Quantum Computing with Ensembles
Strange Physics for Ordinary Tasks

David Collins

Department of Physics and Astronomy, Bucknell University, Lewisburg PA

$323 = ab \rightarrow a = 17 \quad b = 19$
Outline

“All information is physical.”

- Classical computing and complexity.
- Quantum mechanics of qubits.
- Quantum computing: standard approaches.
- Quantum computing: ensemble approaches.

Classical mechanics governs the behavior and scope of conventional information processing devices (PCs, cell-phones, etc...).

Quantum mechanics extends information processing possibilities beyond those of conventional classical information processing devices.
How difficult is integer multiplication?

- **Two single digit integers:**

 \[7 \times 8 = 56. \]

- **Two two digit integers:**

 \[
 \begin{array}{c}
 27 \\
 18 \\
 \hline
 216 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 27 \\
 \hline
 486 \\
 \end{array}
 \]

- **Two three digit integers:**

 \[
 \begin{array}{c}
 727 \\
 348 \\
 \hline
 5816 \\
 2908 \\
 2181 \\
 \hline
 252996 \\
 \end{array}
 \]

- **Two n digit integers:**

 Approximately \(n^2 \) single digit multiplications and additions.
Integer Factorization

How difficult is integer factorization?

- **Two digit integer:**

 \(91 = a \times b\)

 \(\Rightarrow a = 7 \text{ and } b = 13\)

- **Three digit integer:**

 \(713 = a \times b\)

 \(\Rightarrow a = ? \text{ and } b = ?\)

- **Trial and error factorization of \(n\) digit integer \(N\). Number of guesses:**

 \[\sqrt{N} \approx \sqrt{10^n} = 10^{n/2}\]

 Exponential in \(n\).

Best known integer factorization is exponential:

\[O((\exp(n^{1/3} \log n)))^{2/3})\]
Computational Complexity

- How many additional digits to double the number of steps?

- Quadratic, $O(n^2)$:
 \[n_{\text{new}} \approx \sqrt{2} \, n_{\text{old}} \]

- Exponential, e.g. $O(2^n)$
 \[n_{\text{new}} \approx n_{\text{old}} + 1 \]

Polynomial \leftrightarrow easy.
Exponential \leftrightarrow hard.
Abstraction

- Binary digit (bit):

 State is **one of** 0 or 1.

- Binary representation:

 \[0 \equiv 000 \quad 1 \equiv 001 \quad 2 \equiv 010 \ldots \]

 \[PA \equiv \begin{array}{c} 1001111 \\ P \end{array} \quad \begin{array}{c} 1000001 \\ A \end{array} \]

Realization

- Pegs and beads

 \[\equiv 000 \]

 \[\equiv 001 \]

 \[\equiv 010 \]
Classical Information Processing - Basic Gates

Abstraction

- **Example:** NOT gate:

 \[x \rightarrow \overline{x} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\overline{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Realization

- **Example:** NOT via pegs and beads:
 - Implementation rules:
 - Add bead to blue peg.
 - Two beads on one peg → remove both.

 - **NOT 0 on blue bit**
 \[\rightarrow \]
 - **NOT 1 on blue bit**
 \[\rightarrow \]

Number of basic algebraic operations ∼ number of basic gates.
Spin $\frac{1}{2}$ Quantum Systems

Spin = intrinsic **angular momentum** of subatomic and atomic scale particles.

- **Stern-Gerlach** measures component of angular momentum.

Inhomogeneous B field

Incident particles

\[
S_z = +\frac{\hbar}{2} \quad \text{State: } |0\rangle \\
S_z = -\frac{\hbar}{2} \quad \text{State: } |1\rangle
\]

- **Example:** electron, proton, H, 13C.
Quantum States and Information

Information is stored as a state of a spin $\frac{1}{2}$ quantum system (qubit).

Energy Eigenstates

|0⟩

|1⟩

Superposition states

$\frac{1}{\sqrt{2}}(|0⟩ + |1⟩)$

$\frac{1}{\sqrt{2}}(|0⟩ + i|1⟩)$

Classical bit state.

Beyond classical bit states!

