Intermediate Dynamics
Phys 230 Fall 2011

Instructor: Professor David Collins
Office: Wubben 228B
Phone: 248-1787
email: dacollin@coloradomesa.edu
Office Hours: TBA
Class Meetings: MWF 9:00am-9:50am, Wubben/Science 366
Course Website: http://www.coloradomesa.edu/~dacollin/teaching/2011Fall/Phys230/index.html
Required Text: R. D. Knight, Physics, Vol 2 (Chs. 16–19), Pearson/Addison-Wesley (2008).
T. M. Helliwell, Special Relativity, University Science (2010)
Prerequisites: PHYS 132, 132L and MATH 253

Overview
Phys 230 covers thermodynamics and statistical physics at an introductory level, classical vibrations and waves at an intermediate level and the special theory of relativity.

Thermodynamics and statistical physics describes scenarios in which there are vast number of identical physical systems. By averaging over the microscopic physical properties of individual physical systems, one can arrive at notions of temperature, heat, and entropy which describe collectively to state of the ensemble of physical systems. These basic notions are widely used throughout physics and appear in such diverse areas as bulk magnetism, gas properties, chemistry and atmospheric physics.

Classical waves and vibrations describe physical systems in which there is a repeated basic pattern of motion. These are prevalent in all branches of physics and include springs, simple pendula, electronic circuits, waves on strings, sound waves, light and atoms.

Special relativity describes how different observers can meaningfully make and compare observations and is one of the cornerstones of physics since the early 20th century. The theory of relativity is crucial for a modern understanding of time, space, energy and cosmology.
The course syllabus, subject to modification, is:

1. **Thermodynamics:** Fluids.
2. **Thermodynamics:** Temperature, heat, first law of thermodynamics.
3. **Thermodynamics:** Entropy and the second law of thermodynamics.
4. **Thermodynamics:** Kinetic theory of gases.
5. **Vibrations and Waves:** Periodic motion, free damped and forced simple oscillations. Resonance.
7. **Vibrations and Waves:** Interference and diffraction.
8. **Special Relativity:** Observers, frames of reference. Principle of relativity.
9. **Special Relativity:** Simultaneity, time dilation, length contraction, Lorentz transformations. Spacetime.
10. **Special Relativity:** Energy and momentum in special relativity.

Assignments

1. **Homework:** There will generally be one homework assignment per week. This will be due by 5pm on the date indicated on the assignment. It is in your best interests to work by yourself on the homework problems but collaboration is acceptable. You can discuss the broad outlines of problem solutions with your colleagues but must write your final solutions independently. You are also encouraged to consult me for help with homework problems.

Exams and Quizzes

1. **Class Exams:** There will be two exams during class on the following days:

 Exam 1: 19 September 2011
 Exam 2: 24 October 2011

 Exams will be closed book and closed notes although you will be able to bring a formula sheet. Calculators will be allowed.

2. **Final Exam:** There will be a final exam at **8:00 am on Wednesday 14 December 2010.** The final will last one hour and 50 minutes and be comprehensive and closed book although a formula sheet will be allowed. Calculators will be allowed.

Grades

Individual assignments and exams will be graded using suitable scales. In general, to get full credit (100%) for a problem your solution must be correct and well justified. Partial credit will be given for incomplete or partly correct solutions. No credit (0%) will be given for problems not attempted, assignments not turned in or quizzes and exams missed without good reason.

The numerical grades for each component will be totaled and a final numerical grade will be computed according to the following distribution.
The following final numerical scores will guarantee letter grades:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>A</td>
</tr>
<tr>
<td>80%</td>
<td>B</td>
</tr>
<tr>
<td>70%</td>
<td>C</td>
</tr>
<tr>
<td>60%</td>
<td>D</td>
</tr>
</tbody>
</table>

Policies

1. **Helpful Resources:** CMU offers tutoring services for students who need extra help. If you are having difficulty with the course, please contact me or the Tutoring Services Program in Houston Hall 113 (248-1392) about this.

 In coordination with Educational Access Services, reasonable accommodations will be provided for qualified students with disabilities. Please meet with the instructor the first week of class to make arrangements. Nancy Conklin, the Coordinator of Educational Access Services, can be contacted at 248-1826, or in person at Houston Hall 108.

2. **Withdrawals:** There are several ways to drop this course. The deadline for dropping without penalty is **6 September 2011**. Please consult the MSC academic calendar and catalog for more details about adding and dropping courses.

3. **Attendance:** Attendance policies are described in the CMU catalog. You are expected to attend all the class meetings. In case of illness or other emergencies you must be able to produce the appropriate documentation. There are other circumstances under which you can be excused but you must discuss these with me in advance. If you miss a class or lab for a valid reason, turn in any assignments due before the start of the next class. Assignments turned in beyond your return to class will not be accepted.

 If there is an unavoidable conflict with one of the class exams or the final exam, please discuss it with me as soon as possible. In general I will assume that the final exam will have priority, since you know the dates of the exam.

4. **Academic integrity:** You are expected to present your own work in assignments, exams and quizzes. Fabrication of data, plagiarism, and copying from anyone else, particularly in closed book exams, are serious violation of academic norms. CMU has extensive policies on these matters and penalties for infringement can be severe. For more details, consult the academic integrity policies in the CMU catalog.