, giving
that they produce a first-order maximum for
525-nm light at a angle?

49. An opal such as that shown in Figure 4.15 acts
like a reflection grating with rows separated by
about If the opal is illuminated normally,
(a) at what angle will red light be seen and (b) at
what angle will blue light be seen?

50. At what angle does a diffraction grating produce
a second-order maximum for light having a
first-order maximum at ?

51. (a) Find the maximum number of lines per
centimeter a diffraction grating can have and
produce a maximum for the smallest
wavelength of visible light. (b) Would such a
grating be useful for ultraviolet spectra? (c) For
infrared spectra?

52. (a) Show that a 30,000 line per centimeter
grating will not produce a maximum for visible
light. (b) What is the longest wavelength for
which it does produce a first-order maximum?
(c) What is the greatest number of line per
centimeter a diffraction grating can have and
produce a complete second-order spectrum for
visible light?

53. The analysis shown below also applies to diffraction
gratings with lines separated by a distance d. What
is the distance between fringes produced by a
diffraction grating having 125 lines per centimeter
for 600-nm light, if the screen is 1.50 m away? (Hint:
The distance between adjacent fringes is
assuming the slit separation d is comparable to )

4.5 Circular Apertures and Resolution

54. The 305-m-diameter Arecibo radio telescope
pictured in Figure 4.20 detects radio waves with
a 4.00-cm average wavelength. (a) What is the
angle between two just-resolvable point sources
for this telescope? (b) How close together could
these point sources be at the 2 million light-year
distance of the Andromeda Galaxy?

55. Assuming the angular resolution found for the
Hubble Telescope in Example 4.6, what is the
smallest detail that could be observed on the
moon?

56. Diffraction spreading for a flashlight is
insignificant compared with other limitations in
its optics, such as spherical aberrations in its
mirror. To show this, calculate the minimum
angular spreading of a flashlight beam that is
originally 5.00 cm in diameter with an average
wavelength of 600 nm.

57. (a) What is the minimum angular spread of a
633-nm wavelength He-Ne laser beam that is
originally 1.00 mm in diameter? (b) If this laser
is aimed at a mountain cliff 15.0 km away, how
big will the illuminated spot be? (c) How big a
spot would be illuminated on the moon,
neglecting atmospheric effects? (This might be
done to hit a corner reflector to measure the
round-trip time and, hence, distance.)

58. A telescope can be used to enlarge the diameter
of a laser beam and limit diffraction spreading.
The laser beam is sent through the telescope in
opposite the normal direction and can then be
projected onto a satellite or the moon. (a) If this
is done with the Mount Wilson telescope,
producing a 2.54-m-diameter beam of 633-nm
light, what is the minimum angular spread of
the beam? (b) Neglecting atmospheric effects,
what is the size of the spot this beam would
make on the moon, assuming a lunar distance
of ?

59. The limit to the eye’s acuity is actually related to
diffraction by the pupil. (a) What is the angle
between two just-resolvable points of light for a
3.00-mm-diameter pupil, assuming an average
wavelength of 550 nm? (b) Take your result to
be the practical limit for the eye. What is the
greatest possible distance a car can be from you
if you can resolve its two headlights, given they
are 1.30 m apart? (c) What is the distance
between two just-resolvable points held at an
arm’s length (0.800 m) from your eye? (d) How
does your answer to (c) compare to details you
normally observe in everyday circumstances?
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60. What is the minimum diameter mirror on a
telescope that would allow you to see details as
small as 5.00 km on the moon some 384,000
km away? Assume an average wavelength of
550 nm for the light received.

61. Find the radius of a star’s image on the retina of
an eye if its pupil is open to 0.65 cm and the
distance from the pupil to the retina is 2.8 cm.
Assume .

62. (a) The dwarf planet Pluto and its moon,
Charon, are separated by 19,600 km. Neglecting
atmospheric effects, should the 5.08-m-
diameter Palomar Mountain telescope be able to
resolve these bodies when they are

from Earth? Assume an average
wavelength of 550 nm. (b) In actuality, it is just
barely possible to discern that Pluto and Charon
are separate bodies using a ground-based
telescope. What are the reasons for this?

63. A spy satellite orbits Earth at a height of 180
km. What is the minimum diameter of the
objective lens in a telescope that must be used
to resolve columns of troops marching 2.0 m
apart? Assume

64. What is the minimum angular separation of two
stars that are just-resolvable by the 8.1-m
Gemini South telescope, if atmospheric effects
do not limit resolution? Use 550 nm for the
wavelength of the light from the stars.

65. The headlights of a car are 1.3 m apart. What is
the maximum distance at which the eye can
resolve these two headlights? Take the pupil
diameter to be 0.40 cm.