General state: $|ψ⟩ = α|0⟩ + β|1⟩ \sim \begin{pmatrix} α \\ β \end{pmatrix}$ where $|α|^2 + |β|^2 = 1$.
Multiple Qubits

Unentangled States
- Products of single qubit states:

\[
\frac{1}{\sqrt{2}}(\ket{0} + \ket{1}) \otimes \frac{1}{\sqrt{2}}(\ket{0} + \ket{1}) = \frac{1}{2}(\ket{0}\ket{0} + \ket{0}\ket{1} + \ket{1}\ket{0} + \ket{1}\ket{1})
\]

- **Uncorrelated** states.

Entangled States
- Not product of single qubit states:

\[
\alpha_0 \ket{0}\ket{0} + \alpha_1 \ket{0}\ket{1} + \alpha_2 \ket{1}\ket{0} + \alpha_3 \ket{1}\ket{1} \neq \ket{\Psi_1} \otimes \ket{\Psi_2}
\]

Multiple qubits give highly **correlated states.**
Quantum Measurements and Information Extraction

Information is extracted via **quantum measurements**.

- Measurements of \(z \) component of single qubit spin are not deterministic:

\[
\alpha |0\rangle + \beta |1\rangle \sim \begin{cases}
S_z = +\hbar/2 & \text{with probability } |\alpha|^2 \\
S_z = -\hbar/2 & \text{with probability } |\beta|^2
\end{cases}
\]

- Assign bit values by measuring \(z \) component of spin:

<table>
<thead>
<tr>
<th>(S_z)</th>
<th>Bit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+\hbar/2</td>
<td>0</td>
</tr>
<tr>
<td>-\hbar/2</td>
<td>1</td>
</tr>
</tbody>
</table>
Quantum Dynamics and Information Processing

Information is processed via **controlled time evolution**.

- **Unitary transformation** *(quantum “gate”)*:

\[|\psi_{\text{final}}\rangle = \hat{U} \ |\psi_{\text{initial}}\rangle \]

where \(\hat{U}^\dagger \hat{U} = \hat{I} \).

- **Example**: Single qubit quantum NOT gate

\[
\hat{U} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

transforms

\[
\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}
\]
Quantum Gates

Reduction to **basic one and two qubit operations.**

Abstraction

Example: Single bit rotation

\[
|\psi\rangle \xrightarrow{\hat{R}_y(\theta)} \hat{R}_y(\theta) |\psi\rangle
\]

\[\hat{R}_y(\theta) = \begin{pmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{pmatrix}\]

- Creates superpositions:
 \[
 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix}
 \]

Realization

Example: \(\hat{R}_y(\theta)\) for spin \(\frac{1}{2}\):

Apply magnetic field \(\vec{B}_1\) along \(\hat{y}\) axis.

![Diagram showing rotation of spin under magnetic field](image-url)
Classical Computing with Qubits

Classical Bit States

- Restrict to:

 \[0 \equiv |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

 \[1 \equiv |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

Classical Gates

- Matrix representation:

 \[\text{NOT} \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

- **Example:** NOT on 0:

 \[
 \text{NOT} 0 \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\
 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \equiv 1
 \]

Any classical computation can be implemented using qubits. Quantum computing allows greater possibilities via **superpositions of states**.
Quantum Computing Scheme

- Uses distinguishable qubits.

\[\psi_i U^M \ldots U \psi_i \rightarrow |\psi_f\rangle \]

- Evolution steps:
 - generate superpositions and entangled states,
 - sequence of basic one and two qubit gates.

Quantum algorithms provide speedups (fewer basic gates).
Quantum Algorithms

“Toy” algorithms:
- Global properties of functions.
- Exponential speedup.
- Deutsch-Jozsa algorithm.
- Bernstein-Vazirani algorithm.
- Simon’s algorithm.

Searching (Grover):
- Search unstructured database.
- Quadratic speedup.

Integer factorization (Shor):
- Factorize integer $N = pq$.
- Problem size $L := \log_2 N$.
- Classical: $O(\exp(L^{1/3}(\log L)))^{2/3}$.
- Quantum: $O(L^3)$.