66. When dots are placed on a page from a laser
printer, they must be close enough so that you
do not see the individual dots of ink. To do this,
the separation of the dots must be less than
Raleigh’s criterion. Take the pupil of the eye to
be 3.0 mm and the distance from the paper to
the eye of 35 cm; find the minimum separation
of two dots such that they cannot be resolved.
How many dots per inch (dpi) does this
correspond to?

67. Suppose you are looking down at a highway
from a jetliner flying at an altitude of 6.0 km.
How far apart must two cars be if you are able to
distinguish them? Assume that and
that the diameter of your pupils is 4.0 mm.

68. Can an astronaut orbiting Earth in a satellite at
a distance of 180 km from the surface
distinguish two skyscrapers that are 20 m
apart? Assume that the pupils of the astronaut’s
eyes have a diameter of 5.0 mm and that most of

the light is centered around 500 nm.
69. The characters of a stadium scoreboard are

formed with closely spaced lightbulbs that
radiate primarily yellow light. (Use )
How closely must the bulbs be spaced so that an
observer 80 m away sees a display of
continuous lines rather than the individual
bulbs? Assume that the pupil of the observer’s
eye has a diameter of 5.0 mm.

70. If a microscope can accept light from objects at
angles as large as , what is the smallest
structure that can be resolved when illuminated
with light of wavelength 500 nm and (a) the
specimen is in air? (b) When the specimen is
immersed in oil, with index of refraction of
1.52?

71. A camera uses a lens with aperture 2.0 cm.
What is the angular resolution of a photograph
taken at 700 nm wavelength? Can it resolve the
millimeter markings of a ruler placed 35 m
away?

4.6 X-Ray Diffraction

72. X-rays of wavelength 0.103 nm reflects off a
crystal and a second-order maximum is
recorded at a Bragg angle of . What is the
spacing between the scattering planes in this
crystal?

73. A first-order Bragg reflection maximum is
observed when a monochromatic X-ray falls on
a crystal at a angle to a reflecting plane.
What is the wavelength of this X-ray?

74. An X-ray scattering experiment is performed on
a crystal whose atoms form planes separated by
0.440 nm. Using an X-ray source of wavelength
0.548 nm, what is the angle (with respect to the
planes in question) at which the experimenter
needs to illuminate the crystal in order to
observe a first-order maximum?

75. The structure of the NaCl crystal forms
reflecting planes 0.541 nm apart. What is the
smallest angle, measured from these planes, at
which X-ray diffraction can be observed, if X-
rays of wavelength 0.085 nm are used?

76. On a certain crystal, a first-order X-ray
diffraction maximum is observed at an angle of

relative to its surface, using an X-ray
source of unknown wavelength. Additionally,
when illuminated with a different, this time of
known wavelength 0.137 nm, a second-order
maximum is detected at Determine (a)
the spacing between the reflecting planes, and
(b) the unknown wavelength.
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77. Calcite crystals contain scattering planes
separated by 0.30 nm. What is the angular
separation between first and second-order
diffraction maxima when X-rays of 0.130 nm

wavelength are used?
78. The first-order Bragg angle for a certain crystal

is . What is the second-order angle?

Additional Problems
79. White light falls on two narrow slits separated

by 0.40 mm. The interference pattern is
observed on a screen 3.0 m away. (a) What is the
separation between the first maxima for red
light and violet light

(b) At what point nearest the
central maximum will a maximum for yellow
light coincide with a maximum for
violet light? Identify the order for each
maximum.

80. Microwaves of wavelength 10.0 mm fall
normally on a metal plate that contains a slit 25
mm wide. (a) Where are the first minima of the
diffraction pattern? (b) Would there be minima
if the wavelength were 30.0 mm?

81. Quasars, or quasi-stellar radio sources, are
astronomical objects discovered in 1960. They
are distant but strong emitters of radio waves
with angular size so small, they were originally
unresolved, the same as stars. The quasar
3C405 is actually two discrete radio sources that
subtend an angle of 82 arcsec. If this object is
studied using radio emissions at a frequency of
410 MHz, what is the minimum diameter of a
radio telescope that can resolve the two
sources?

82. Two slits each of width 1800 nm and separated
by the center-to-center distance of 1200 nm are
illuminated by plane waves from a krypton ion
laser-emitting at wavelength 461.9 nm. Find the
number of interference peaks in the central
diffraction peak.

83. A microwave of an unknown wavelength is
incident on a single slit of width 6 cm. The
angular width of the central peak is found to be

. Find the wavelength.
84. Red light (wavelength 632.8 nm in air) from a

Helium-Neon laser is incident on a single slit of
width 0.05 mm. The entire apparatus is
immersed in water of refractive index 1.333.
Determine the angular width of the central
peak.

85. A light ray of wavelength 461.9 nm emerges
from a 2-mm circular aperture of a krypton ion
laser. Due to diffraction, the beam expands as it
moves out. How large is the central bright spot
at (a) 1 m, (b) 1 km, (c) 1000 km, and (d) at the
surface of the moon at a distance of 400,000 km
from Earth.