<table>
<thead>
<tr>
<th>Decimal digits</th>
<th>Classical</th>
<th>Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$\sim 10^{13}$</td>
<td>$\sim 10^7$</td>
</tr>
<tr>
<td>200</td>
<td>$\sim 10^{17}$</td>
<td>$\sim 10^9$</td>
</tr>
<tr>
<td>300</td>
<td>$\sim 10^{20}$</td>
<td>$\sim 10^{10}$</td>
</tr>
<tr>
<td>400</td>
<td>$\sim 10^{23}$</td>
<td>$\sim 10^{10}$</td>
</tr>
</tbody>
</table>

- Age of universe $\sim 10^{17}$s.
- Can break RSA code.
Nuclear Magnetic Resonance: Nuclear Spin Spectroscopy

- Spin $\frac{1}{2}$ nuclei in strong magnetic field, \vec{B}_0.
- Manipulation via external magnetic fields.
- Precession detected via readout coils.
- **Example:** H and 13C nuclei of alanine.

Source: Stoltz Group, Dept. of Chemistry, Caltech.
NMR Quantum Computing

NMR: an accessible technology for small scale quantum computers.

Qubits

- Nuclear spins provide qubits.
- **Example:** Alanine 13C → 3 qubits

```
  H  C^{13}  O
  H               C^{13}
  H  C^{13}  OH
  NH_2
```

- Single qubit gates: external magnetic fields.
- Two qubit gates: spin-spin coupling.

Issues

- Readily available technology.
- Weak interactions with environment ⇒ slow information degradation.
- Algorithm implementation:
 - Shor factorization - 7 qubits.
 - Grover search - 3 qubits.
- Ensemble of computers: **initialization and readout?**
Ensemble Quantum Computing

Ensemble of Identical Computers
- NMR sample $\approx 10^{20}$ identical molecules.
- Rapid molecular motion ⇒ no intermolecular interactions.
- **Identical, independent computer ensemble.**

Statistically Mixed States
- Thermal equilibrium:
 - $|0\rangle$ with prob $\approx \frac{1}{2} \left(1 + \frac{\hbar \omega}{2k_B T} \right)$
 - $|1\rangle$ with prob $\approx \frac{1}{2} \left(1 - \frac{\hbar \omega}{2k_B T} \right)$
 - $\omega = \text{precession frequency about } \vec{B}_0$.
- Weak polarization:
 - $\hbar \omega / 2k_B T \approx 10^{-4}$

Mixed state input ⇒ alternative initialization.
Ensemble average output ⇒ alternative readout.
Ensembles: Initialization and Readout

Initialization
- Non-unitary scheme → pseudo-pure state.

 \[\rho_i = \frac{1 - \varepsilon}{2^n} \hat{I}^{\otimes n} + \varepsilon \ket{\psi_i} \bra{\psi_i} \]

 Effectively provides correct initial state \(\ket{\psi_i} \) required for algorithm.

- **Polarization** \(\varepsilon \sim \) fraction of molecules in correct initial state typically weak:

 \[\varepsilon \sim 10^{-4} \]

Readout
- \(M \) ensemble members → sample average

\[z_2 = 1 \]
\[z_3 = 0 \]
\[z_4 = 0 \]
\[z_5 = 1 \]

\[\overline{z} = \sum \frac{z_i}{M} \]

- Majority vote decisions: \(\overline{z} > 1/2 \).}

Non-deterministic output.
Modified Algorithms for Ensemble QC

Readout

- Converted “deterministic” algorithms
 - Grover search (one marked item) - unnecessary.
 - Grover search (few marked items) - few runs plus filtering.
 - Shor factorization - duplication of quantum computers.
- Modified algorithms require fewer steps:
 - Grover search can be truncated.

Initialization

- Use noisy thermal equilibrium input states?
- Bernstein-Vazirani algorithm:
 - Standard thermal equilibrium state plus unmodified algorithm plus expectation values appears satisfactory.
- Deutsch-Jozsa algorithm:
 - Existing “one pure qubit plus maximally mixed state” approach unsatisfactory.

- Grover, Shor: - ?

Single Bit Output: Statistics

Framework

- Standard algorithm → **deterministic output on single qubit**.
- Ensemble with polarization ε, individual computer:

$$\Pr\text{ (correct)} = \frac{1 + \varepsilon}{2}$$

$$\Pr\text{ (incorrect)} = \frac{1 - \varepsilon}{2}$$

When does quantum ensemble failure probability exceed classical failure probability?

Classical vs Quantum Ensemble

- For given ensemble size, M:

 Polarization required for quantum to outperform classical probabilistic using comparable resources?

- **Deutsch-Jozsa**

Grover Search Algorithm: Statistics

- Search database of size $N = 2^n$ for single marked item.
- Nearly deterministic output on n qubits.
- Correlated measurement outcomes:

 Polarization required for Grover search to outperform classical probabilistic search on all n bits?

Critical Polarization: $N = 10^{10}$

![Graph showing critical polarization for $N = 10^{10}$](image)

Critical Polarization: $N = 10^{15}$

![Graph showing critical polarization for $N = 10^{15}$](image)
Grover Search: Critical Polarization Lower Bound

- Compute ε_c for largest M before classical algorithm succeeds with certainty.

- Numerical evaluation:

![Graph showing the relation between $\log_{10} N$ and $\log_{10} \varepsilon_c$.](image)

- Best fit:

$$\varepsilon_c = \frac{2.1}{N^{0.215}}$$
Quantum Information Arena

Theory
- Quantum Cryptography
- Quantum Teleportation
- Superdense Coding
- Decoherence and Error Correction
- Entanglement
- Quantum Channels

Practice
- NMR
- Photons
- Trapped Ions
- Quantum Dots
- Doped Silicon
- Superconducting Circuits
Undergraduate Involvement

Mathematical/Computer Background

- Linear algebra.
- “Physicist’s” probability theory.
- Interest in numerical calculations.

Physics Background

- Quantum mechanics: wavefunctions (less useful).
- Quantum mechanics: fundamental level (more useful).

Projects

- Ensemble quantum computing: statistics.
- Ensemble quantum computing: algorithms.
- Distinguishing unitaries.
- General measurements.
- Pulse design.

Project Nature

- Theory/mathematical.
- Some numerical calculations.
- Some analytical calculations.
Future Directions

Ensemble QC

- Can other standard quantum algorithms and applications be tailored for ensemble QC?
- What resources does ensemble QC require to outperform classical probabilistic computing?
- Where does ensemble QC lie in relation to standard QC and classical computation?

General

- Quantum mechanics provides new information processing paradigm.
- Quantum systems incorporate information processing possibilities distinct from classical systems. Why? What does this tell us about quantum mechanics?
Deutsch-Jozsa Algorithm

Deutsch problem concerns properties of simple binary functions.

Single Bit Binary Functions

- Maps

\[\{0, 1\} \xrightarrow{f} \{0, 1\} \]

\[x \mapsto f(x) = ax \oplus b \]

where \(a, b \in \{0, 1\} \).

- Addition modulo 2:

\[
\begin{align*}
0 \oplus 0 & := 0 & 0 \oplus 1 & := 1 \\
1 \oplus 0 & := 1 & 1 \oplus 1 & := 0
\end{align*}
\]

- Task: Find \(a \).

Function Evaluation

- Use unitary function evaluation:

\[
\begin{array}{c}
|x\rangle \\
\hline
\hat{U}_f \\
\hline
|y\rangle \\
\end{array} \quad \rightarrow \quad
\begin{array}{c}
|x\rangle \\
\hline
f(x) \oplus y\rangle
\end{array}
\]

for \(x, y \in \{0, 1\} \).

- “Classical” approach requires two function evaluations:

\[
\begin{align*}
|0\rangle |0\rangle & \rightarrow |0\rangle |b\rangle \\
|1\rangle |0\rangle & \rightarrow |1\rangle |a \oplus b\rangle
\end{align*}
\]
Deutsch-Jozsa Algorithm

Quantum superposition helps to solve the Deutsch problem with **just one function evaluation!**

- **Use quantum superpositions.**

\[
\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \quad \text{\(\hat{U}_f\)} \quad \hat{H}
\]

\[
\hat{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\]

- **Upper qubit state before Hadamard:**

 - If \(a = 0 \):
 \[
 \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
 \]

 - If \(a = 1 \):
 \[
 \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}
 \]

- **Upper qubit state after Hadamard:**

 - If \(a = 0 \):
 \[
 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle
 \]

 - If \(a = 1 \):
 \[
 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle
 \]

Spin \(z \) measurement yields \(a \).