86. How far apart must two objects be on the moon
to be distinguishable by eye if only the
diffraction effects of the eye’s pupil limit the
resolution? Assume 550 nm for the wavelength
of light, the pupil diameter 5.0 mm, and
400,000 km for the distance to the moon.

87. How far apart must two objects be on the moon
to be resolvable by the 8.1-m-diameter Gemini
North telescope at Mauna Kea, Hawaii, if only
the diffraction effects of the telescope aperture
limit the resolution? Assume 550 nm for the
wavelength of light and 400,000 km for the
distance to the moon.

88. A spy satellite is reputed to be able to resolve
objects 10. cm apart while operating 197 km
above the surface of Earth. What is the diameter
of the aperture of the telescope if the resolution
is only limited by the diffraction effects? Use
550 nm for light.

89. Monochromatic light of wavelength 530 nm
passes through a horizontal single slit of width

in an opaque plate. A screen of
dimensions is 1.2 m away from
the slit. (a) Which way is the diffraction pattern
spread out on the screen? (b) What are the
angles of the minima with respect to the center?
(c) What are the angles of the maxima? (d) How
wide is the central bright fringe on the screen?
(e) How wide is the next bright fringe on the
screen?

90. A monochromatic light of unknown wavelength
is incident on a slit of width . A diffraction
pattern is seen at a screen 2.5 m away where the
central maximum is spread over a distance of
10.0 cm. Find the wavelength.

91. A source of light having two wavelengths 550
nm and 600 nm of equal intensity is incident on
a slit of width . Find the separation of the

bright spots of the two wavelengths on a
screen 30.0 cm away.
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92. A single slit of width 2100 nm is illuminated
normally by a wave of wavelength 632.8 nm.
Find the phase difference between waves from
the top and one third from the bottom of the slit
to a point on a screen at a horizontal distance of
2.0 m and vertical distance of 10.0 cm from the
center.

93. A single slit of width is illuminated by a
sodium yellow light of wavelength 589 nm. Find
the intensity at a angle to the axis in terms
of the intensity of the central maximum.

94. A single slit of width 0.10 mm is illuminated by
a mercury lamp of wavelength 576 nm. Find the
intensity at a angle to the axis in terms of
the intensity of the central maximum.

95. A diffraction grating produces a second
maximum that is 89.7 cm from the central
maximum on a screen 2.0 m away. If the grating
has 600 lines per centimeter, what is the
wavelength of the light that produces the
diffraction pattern?

96. A grating with 4000 lines per centimeter is used
to diffract light that contains all wavelengths
between 400 and 650 nm. How wide is the first-
order spectrum on a screen 3.0 m from the
grating?

97. A diffraction grating with 2000 lines per
centimeter is used to measure the wavelengths
emitted by a hydrogen gas discharge tube. (a) At
what angles will you find the maxima of the two
first-order blue lines of wavelengths 410 and
434 nm? (b) The maxima of two other first-
order lines are found at and

. What are the wavelengths of
these lines?

98. For white light falling
normally on a diffraction grating, show that the
second and third-order spectra overlap no
matter what the grating constant d is.

99. How many complete orders of the visible
spectrum can be
produced with a diffraction grating that
contains 5000 lines per centimeter?

100. Two lamps producing light of wavelength 589
nm are fixed 1.0 m apart on a wooden plank.
What is the maximum distance an observer
can be and still resolve the lamps as two
separate sources of light, if the resolution is
affected solely by the diffraction of light
entering the eye? Assume light enters the eye
through a pupil of diameter 4.5 mm.

101. On a bright clear day, you are at the top of a
mountain and looking at a city 12 km away.
There are two tall towers 20.0 m apart in the
city. Can your eye resolve the two towers if the
diameter of the pupil is 4.0 mm? If not, what
should be the minimum magnification power
of the telescope needed to resolve the two
towers? In your calculations use 550 nm for
the wavelength of the light.

102. Radio telescopes are telescopes used for the
detection of radio emission from space. Because
radio waves have much longer wavelengths than
visible light, the diameter of a radio telescope must
be very large to provide good resolution. For
example, the radio telescope in Penticton, BC in
Canada, has a diameter of 26 m and can be operated
at frequencies as high as 6.6 GHz. (a) What is the
wavelength corresponding to this frequency? (b)
What is the angular separation of two radio sources
that can be resolved by this telescope? (c) Compare
the telescope’s resolution with the angular size of the
moon.

Figure 4.30 (credit: modification of work by Jason Nishiyama)

103. Calculate the wavelength of light that produces
its first minimum at an angle of when
falling on a single slit of width .

104. (a) Find the angle of the third diffraction
minimum for 633-nm light falling on a slit of
width . (b) What slit width would place
this minimum at ?
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105. As an example of diffraction by apertures of
everyday dimensions, consider a doorway of
width 1.0 m. (a) What is the angular position of
the first minimum in the diffraction pattern of
600-nm light? (b) Repeat this calculation for a
musical note of frequency 440 Hz (A above
middle C). Take the speed of sound to be 343
m/s.

106. What are the angular positions of the first and
second minima in a diffraction pattern
produced by a slit of width 0.20 mm that is
illuminated by 400 nm light? What is the
angular width of the central peak?

107. How far would you place a screen from the slit
of the previous problem so that the second
minimum is a distance of 2.5 mm from the
center of the diffraction pattern?

108. How narrow is a slit that produces a diffraction
pattern on a screen 1.8 m away whose central
peak is 1.0 m wide? Assume .

109. Suppose that the central peak of a single-slit
diffraction pattern is so wide that the first
minima can be assumed to occur at angular
positions of . For this case, what is the
ratio of the slit width to the wavelength of the
light?

110. The central diffraction peak of the double-slit
interference pattern contains exactly nine
fringes. What is the ratio of the slit separation
to the slit width?

111. Determine the intensities of three interference
peaks other than the central peak in the
central maximum of the diffraction, if
possible, when a light of wavelength 500 nm is
incident normally on a double slit of width
1000 nm and separation 1500 nm. Use the
intensity of the central spot to be .

112. The yellow light from a sodium vapor lamp
seems to be of pure wavelength, but it
produces two first-order maxima at
and when projected on a 10,000 line
per centimeter diffraction grating. What are
the two wavelengths to an accuracy of 0.1 nm?

113. Structures on a bird feather act like a
reflection grating having 8000 lines per
centimeter. What is the angle of the first-order
maximum for 600-nm light?

114. If a diffraction grating produces a first-order
maximum for the shortest wavelength of
visible light at , at what angle will the
first-order maximum be for the largest
wavelength of visible light?

115. (a) What visible wavelength has its fourth-
order maximum at an angle of when
projected on a 25,000-line per centimeter
diffraction grating? (b) What is unreasonable
about this result? (c) Which assumptions are
unreasonable or inconsistent?

116. Consider a spectrometer based on a diffraction
grating. Construct a problem in which you
calculate the distance between two
wavelengths of electromagnetic radiation in
your spectrometer. Among the things to be
considered are the wavelengths you wish to be
able to distinguish, the number of lines per
meter on the diffraction grating, and the
distance from the grating to the screen or
detector. Discuss the practicality of the device
in terms of being able to discern between
wavelengths of interest.

117. An amateur astronomer wants to build a
telescope with a diffraction limit that will allow
him to see if there are people on the moons of
Jupiter. (a) What diameter mirror is needed to
be able to see 1.00-m detail on a Jovian moon
at a distance of from Earth?
The wavelength of light averages 600 nm. (b)
What is unreasonable about this result? (c)
Which assumptions are unreasonable or
inconsistent?

Challenge Problems
118. Blue light of wavelength 450 nm falls on a slit

of width 0.25 mm. A converging lens of focal
length 20 cm is placed behind the slit and
focuses the diffraction pattern on a screen. (a)
How far is the screen from the lens? (b) What
is the distance between the first and the third
minima of the diffraction pattern?
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119. (a) Assume that the maxima are halfway
between the minima of a single-slit diffraction
pattern. The use the diameter and
circumference of the phasor diagram, as
described in Intensity in Single-Slit
Diffraction, to determine the intensities of the
third and fourth maxima in terms of the
intensity of the central maximum. (b) Do the
same calculation, using Equation 4.4.

120. (a) By differentiating Equation 4.4, show that
the higher-order maxima of the single-slit
diffraction pattern occur at values of that
satisfy . (b) Plot and
versus and find the intersections of these two
curves. What information do they give you
about the locations of the maxima? (c)
Convince yourself that these points do not
appear exactly at where

but are quite close to these
values.

121. What is the maximum number of lines per
centimeter a diffraction grating can have and
produce a complete first-order spectrum for
visible light?

122. Show that a diffraction grating cannot produce
a second-order maximum for a given
wavelength of light unless the first-order
maximum is at an angle less than .

123. A He-Ne laser beam is reflected from the
surface of a CD onto a wall. The brightest spot
is the reflected beam at an angle equal to the
angle of incidence. However, fringes are also
observed. If the wall is 1.50 m from the CD, and
the first fringe is 0.600 m from the central
maximum, what is the spacing of grooves on
the CD?

124. Objects viewed through a microscope are
placed very close to the focal point of the
objective lens. Show that the minimum
separation x of two objects resolvable through
the microscope is given by

where is the focal length and D is the
diameter of the objective lens as shown below.

4.7
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